

ISSN 1606-867X (Print) ISSN 2687-0711 (Onine)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 546(561.722.682.22) https://doi.org/10.17308/kcmf.2021.23/3293

Поверхность ликвидуса квазитройной системы Cu₂S-In₂S₃-FeS

И. Б. Бахтиярлы, Р. Дж. Курбанова, Ш. С. Абдуллаева²², З. М. Мухтарова, Ф. М. Маммадова

Институт катализа и неорганической химии, НАН Азербайджана, пр. Г. Джавида, 113, Баку АZ-1143, Азербайджан

Аннотация

Проекция поверхности ликвидуса квазитройной системы Cu₂S-In₂S₃-FeS была построена по результатам проведенных экспериментальных исследований по квазибинарным и неквазибинарным сечениям, а также по данным о двойных системах, составляющих тройную систему. Каждое сечение в отдельности (шесть квазибинарных и четыре неквазибинарных) было исследовано комплексными методами физико-химического анализа: дифференциально термического, рентгенофазового и микроструктурного.

Установлено, что в квазитройной системе Cu₂S-In₂S₃-FeS имеется шесть полей первичной кристаллизации отдельных фаз, 11 кривых моновариантного равновесия, по которым происходит совместная кристаллизация двух фаз. Экстраполяцией направления кривых моновариантного равновесия получены точки нонвариантного равновесия.

Тройная система $Cu_2S-In_2S_3$ -FeS характеризуется 17 точками нонвариантного равновесия, из них E_1-E_5 являются точками тройной эвтектики.

Диаграмма проекции поверхности ликвидуса характеризуется тремя полями кристаллизации исходных компонентов (Cu₂S, In₂S₃, FeS), четырьмя полями двойных соединений и одним полем сложного соединения (CuFeIn₃S₆).

Так как для квазибинарного разреза CuIn₅S₈–FeIn₂S₄ наблюдается полная растворимость исходных компонентов в жидком и твердом состояниях, поля первичной кристаллизации CuIn₅S₈, FeIn₂S₄ отсутствуют, их заменяет неограниченный твердый раствор на основе этих компонентов.

В тройной системе Cu₂S-In₂S₃-FeS самыми обширными являются поля первичной кристаллизации Cu₂S, FeS и CuInS₂. Приведены реакции моновариантных равновесий.

Ключевые слова: система, квазитройная, эвтектика, разрез, ликвидус, сечение

Благодарности: работа выполнена при финансовой поддержке Фонда Развития Науки при Президенте Азербайджанской Республики – Грант № EIF/MQM/Elm-Tehsil-1-2016-1(26)-71/15/1.

Для цитирования: Бахтиярлы И.Б., Курбанова Р.Дж., Абдуллаева Ш.С., Мухтарова З.М., Маммадова Ф.М. Поверхность ликвидуса квазитройной системы Cu₂S-In₂S₃-FeS. *Конденсированные среды и межфазные границы*. 2021;23(1): 000-000. https://doi.org/10.17308/kcmf.2021.23/3293

For citation: Bakhtiyarly I. B., Kurbanova R. J., Abdullaeva Sh. S., Mukhtarova Z. M., Mammadova F. M. Liquidus surface of the quasiternal system $Cu_2S-In_2S_3$ -FeS. *Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases*. 2021;23(1): 000-000. https://doi.org/10.17308/kcmf.2021.23/3293

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

۲

[🖂] Абдуллаева Шахри Сейфалы кызы, e mail: sehri.abdullayeva.83@mail.ru

[©] Бахтиярлы И. Б., Курбанова Р. Дж., Абдуллаева Ш. С., Мухтарова З. М., Маммадова Ф. М., 2021

Оригинальные статьи

1. Введение

Квазитройная система Cu₂S–In₂S₃–FeS является объектом исследования настоящей работы.

Система Cu₂S–In₂S₃-FeS образована бинарными соединениями, плавящимися конгруэнтно [1-5]. Соединение Cu₂S существует в виде трех модификаций: до 376 К стабильна низкотемпературная модификация α -Cu₂S; в интервале температур 376–708 К существует форма β -Cu₂S гексагональной сингонии; выше 708 К – γ -Cu₂S с ГЦК структурой, плавится при 1402 К [6–8].

Соединение In_2S_3 также существует в нескольких структурных модификациях и относится к полупроводниковым материалам типа $A_2^{III}B_3^{VI}$. Это соединение является широкозонным полупроводником. В последнее годы к нему привлечено внимание исследователей как к материалу «окна» в тонкопленочных фотовольтаических приборах с целью замещения CdS. Используется оно в оптоэлектронике для создания фоточувствительных гетероструктур, микроэлектронике, солнечной энергетике как материал, обладающий рядом уникальных свойств [9, 10].

Сульфиды железа в основном встречаются в виде природных соединений. Они на протяжении многих лет вызывают большой интерес исследователей, так как обладают разнообразием кристаллических структур и фазовых превращений, а также необычными электрическими и магнитными свойствами [11]. В них наблюдаются фазовые переходы типа металл-изолятор, переходы в сверхпроводящее состояние и др. FeS используется в некоторых областях техники, и еще одним развивающимся приложением является замена кремния в солнечной фотоэлектрической промышленности [12].

В связи с этим изучение закономерностей физико-химического взаимодействия и фазообразования, происходящими между указанными халькогенидами, имеет особые научный и практический интересы и позволяет разработать новые многофункциональные материалы на их основе.

В литературе имеется множество работ, посвященных бинарным халькогенидным соединениям – Cu_2S , FeS, In_2S_3 [13–15], которые были необходимы при обсуждении полученных результатов в настоящей работе.

Следует отметить, что сведения по изучению тройной системы в литературе отсутствуют. Однако имеются литературные данные об изучении двух квазибинарных разрезов (CuIn₅S₈– $FeIn_2S_4$, CuInS₂-FeS [16–18]). Нами был исследован разрез CuInS₂-FeS [21].

Цель работы заключается в построении проекции поверхности ликвидуса системы Cu_2S - In_2S_3 -FeS: в установлении положения полей первичной кристаллизации фаз в системе, составлении уравнений нонвариантных фазовых превращений, определении характера взаимодействий в подчиненных треугольниках.

2. Экспериментальная часть

Для выполнения экспериментальной части при изучении системы Cu₂S-In₂S₃-FeS нами был использован комплекс методов физико-химического анализа: дифференциально-термический (ДТА), микроструктурный (МСА), рентгенофазовый (РФА), а также измерение микротвердости и определение плотности [21]. ДТА изучали с помощью прибора марки Jupiter STA 449 F3 (фирмы NETZSCH, Германия) в системе синхронтермического анализа. Точность определения термических эффектов составляла 0.10-0.15 К/град. РФА образцов проводился на рентгенодифрактометре «D2 Phaser» (Bruker, Германия). Микротвердость фаз в сплавах измеряли по известной методике [19] на приборе ПМТ-3. Нагрузка на алмазную пирамиду составляла 0.01-0.02 Н. Исследования микроструктуры осуществляли на металлографическом микроскопе МИМ-8. Плотность определяли при температуре 300 К пикнометрическим методом (наполнитель – толуол).

Синтез образцов проводили из элементов (железо восстановленное, индий марки In - 000, медь чистоты - 99.999 %, сера о.с.ч. - 99.9999 %) в эвакуированных до 1.33 Па и запаянных кварцевых ампулах длиной 15-18 см диаметром 1.5 см прямым ампульным методом в однотемпературной печи с применением перемешивания образцов. Перед загрузкой в электрическую печь ампулы нагревали до 800 К, затем их с образцами постепенно погружали в печь, поднимая температуру на 50-70 °С выше температуры плавления. Расплав выдерживали при этой температуре в течение 7 часов. Процесс повторялся несколько раз. Затем ампулу закаляли в ледяной воде. Далее слиток был подвергнут гомогенизирующему отжигу. Гомогенизирующий отжиг проводили при температуре 900 К в течение 200 ч.

3. Результаты и их обсуждение

Для более полного понимания процессов, протекающих в квазитройной системе Cu₂S-

Оригинальные статьи

И.Б.Бахтиярлы и др.

In₂S₃–FeS, мы исследовали следующие квазибинарные и неквазибинарные сечения: CuInS₂– FeIn₂S₄, Cu₃In₅S₉–FeIn₂S₄, Cu₃In₅S₉–CuFeIn₃S₆, CuFeIn₃S₆–FeS, CuInS₂–FeS квазибинарные; FeIn₂S₄–(5Cu₂S)_{0.83}(3In₂S₃)_{0.17}, (5Cu₂S)_{0.50}(7.5FeS)_{0.50}– (5Cu₂S)_{0.16}(3In₂S₃)_{0.84}, (5Cu₂S)_{0.16}(3In₂S₃)_{0.84}–FeIn₂S₄, (5Cu₂S)_{0.350}(3In₂S₃)_{0.650}–(7.5 FeS)_{0.350}(3 In₂S₃)_{0.650} неквазибинарные.

Из изученных разрезов только в разрезе $CuInS_2$ -FeIn $_2S_4$ была обнаружена сложная фаза – соединение состава CuFeIn $_3S_6$, которое участвует в триангуляции квазитройной системы Cu_2S -In $_2S_3$ -FeS. Ниже приводится краткое описание изученных разрезов квазитройной системы Cu_2S -In $_2S_3$ -FeS.

Разрез CuInS₂–**FeIn**₂**S**₄ является квазибинарным сечением тройной системы Cu₂S–In₂S₃–FeS. Обнаружено соединение состава CuFeIn₃S₆ при соотношении компонентом 1:1, которое плавится конгруэнтно при температуре 1365 К. Координаты эвтектических точек – 31 мол. % и 68 мол. % FeIn₂S₄ при температурах 1240 и 1290 К соответственно.

На основе исходных компонентов и соединения состава CuFeIn₃S₆ имеет место растворимость. Уточнены границы твердых растворов и установлено, что образующиеся твердые растворы на основе модификаций соединения CuInS₂ (α , β , γ), доходят до 12 мол. % FeIn₂S₄ при 300 K, и 20 мол. % FeIn₂S₄ при 1175 K [20].

Разрез Си₃In₅S₉–**CuFeIn**₃S₆ является квазибинарным сечением тройной системы. Фазовая диаграмма ее относится к простому эвтектическому типу. Состав эвтектики отвечает 55 мол. % CuFeIn₃S₆ при температуре 1200 К. Растворимость на основе Cu₃In₅S₉ при 900 К составляет 13 мол. % CuFeIn₃S₆, а при 1200 К – 20 мол. % CuFeIn₃S₆.

Разрез CuInS₂–**FeS** является квазибинарным сечением [21] тройной системы Cu₂S–In₂S₃–FeS. Ликвидус разреза состоит из ветвей первичной кристаллизации α , β , γ модификации соединения CuInS₂. Под влиянием FeS температура фазового перехода γ CuInS₂ $\leftrightarrow \beta$ CuInS₂ уменьшается и относится к эвтектоидному типу. Кристаллизация сплавов заканчивается при 1130 К и 50 мол. % по реакции ж (e) $\leftrightarrow \alpha$ + FeS.

Выявлено, что в растворимость доходит до 12 мол. % FeS при комнатой температуре (300 K) [21].

Разрез CuIn₅**S**₈-**FeIn**₂**S**₄ – квазибинарный. На основе исходных компонентов CuIn₅**S**₈ и FeIn₂**S**₄ наблюдается их полная растворимость в жид-

ком и твердом состоянии. Ликвидус разреза состоит из одной кривой первичной кристаллизации σ-твердого раствора. Ниже линии солидуса непрерывный ряд σ-твердого раствора затвердевает.

Полученные нами данные хорошо согласуются с результатами авторов, исследовавших систему CuIn_sS₈–FeIn₂S₄ [16].

Разрез Си₃In₅S₉–FeIn₂S₄ – квазибинарный эвтектического типа. Совместная кристаллизация ветвей твердых растворов на основе исходных компонентов происходит при составе 42 мол. % FeIn₂S₄ при температуре 1150 К. Растворимость на основе Cu₃In₅S₉ при комнатной температуре составляет 3 мол. % FeIn₂S₄, а на основе FeIn₂S₄ – 5 мол. %.

Paspes CuFeIn₃S₆–FeS является квазибинарным сечением тройной системы с простой эвтектикой. Совместная кристаллизация исходных компонентов заканчивается при температуре 1100 К и имеет состав 30 мол. % FeS. Имеется растворимость на основе обоих компонентов.

Paspes $(5Cu_{2}S)_{0,50}(7.5FeS)_{0.50}$ -(5Cu₂S)_{0.16}(3In₂S₃)_{0.84} (е6-е2) является неквазибинарным сечением (рис. 1). Это сечение тройной системы пересекает поля подчиненных тройных систем Cu₂S–CuInS₂–FeS, CuInS₂–CuFeIn_zS₆–FeS, $CuInS_2 - Cu_zIn_zS_9 - CuFeIn_zS_6$; $Cu_zIn_zS_9 - CuFeIn_zS_6 - CuFeIn_zS_6$ FeIn₂S₄ и CuInS₂-FeIn₂S₄-CuIn₅S₈. Поэтому его фазовая диаграмма состоит из пяти самостоятельных частей. Ликвидус разреза представляет собой четыре ветви первичного выделения α, γ, σ , δ-фаз. Часть разреза в интервале концентрации 0–61 мол. % (5Cu₂S)_{0.50}(7.5FeS)_{0.50} проходит через подчиненную тройную систему Cu₂S-CuInS₂-FeS. В этой части разреза имеется одно тройное эвтектическое (Е_с) равновесие при 990 К. Вторая часть разреза пересекает вторичную тройную систему CuInS₂ – CuFeIn₃S₆ – FeS в интервале 61–79 мол. % (5Cu₂S)_{0.16}(3In₂S₃)_{0.84}, где образуется нонвариантная эвтектическая реакция:

ж ↔ γ (CuInS₂) + γ ₁(FeS) + δ (CuFeIn₃S₆).

В третьей части разреза кристаллизация сплавов заканчивается затвердеванием тройной эвтектики в точке E₂ при 1100 К (рис. 2).

Разрез $(5 Cu_2 S)_{0.350}(3 In_2 S_3)_{0.650} - (7.5FeS)_{0.350}(3 In_2 S_3)_{0.650}(c-d)$. Для изучения процессов, протекающих в составных треугольниках: $Cu_2S-CuInS_2$ -FeS, $CuInS_2$ -CuFeIn₃S₆-FeS, $CuFeIn_3S_6$ -FeIn₂S₄-FeS, а также установления состава и температуры тройных нонвариантных точек изучено взаимодействие в разре-

Оригинальные статьи

Рис. 1. Фазовая диаграмма системы $5(\mathrm{Cu}_2\mathrm{S})_{_{0.50}}7.5(\mathrm{FeS})_{_{0.50}}-5(\mathrm{Cu}_2\mathrm{S})_{_{0.16}}3(\mathrm{In}_2\mathrm{S}_3)_{_{0.84}}$ mol% 7,5FeS

Рис. 2. Фазовая диаграмма системы $5(\mathrm{Cu}_2\mathrm{S})_{_{0.33}}3(\mathrm{In}_2\mathrm{S}_3)_{_{0.67}}-5(\mathrm{FeS})_{_{0.30}}3(\mathrm{In}_2\mathrm{S}_3)_{_{0.70}}$

Оригинальные статьи

И.Б.Бахтиярлы и др.

 $3e (5Cu_2S)_{0.350} (3In_2S_3)_{0.650} - (7.5FeS)_{0.350} (3In_2S_3)_{0.650}.$ Разрез – неквазибинарный, пересекает две обширные области первичной кристаллизации. Его ликвидус изображается двумя кривыми первичной кристаллизации компонентов $(5Cu_2S)_{0.350}(3In_2S_3)_{0.650}$ и (7.5FeS) $_{0.350}(3In_2S_3)_{0.650}$. Часть разреза в интервале концентрации 0-68 мол. % (7.5FeS)_{0.350}(3In₂S₃)_{0.650} проходит через тройную систему Cu,S-CuInS,-FeS. В этой части разреза имеется одно тройное эвтектическое равновесие Е₅ при 990 К. Вторая часть разреза в интервале концентраций 68÷84 мол. % (7.5FeS)_{0 350}(3In₂S₃)_{0 650} проходит через тройную систему CuInS₂-CuFeIn_zS_z-FeS, где равновесие заканчивается при температуре 1030 К в тройной эвтектике Е. Третья часть разреза пересекает тройную систему FeIn₂S₄-CuFeIn₃S₆-FeS в интервале концентрации 84-0 мол. % (7.5FeS)_{0.350}(3In₂S₃)_{0.650}. Здесь также имеет место одно тройное эвтектическое равновесие Е₇.

В зависимости от концентрации ниже линии солидуса разрез представляет собой механическую смесь трех фаз.

Разрез (5С u_2 S)_{0.33}(3I n_2 S₃)_{0.67}– (7.5FeS)_{0.30}(3I n_2 S₃)_{0.70} (a-b) является неквазибинарным сечением квазитройной системы Cu₂S–In₂S₃–FeS, которое пересекает три вторичных треугольника (рис. 2).

Фазовая диаграмма состоит из трех частей. Ликвидус системы, проходящий через подчиненную систему $CuInS_2-Cu_3In_5S_9-CuFeIn_3S_6$, состоит из первичной кристаллизации высокотемпературной модификации $\sigma_1(Cu_3In_5S_9)$. Кристаллизация в этой части заканчивается при температуре тройной эвтектики E_1 (1150 K). Ликвидус системы, проходящий через подчиненную систему $Cu_3In_5S_9-CuFeIn_3S_6-FeIn_2S_4$, состоит из двух ветвей: первичной кристаллизации δ -модификации соединения $CuFeIn_3S_6$ и σ -твердого раствора на основе $FeIn_2S_4$.

Окончательная кристаллизация происходит при 1100 К – температуре тройной эвтектики (Е₂).

Третья часть разреза пересекает фазовый треугольник CuFeIn₃S₆–FeIn₂S₄–FeS. Здесь имеет место одна точка тройной эвтектики Е₃. Ликвидус этой части состоит из ветвей первичной кристаллизации твердого раствора σ (FeIn₂S₄)_{1-x}(CuIn₅S₈)_x.

Разрез (7.5 FeS) $_{286}$ (ЗІп $_2$ S $_3$) $_{0.714}$ – (5Cu $_2$ S) $_{0.83}$ (ЗІп $_2$ S $_3$) $_{0.17}$ (D $_4$ -е $_4$) является неквазибинарным сечением тройной системы. Фазовая диаграмма его состоит из трех частей (рис. 3).

Рис. 3. Фазовая диаграмма системы (FeS)_{0.286} 3(In₂S₃)_{0.714}-5(Cu₂S)_{0.83}3(In₂S₃)_{0.17}

Оригинальные статьи

И.Б.Бахтиярлы и др.

Ликвидус разреза состоит из кривых первичной кристаллизации σ -, δ - и γ -фаз твердых растворов на основе соединения $Cu_3In_5S_9$, $FeIn_2S_4$ и твердого раствора γ -фазового перехода $CuInS_2$ соответственно. В разрезе имеются три тройные эвтектические превращения E_3 , E_4 , E_5 . Приводим реакции, протекающие в этих нонвариантных эвтектических точек, как:

$$\begin{split} & \mathfrak{K} \leftrightarrow \delta(\mathrm{CuFeIn}_3\mathrm{S}_6) + \sigma(\mathrm{FeIn}_2\mathrm{S}_4) + \gamma_1(\mathrm{FeS}) \qquad \mathrm{E}_3 \\ & \mathfrak{K} \leftrightarrow \gamma(\mathrm{CuInS}_2) + \gamma_1(\mathrm{FeS}) + \delta(\mathrm{CuFeIn}_3\mathrm{S}_6) \qquad \mathrm{E}_4 \\ & \mathfrak{K} \leftrightarrow \alpha_1(\mathrm{Cu}_2\mathrm{S}) + \gamma(\mathrm{CuInS}_2) + \gamma_1(\mathrm{FeS}) \qquad \mathrm{E}_5 \end{split}$$

3.1. Проекция поверхности ликвидуса

По квазибинарным разрезам (их 6), которые являются триангулирующими секущими, квазитройная система $Cu_2S-In_2S_3$ -FeS триангулируется на шесть подчиненных треугольников:

1. $Cu_3In_5S_9 - In_2S_3 - FeIn_2S_4$

2. $CuInS_2 - Cu_3In_5S_9 - CuFeIn_3S_6$

3. CuFeIn₃S₆ – Cu₃In₅S₉ – FeIn₂S₄

4. $Cu_2S-CuInS_2-FeS$

5. $CuInS_2$ -CuFeIn₃S₆-FeS

6. $CuFeIn_3S_6$ -Fe In_2S_4 -FeS

Каждая из них может быть представлена в отдельности как самостоятельная тройная система.

Ниже приводится характер химического взаимодействия по отдельным вторичным тройным системам.

Система Cu₃In₅S₉-In₂S₃-FeIn₂S₄

Квазибинарный разрез $D_1(CuIn_5S_8) - D_4(FeIn_2S_4)$, в котором образуется непрерывный ряд твердого раствора, не участвует в триангуляции тройной системы. Поэтому кристаллизация в системе $Cu_3In_5S_9 - In_2S_3 - FeIn_2S_4$ заканчивается не в тройной нонвариантной точке, а в кривых e_1p_1 и e_2e_7 в двойной нонвариантной точке. Моновариантная кривая e_1p_1 характеризует равновесие:

 $\mathfrak{K} \leftrightarrow \beta(\mathrm{In}_2\mathrm{S}_3) + \sigma[(\mathrm{CuIn}_5\mathrm{S}_8)_{1-x}(\mathrm{FeIn}_2\mathrm{S}_4)_x],$

а кривая $e_2 e_{7:}$

 $\mathfrak{K} \leftrightarrow \sigma[(CuIn_{5}S_{8})_{1-\mathfrak{K}}(FeIn_{2}S_{4})_{\mathfrak{K}}] + \sigma_{1}(Cu_{3}In_{5}S_{9})$

CuInS₂-Cu₃In₅S₉-CuFeIn₅S₆

В этом составном треугольнике происходит одно эвтектическое превращение, поэтому данная система характеризуется наличием одной нонвариантной точкой E₁, где протекает реакция:

$$\mathfrak{K} \leftrightarrow \sigma_1(Cu_3In_5S_9) + \delta(CuFeIn_3S_6) + \gamma(CuInS_2).$$

Поле кристаллизации этой системы в основном представлено областями $CuInS_2(5)$, $Cu_3In_5S_9(3)$, $CuFeIn_3S_6(4)$.

В нонвариантной точке E_1 сходятся три кривые моновариантного равновесия: e_3E_1 , $e_8E_1e_9E_1$ при температуре 1150 К

Система CuFeIn₃S₆-Cu₃In₅S₉-FeIn₂S₄

Ликвидус этой системы представлен полями Cu₃In₅S₉, CuFeIn₃S₆, σ (FeIn₂S₄)_{1-x}(CuIn₅S₈)_x, разделенными кривыми моновариантного равновесия e₈E₂, e₇E₂, e₁₀E₂.

Система характеризуется одной нонвариантной точкой E₂, где сходятся эти кривые моновариантного равновесия, и химическая реакция здесь протекает при температуре 1150 К:

$$\begin{split} \mathfrak{K} &\leftrightarrow \sigma_1(\mathrm{Cu}_3\mathrm{In}_5\mathrm{S}_9) + \delta(\mathrm{CuFeIn}_3\mathrm{S}_6) + \\ &+ \sigma[(\mathrm{FeIn}_2\mathrm{S}_4)_{1-\mathrm{x}}(\mathrm{CuIn}_5\mathrm{S}_8)_{\mathrm{x}}] \ (\mathrm{E}_2). \end{split}$$

Система Cu₂S –CuInS₂–FeS

Поверхность кристаллизации этой вторичной системы занимают поля Cu_2S , $CuInS_2$, FeS. В этом составном треугольнике происходит одно эвтектическое превращение E_5 , и здесь протекает следующая химическая реакция:

 $\mathfrak{K} \leftrightarrow \alpha_1(Cu_2S) + \gamma(CuInS_2) + \gamma_1(FeS)$

В этой точке сходятся три кривые моновариантного равновесия e_4E_5 ; e_6E_5 и E_5e_{12} , которые разграничивают поля Cu₂S, CuInS₂ и FeS.

Система **CuInS**₂-**CuFeIn**₃**S**₆-**FeS**

В этой вторичной тройной системе протекает только одно эвтектическое превращение E_4 . Сходятся в этой точке моновариантные кривые e_9E_4 , $e_{12}E_4$, $e_{11}E_4$. В нонвариантной точке E_4 при температуре 1030 К совместно кристаллизуются три фазы CuInS₂, CuFeIn₃S₆, FeS.

Система CuFeIn₃S₆-FeIn₂S₄-FeS

Поле этой вторичной системы, в основном, занято областью FeS, а также полями CuFeIn₃S₆ и (FeIn₂S₄)_{1-x}(CuIn₅S₈)_x. На трех сторонах этого треугольника протекает только эвтектическое превращение. В этом составном треугольнике имеет место одна нонвариантная эвтектическая точка E_3 при температуре 1070 К, где сходятся три кривые моновариантного равновесия: $e_{10}E_3$, $e_{11}E_3$, e_5E_3 .

В этом составном треугольнике протекает следующая химическая реакция:

$$\mathfrak{K} \leftrightarrow \delta(\operatorname{CuFeIn}_{_{3}}S_{_{6}} + \sigma[(\operatorname{FeIn}_{_{2}}S_{_{4}})_{_{1-x}}(\operatorname{CuIn}_{_{5}}S_{_{8}})_{_{x}}] + \gamma_{1}(\operatorname{FeS}) (\operatorname{E}_{_{3}})$$

Построение проекции поверхности ликвидуса тройной квазитройной системы $Cu_2S-In_2S_3-FeS$ (рис. 4) осуществлено на основании данных по фазовым равновесиям в двойных системах, составляющих тройную систему, и ряда экспериментально изученных внутренних раз-

Рис. 4. Поверхность ликвидуса системы Cu₂S-In₂S₃-FeS

резов, краткие характеристики которых приведены выше.

4. Выводы

Диаграмма проекции поверхности ликвидуса характеризуется тремя полями кристаллизации исходных компонентов (рис. 2). (Cu_2S , In_2S_3 , FeS), четырьмя полями двойных соединений и одним полем сложного соединения ($CuFeIn_3S_6$).

Так как в квазибинарном разрезе CuIn₅S₈– FeIn₂S₄ наблюдается полная растворимость исходных компонентов в жидком и твердом состояниях, поля первичной кристаллизации CuIn₅S₈ и FeIn₂S₄ отсутствуют, их заменяет неограниченный твердый раствор на основе этих компонентов.

Область твердого раствора, имеющая место в разрезе CuIn₅S₈–FeIn₂S₄, занимает часть кристаллизационного поля вторичных тройных систем CuIn₅S₈–FeIn₂S₄–Cu₃In₅S₉ и In₂S₃–CuIn₅S₈–FeIn₂S₄. В тройной системе имеются 7 полей первичной кристаллизации отдельных фаз. В тройной системе Cu₂S–In₂S₃–FeS самыми обширными являются поля первичной кристаллизации Cu₂S (6), FeS (7) и CuInS₂ (5).

Разграничивающие поля первичной кристаллизации линии моновариантных равновесий пересекаются в тройных нонвариантных точках (табл. 1 и 2). В системе имеются 5 точек нонвариантного равновесия, которые являются точками тройной эвтектики, а кривых моновариантного равновесия всего девять. Температуры и составы найденных нонвариантных точек были сопоставлены с данными, полученными при изучении неквазибинарных разрезов, а также с термограммами сплавов вблизи предполагаемых точек.

Таким образом, впервые была построена проекция поверхности ликвидуса квазитройной системы Cu₂S–In₂S₃–FeS. В ней установлены области первичной кристаллизации фаз, а также координаты всех нон – и моновариантных равновесий.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Tomashik V. Cu–In–S (Copper – Indium - Sulfur). Non-Ferrous Metal Systems. 2006;V11C1(1): 1–19. https://doi.org/10.1007/10915981_24

2021;23(1): 16-24

И.Б.Бахтиярлы и др.

Оригинальные статьи

Символы	Равновесия	Составы, %			<i></i>
		5Cu ₂ S	$3In_2S_3$	7.5FeS	Т, К
e ₁	$\mathfrak{K} \leftrightarrow \beta(\mathrm{In}_2 \mathrm{S}_3) + \sigma(\mathrm{D}_1)(\mathrm{CuIn}_5 \mathrm{S}_8)$	7.00	93.00	-	1340
e ₂	$ \mathfrak{K} \leftrightarrow \sigma(\mathbf{D}_1)(\mathbf{CuIn}_5\mathbf{S}_8) + \sigma_1(\mathbf{D}_2)(\mathbf{Cu}_3\mathbf{In}_5\mathbf{S}_9) $	16.00	84.00	-	1330
e ₃	$ \boldsymbol{\mathrm{w}} \leftrightarrow \boldsymbol{\mathrm{\sigma}}_1(\boldsymbol{\mathrm{D}}_2)(\boldsymbol{\mathrm{Cu}}_3\boldsymbol{\mathrm{In}}_5\boldsymbol{\mathrm{S}}_9) + \boldsymbol{\mathrm{\gamma}}(\boldsymbol{\mathrm{D}}_3)(\boldsymbol{\mathrm{CuInS}}_2) $	33.00	67.00	-	1345
e ₄	$\mathfrak{K} \leftrightarrow \alpha_1(\mathrm{Cu}_2\mathrm{S}) + \gamma(\mathrm{D}_3)(\mathrm{CuInS}_2)$	77.00	23.00	-	1260
e ₅	$\mathfrak{K} \leftrightarrow \sigma(\mathrm{D}_{4})(\mathrm{FeInS}_{4}) + \gamma_{1}(\mathrm{FeS})$	_	51.00	49.00	1375
e ₆	$\mathfrak{K} \leftrightarrow \alpha_1(\mathrm{Cu}_2\mathrm{S}) + \gamma_1(\mathrm{FeS})$	52.00	_	48.00	1200
e ₇	$\mathfrak{K} \leftrightarrow \sigma_1(\mathbf{D}_2)(\mathbf{Cu}_3\mathbf{In}_5\mathbf{S}_9) + \sigma(\mathbf{D}_4)(\mathbf{FeInS}_4)$	15.50	72.50	12.00	1150
e ₈	$ \mathfrak{K} \leftrightarrow \sigma_1(D_2)(Cu_3In_5S_9) + \delta(D_5)(CuFeIn_3S_6) $	22.00	70.00	8.00	1200
e ₉		25.50	66.00	8.500	1285
e ₁₀		12.00	69.00	19.00	1290
e ₁₁	$\mathfrak{K} \leftrightarrow \delta(\mathrm{D}_{5})(\mathrm{CuFeIn}_{3}\mathrm{S}_{6}) + \gamma_{1}(\mathrm{FeS})$	12.50	46.50	41.00	1100
e ₁₂	$\mathfrak{K} \leftrightarrow \gamma(\mathrm{D}_{3})(\mathrm{CuInS}_{2}) + \gamma_{1}(\mathrm{FeS})$	18.50	31.50	50.00	1130
E ₁	$ \mathfrak{K} \leftrightarrow \sigma_1(D_2)(Cu_3In_5S_9) + \delta(D_5)(CuFeIn_3S_6) + \gamma(D_3)(CuInS_2) $	24.00	68.00	8.00	1150
E ₂	$ \mathfrak{K} \leftrightarrow \sigma_1(D_2)(Cu_3In_5S_9) + \delta(D_5)(CuFeIn_3S_6) + \sigma((D_4)_{1-x}(D_1)_x $	16.00	71.50	12.50	1100
E ₃	$\mathfrak{K} \leftrightarrow \delta(\mathrm{D}_{5})(\mathrm{CuFeIn}_{3}\mathrm{S}_{6}) + \sigma((\mathrm{D}_{4})_{1-x}(\mathrm{D}_{1})_{x} + \gamma_{1}(\mathrm{FeS})$	7.00	58.00	35.00	1070
E ₄		17.50	45.00	37.50	1030
E ₅	$\mathfrak{K} \leftrightarrow \alpha_1(\mathrm{Cu}_2\mathrm{S}) + \gamma(\mathrm{D}_3)(\mathrm{CuInS}_2) + \gamma_1(\mathrm{FeS})$	38.50	18.50	43.00	1090

Таблица 1. Нонвариантные реакции	в квазитройной систе	ме Cu ₂ S-In ₂ S ₃ -FeS
----------------------------------	----------------------	--

Таблица 2. Моновариантные реакции в квазитройной системе Cu₂S-In₂S₃-FeS

		2 2 3
Символы	Равновесия	Т, К
$\mathbf{e}_{2} \mathbf{e}_{7} \mathbf{E}_{2}$		1330-1150-1100
e ₃ E ₁	$\mathfrak{K} \leftrightarrow \sigma_1(\mathrm{Cu}_3\mathrm{In}_5\mathrm{S}_9) + \gamma(\mathrm{CuInS}_2)$	1345-1150
$E_1 e_8 E_2$	$\pi \leftrightarrow \sigma_1(\mathrm{Cu}_3\mathrm{In}_5\mathrm{S}_9) + \delta(\mathrm{CuFeIn}_3\mathrm{S}_6)$	1150-1200-1100
$E_1 e_9 E_4$	$\mathfrak{K} \leftrightarrow \delta(\mathrm{CuFeIn}_{3}\mathrm{S}_{6}) + \gamma(\mathrm{CuInS}_{2})$	1150-1285-1030
$E_{4} e_{12} E_{5}$	$\mathfrak{K} \leftrightarrow \gamma(\mathrm{CuInS}_2) + \gamma_1(\mathrm{FeS})$	1030-1130-1090
e ₄ E ₅	$\pi \leftrightarrow \gamma(\mathrm{CuInS}_2) + \alpha_1(\mathrm{Cu}_2\mathrm{S})$	1260-1090
e ₆ E ₅	$\mathfrak{K} \leftrightarrow \alpha_1(\mathrm{Cu}_2\mathrm{S}) + \gamma_1(\mathrm{FeS})$	1200-1090
$E_4 e_{11} E_3$	$\mathfrak{K} \leftrightarrow \delta(\mathrm{CuFeIn}_{3}\mathrm{S}_{6}) + \gamma_{1}(\mathrm{FeS})$	1030-1100-1070
e ₅ E ₃	$\mathfrak{K} \leftrightarrow \sigma(\mathrm{CuIn}_{5}\mathrm{S}_{8})_{1-x}(\mathrm{FeIn}_{2}\mathrm{S}_{4})_{x} + \gamma_{1}(\mathrm{FeS})$	1375–1070
$E_{2} e_{10} E_{3}$	$\mathfrak{K} \leftrightarrow \sigma(\mathrm{CuIn}_{5}\mathrm{S}_{8})_{1-x}(\mathrm{FeIn}_{2}\mathrm{S}_{4})_{x} + \delta(\mathrm{CuFeIn}_{3}\mathrm{S}_{6})$	1100-1315-1070
e ₁ p ₁	$\mathfrak{K} \leftrightarrow \beta(\mathrm{In}_{2}\mathrm{S}_{3}) + \sigma(\mathrm{CuIn}_{5}\mathrm{S}_{8})_{1-x}(\mathrm{FeIn}_{2}\mathrm{S}_{4})_{x}$	1340-1305
e ₂ e ₇	$\mathfrak{K} \leftrightarrow \sigma(\mathrm{CuIn}_{5}\mathrm{S}_{8})_{1-x}(\mathrm{FeIn}_{2}\mathrm{S}_{4})_{x^{+}} + \sigma_{1}(\mathrm{Cu}_{3}\mathrm{In}_{5}\mathrm{S}_{9})$	1330-1150

2. Binsma J. J. M., Giling L. J., Bloem J. Phase relations in the system $Cu_2S-In_2S_3$. *Journal of Crystal Growth*. 1980;50(2): 429-436. https://doi. org/10.1016/0022-0248(80)90090-1

3. Рустамов П. Г., Бабаева П. К., Аллазов М. Р. Диаграмма состояния разреза FeS-In₂S₃. Журнал неорганической химии. 1979;24(8): 2208–2211. 4. Raghavan V. Fe-In-S (Iron – Indium - Sulfur). Journal of Phase Equilibria. 1998;19(3): 270. https:// doi.org/10.1361/105497198770342337

5. Manual G. J., Patino F., Salinas E. Medición del contenido calórico de la mata de cobre (Cu₂S–FeS) usando un calorímetro de gota. *Revista de la Sociedad Quimica de Mexico*. 2001;45(1): 13–16. Режим

Оригинальные статьи

доступа: https://www.researchgate.net/publication/26465784_Medicion_del_contenido_calorico_de_ la_mata_de_cobre_Cu2S-FeS_usando_un_calorimetro de gota

6. Patil M., Sharma D., Dive A., Mahajan S., Sharma R. Synthesis and characterization of Cu_2S thin film deposited by chemical bath deposition method. *Procedia Manufacturing*.2018:20: 505–508. https://doi.org/10.1016/j.promfg.2018.02.075

7. Li S., Wang H., Xu W., Si H., Tao X., Lou S., et al. Synthesis and assembly of monodisperse spherical Cu₂S nanocrystals. *Journal of Colloid and Interface Science*. 2009;330(2): 483–487. https://doi. org/10.1016/j.jcis.2008.10.062

8. Kozer V. R., Parasyuk O. V. Phase equilibria in the quasi-ternary system $Cu_2S-In_2S_3$ -CdS. *Chemistry* of Metals and Alloys. 2009;2(1/2): 102–107. https://doi. org/10.30970/cma2.0087

9. Gorai S., Guha P., Ganguli D., Chaudhuri S.. Chemical synthesis of β -In₂S₃ powder and its optical characterization. *Materials Chemistry and Physics*. 2003;82(320): 974–979. https://doi.org/10.1016/j. matchemphys.2003.08.013

10. Боднар И. В., Полубок В. А., Рудь В. Ю., Рудь Ю. В. Фотоэлектрохимические ячейки на монокристаллах In₂S₃. ФТП. 2003;37(11): 1346–1348. Режим доступа: https://journals.ioffe.ru/articles/ viewPDF/5403

11. Mitsui H., Sasaki T., Oikawa K., Ishida K. Phase equilibria in FeS–XS and MnS–XS (X=Ti, Nb and V) systems. *ISIJ International*. 2009;49(7): 936–941. https://doi.org/10.2355/isijinternational.49.936

12. Terranova U., de Leeuw N. H. Phase stability and thermodynamic properties of FeS polymorphs. *Journal of Physics and Chemistry of Solids*. 2017;111: 317–323. https://doi.org/10.1016/j.jpcs.2017.07.033

13. Thomere A., Guillot-Deudon C., Caldes M. T., Bodeux R., Barreau N., Jobic S., Lafond A. Chemical crystallographic investigation on $Cu_2S-In_2S_3-Ga_2S_3$ ternary system. *Thin Solid Films*. 2018;665: 46–50. https://doi.org/10.1016/j.tsf.2018.09.003

14. Hurman Eric R. Activities in CuS-FeS-SnS melts at 1200. *Metallurgical Transactions B*.1993;24(2): 301–308. https://doi.org/10.1007/bf02659132

15. Womes M., Olivier-Fourcade J., Jumas J.-C., Aubertin F., Gonser U. Characterization of the single phase region with spinel structure in the ternary system In_2S_3 -FeS-FeS₂. *Journal of Solid State Chemistry*. 1992;97(2): 249–256. https://doi.org/10.1016/0022-4596(92)90032-q

16. Олексеюк І. Д., Парасюк О. В., Козер В. Р. Дослідження систем типу $Cu(Ag)In_5S_8 - FeIn_2S_4$. Науковий вісник Волинського національного університету ім. Лесі Українки: Хімічні науки. 2009;24: 3–8.

17. Мирзоева Р. Дж., Шихалибейли Ш. Ш., Аллазов М. Р. Исследование полупроводниковой системы CuInS₂-FeS. Физико-химические процессы в конденсированных средах и на межфазных границах. Материалы *VII Всеросийск*ой конференции, 10-13ноября 2015, Воронеж. Научная книга; 2015. с. 371.

18. Trukhanov S. V., Bodnar I. V., Zhafar M. A. Magnetic and electrical properties of $(FeIn_2S_4)_{1-x}(CuIn_5S_8)x$ solid solutions. *Journal of Magnetism and Magnetic Materials*. 2015;379: 22–27. https://doi.org/10.1016/j.jmmm.2014.10.120

19. Глазов В. М., Вигодорович В. К. Микротвердость металлов и полупроводников. М.: Металлургия; 1969. 248с.

20. Abdullayeva Sh. S., Mammadov F. M., Bakhtiyarly İ. B. Quasi-binary section CuInS_2 -FeIn₂S₄. *Russian Journal of Inorganic Chemistry*. 2020;65(1); 100–105. https://doi.org/10.1134/s0036023619110020

21. Bakhtiyarly I. B., Abdullayeva Sh. S., Gurbanova R. J., Mammadova F. M. Guseynova Sh. B. Study of interactions in the CuInS₂–FeS system. *Russian Journal of General Chemistry*. 2019;89(8): 1281–1284. https://doi.org/10.1134/s1070363219080188

Информация об авторах

Бахтиярлы Ихтияр Бахрам оглы, д. х. н., профессор, Институт катализа и неорганической химии, НАН Азербайджана, Баку, Азербайджан; еmail: ibakhtiyarli@mail.ru. ORCID iD: https://orcid. org/0000-0002-7765-0672.

Курбанова Руксана Джалал кызы, д. фил. (по химии), доцент, Институт катализа и неорганической химии, НАН Азербайджана, Баку, Азербайджан; ORCID iD: https://orcid.org/0000-0001-6467-0079.

Абдуллаева Шахри Сейфалы кызы, аспирант, м. н. с., Институт катализа и неорганической химии, НАН Азербайджана, Баку, Азербайджан; еmail: sehri.abdullayeva.83@mail.ru. ORCID iD: https://orcid.org/0000-0003-1723-2783.

Мухтарова Зияфат Мамед кызы, д. фил. (по химии), доцент, Институт катализа и неорганической химии, НАН Азербайджана, Баку, Азербайджан; e-mail: ziyafatmuxtarova@mail.ru. ORCID iD: https://orcid.org/0000-0003-1222-969X.

Маммадова Фатмаханум Мамед, н. с., Институт катализа и неорганической химии, НАН Азербайджана, Баку, Азербайджан; e-mail: Fatma. mammadova.1959@mail.ru. ORCID iD: https://orcid. org/0000-0002-8848-1018.

Все авторы прочитали и одобрили окончательный вариант рукописи.

Поступила в редакцию 03.09.2020; одобрена после рецензирования 15.12.2020; принята к публикации 15.03.2021; опубликована онлайн 25.03.2021.