

ISSN 1606-867X (Print) ISSN 2687-0711 (Onine)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья https://doi.org/10.17308/kcmf.2021.23/3296 УДК 546.66'24

Фазовые равновесия в системе Tl₂Te-TlBiTe₂-TlTbTe₂

С. З. Имамалиева¹, Г. И. Алекберзаде², Д. М. Бабанлы^{1,3}, М. В. Буланова⁴, В. А. Гасымов¹, М. Б. Бабанлы¹

¹Институт катализа и неорганической химии, НАН Азербайджана, пр. Г. Джавида, 113, Баку АZ-1143, Азербайджан

²Национальное аэрокосмическое агентство Азербайджана, пр. Азадлыг, 159, Баку АZ-1106, Азербайджан

³Азербайджанский государственный университет нефти и промышленности, Французский Азербайджанский Университет,

пр. Азадлыг, 6/21, Баку АZ-1101, Азербайджан

⁴Институт проблем материаловедения им. Францевича, НАН Украины, ул. Кржижановского, 3, Киев 03142, Украина

Аннотация

Методами дифференциального термического и рентгенофазового анализов изучены фазовые равновесия по концентрационной плоскости $Tl_2Te-TlTbTe_2-TlBiTe_2$ четверной системы Tl-Bi-Tb-Te. Построена диаграмма твердофазных равновесий при комнатной температуре. Установлено, что разрез $Tl_9BiTe_6-Tl_9TbTe_6$ делит систему $Tl_2Te-TlBiTe_2-TlTbTe_2$ на две независимые подсистемы. Установлено, что подсистема $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$ характеризуется образованием широкого поля твердых растворов со структурой Tl_5Te_3 (δ-фаза), занимающего более 90 % площади концентрационного треугольника. Результаты рентгенофазового анализа сплавов подсистемы $Tl_9BiTe_6-Tl_9TbTe_6-TlBiTe_2$ показали образование широких областей твердых растворов на основе $TlTbTe_2$ и $TlBiTe_2$ вдоль разреза $TlTbTe_2-TlBiTe_2(\beta_1 - \mu \beta_2- dasa)$ и позволили определить расположение гетерогенных фазовых областей в данной подсистеме. Из порошковых дифрактограмм вычислены параметры кристаллических решеток взаимонасыщенных составов β_1 -, β_2 - и δ -dasa.

В работе также представлены некоторые политермические разрезы, изотермические сечения при 740 и 780 К фазовой диаграммы, а также проекции поверхностей ликвидуса и солидуса подсистемы $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$. Показано, что ликвидус состоит из трех поверхностей, отвечающих первичной кристаллизации α - (Tl_2Te), δ - и β_1 -фаз. Изученные изотермические сечения фазовой диаграммы подсистемы $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$ наглядно демонстрируют, что направления коннод в двухфазных областях не совпадают с T-x плоскостями исследуемых политермических сечений, что характерно для неквазибинарных разрезов. Полученные новые фазы представляют интерес как потенциальные термоэлектрические и магнитные материалы.

Ключевые слова: система Tl₂Te–TlTbTe₂–TlBiTe₂, фазовые равновесия, твердые растворы, рентгенфазовый анализ, кристаллическая решетка, топологические изоляторы

Благодарности: работа выполнена в рамках научной программы международной лаборатории «Перспективные материалы для спинтроники и квантовых вычислений», созданной на базе Института катализа и неорганической химии НАНА (Азербайджан) и Международного физического центра Доностиа (Испания) и частичной финансовой поддержке Фонда Развития Науки при Президенте Азербайджанской Республики – Грант EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/01/4-M-33.

🖂 Самира Закир Имамалиева, e-mail: samira9597a@gmail.com

• Контент доступен под лицензией Creative Commons Attribution 4.0 License.

 (α)

[©] Имамалиева С. З., Алекберзаде Г. И., Бабанлы Д. М., Буланова М. В., Гасымов В. А., Бабанлы М. Б., 2021

2021;23(1): 32-40

Оригинальные статьи

Для цитирования: Имамалиева С. З., Алекберзаде Г. И., Бабанлы Д. М., Буланова М. В., Гасымов В. А., Бабанлы М. Б. Фазовые равновесия в системе Tl₂Te-TlBiTe₂-TlTbTe₂. *Конденсированные среды и межфазные границы*. 2021;23(1): 32–40. https://doi.org/10.17308/kcmf.2021.23/3296

For citation: Imamaliyeva S. Z., Alakbarzade G. I., Babanly D. M., Bulanova M. V., Gasymov V. A., Babanly M. B. Phase relations in the $Tl_2Te-TlBiTe_2-TlTbTe_2$ system. *Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases*. 2021;23 (1): 32–40. https://doi.org/10.17308/kcmf.2021.23/3296

1. Введение

Бинарные и сложные халькогениды тяжелых р-элементов представляют интерес как материалы, обладающие рядом интересных функциональных свойств, как например, электронные, оптические, термоэлектрические, а также свойствами топологического изолятора и т. д. [1–9].

Несмотря на токсичнсть таллия, сложные халькогениды таллия рассматриваются как перспективные топологические изоляторы [10–15], полуметаллы Вейля [16, 17], фотодетекторы [18, 19], детекторы рентгеновского и гамма-излучений [20, 21], а также термоэлектрические материалы с аномально низкой теплопроводностью [22–25].

Введение в кристаллическую решетку халькогенидов атомов *d*- и *f*-элементов может улучшить их свойства и придать им дополнительную функциональность, например, магнитные свойства [26–29].

Для оптимизации функциональных свойств вышеуказанных материалов необходимо построение диаграмм состояния соответствующих систем, особенно составленных из структурных аналогов, поскольку в них ожидается образование широких полей твердых растворов [7, 30–32].

Данная работа является продолжением наших исследований по фазовым равновесиям в системах на основе теллуридов таллия-РЗЭ, в которых выявлены широкие поля твердых растворов со структурой Tl₅Te₃ и которые представляют практический интерес как термоэлектрические материалы с аномально низкой теплопроводностью [32–36].

Целью данной работы явилось исследований твердофазных равновесий в системе Tl₂Te–TlTbTe₂–TlBiTe₂.

Исходные соединения и фазовые равновесия в граничных системах изучены довольно подробно [33, 37–43].

Tl₂Te плавится конгруэнтно при 698 [37] и кристаллизуется в моноклинной структуре (Пр.Гр. C₂/C; a = 15.662; b = 8.987; c = 31.196Å, $\beta = 100.76^{\circ}$, z = 44) [38].

TlBiTe₂ также плавится конгруэнтно при 820 К [39] и имеет гексагональную кристаллическую решетку (Пр.гр. R- $\bar{3}$ m) с параметрами *a* = 4.526; *c* = 23.12 Å; *z* = 3 [40].

Соединение TITbTe₂ является изоструктурным аналогом TISbTe₂ и имеет следующие параметры решетки: a = 4.416; c = 24.27 Å; z = 3 [41].

Система Tl₂Te-TlBiTe₂, изученная авторами [38], характеризуется образованием конгруэнтно плавящего при 830 К соединения Tl_aBiTe₄. Это соединение кристаллизуется в тетрагональной решетке и имеет следующие параметры решетки a = 8.855, c = 13.048 Å, z = 2 [42]. Согласно данным работы [39], в системе Tl₂Te-Tl₂BiTe₆ обнаружены непрерывные твердые растворы с морфотропный переходом вблизи Tl₃Te. Учитывая, что Tl₂Te и Tl₉BiTe₆ кристаллизуются в различных кристаллических структурах, это утверждение кажется маловероятным. Поэтому в работе [43] повторно изучены фазовые равновесия в системе Tl₂Te-Tl₂BiTe₆ и показано, что данная система квазибинарна и характеризуется образованием ограниченных твердых растворов на основе исходных соединений.

Система $Tl_2Te-TlTbTe_2$ изучена в области составов > 80 мол. % Tl_2Te [35]. Показано, что она характеризуется образованием соединения Tl_9TbTe_6 , плавящегося с разложением по перитектической реакции при 780 К и имеющего следующие параметры тетрагональной решетки a = 8.871; c = 12.973 Å, z = 2. Подсистема $Tl_2Te-Tl_9TbTe_6$ характеризуется образованием твердых растворов со структурой Tl_5Te_3 на основе Tl_9TbTe_6 .

В системе Tl₉TbTe₆–Tl₉BiTe₆ обнаружены непрерывные твердые растворы на основе исходных соединений [33].

Несмотря на изоструктурный характер исходных соединений, система $TlBiTe_2$ - $TlTbTe_2$ характеризуется ограниченной взаимной растворимостью компонентов. Растворимость на основе $TlBiTe_2$ достигает ~45 мол. %, а на основе $TlTbTe_2$ - 22 мол. % [44].

2. Экспериментальная часть

2.1. Материалы и синтез

Исходные бинарные и тройные соединения были синтезированы путем прямого взаимодействия элементарных компонентов (таллий, № по каталогу 7440-28-0; теллур, 13494-80-9; висмут

Оригинальные статьи

С. З. Имамалиева и др.

7440-69-9; тербий, 7440-27-9) высокой чистоты, приобретенных у немецкой фирмы Alfa Aesar.

Конгруэнтно плавящиеся соединения Tl_2Te , Tl_9BiTe_6 и $TlBiTe_2$, каждый по 10 грамм, готовили путем сплавления элементарных компонентов в вакуумированных (~ 10^{-2} Па) кварцевых ампулах в однозонной электрической печи при 850 К. Для достижения равновесного состояния после синтеза промежуточный слиток $TlSbTe_2$ подвергали термообработке 700 К в течение 500 ч.

Синтез инконгруэнтно плавящихся соединений Tl_9TbTe_6 и $TlTbTe_2$ осуществляли керамическим методом при 1000 К в течение 100 часов. Для предотвращения взаимодействия тербия с кварцем были использованы графитированные ампулы. После сплавления промежуточные слитки медленно охлаждали до комнатной температуры, измельчали в агатовой ступке, запрессовывали в таблетки и отжигали при 900 К в течение 500 часов.

Чистота синтезированных соединений контролировалась методами дифференциального термического анализа (ДТА) и порошковой рентгенографии (РФА).

Образцы системы Tl₂Te–TlTbTe₂–TlBiTe₂, по 1 г каждый, были приготовлены путем сплавления предварительно синтезированных и идентифицированных бинарных и тройных соединений в вакуумированных кварцевых ампулах в однозонной электрической печи при температуре на 30– 50° выше температуры плавления соединений с последующим охлаждением в отключенной печи.

2.2. Методы исследования

Для контроля чистоты синтезированных соединений и промежуточных образцов был применен метод порошкового РФА (дифрактометр Bruker D8, излучение СиК_α). Анализ проводился при комнатной температуре в интервале углов 10° ≤ 2θ ≤ 70°. Параметры кристаллических решеток сплавов были определены по данным порошковых рентгенограмм с использованием программного обеспечения Topas V3.0.

ДТА проводили на дифференциальном сканирующем калориметре NETZSCH 404 F1 Pegasus в интервале температур от комнатной до ~ 1400 К в зависимости от состава сплавов при скорости нагрева 10 К·мин⁻¹. Температуры тепловых эффектов, в основном, определяли из кривых нагревания.

3. Результаты и обсуждение

3.1. Диаграмма твердофазных равновесий системы Tl,Te-TlTbTe,-TlBiTe,

На рис. 1 представлена диаграмма твердофазных равновесий системы Tl₂Te-TlTbTe₂-TlBiTe₂.

Как видно, стабильное сечение Tl_9BiTe_6 - Tl_9TbTe_6 , характеризующееся образованием непрерывного ряда твердых растворов [36], делит систему $Tl_2Te-TlBiTe_2$ -TlTbTe₂ на две независимые подсистемы.

Подсистема Tl₂Te–Tl₉TbTe₆–Tl₉BiTe₆ характеризуется образованием широких полей твердых

Рис. 1. Диаграмма твердофазных равновесий в системе Tl₂Te-TlTbTe₂-TlBiTe₂

Оригинальные статьи

растворов со структурой $Tl_5 Te_3$ (δ -фаза), занимающих более 90 % площади концентрационного треугольника. На основе Tl_2 Те обнаружена узкая область α -фазы на основе этого соединения. Области α -и δ -фаз разделены двухфазной областью α + γ . Следует отметить, что подобная схема фазовых равновесий была обнаружена при изучении системы Tl_2 Te- Tl_9 BiTe₆- Tl_9 ErTe₆ [43].

При изучении подсистемы Tl₉BiTe₆-Tl₉TbTe₆-TlTbTe₂-TlBiTe₂ был исследован ряд сплавов из этой области. Мы также использовали результаты наших предыдущих работ [36, 44].

Взаимодействие δ -фазы с твердыми растворами на основе TlTbTe₂ (β_1) и TlBiTe₂ (β_2) приводит к образованию широких двухфазных (β_1 + δ и β_2 + δ) полей, разделенных трехфазной областью β_1 + β_2 + δ . Расположение и протяженность фазовых областей подтверждены данными РФА. В качестве примера на рис. 2 приведены дифрактограм-

Рис. 2. Порошковые рентгенограммы образцов № 1 и № 2 из двух- и трехфазной областей подсистемы $Tl_9BiTe_6-Tl_9TbTe_6-TlTbTe_2-TlBiTe_2$

Оригинальные статьи

С. З. Имамалиева и др.

мы сплавов из двухфазной β₁+δ (№ 1) и трехфазной β₁+β₂+δ (№ 2) областей.

Индицированием порошковых рентгенограмм образцов № 1 и № 2 были получены следующие параметры кристаллической решетки:

Образец № 1: а = 4.4883, с = 23.580 (β₁-фаза); а = 8.8626, с = 13.008 Å (δ-фаза)

Образец № 2: a = 4.4793, c = 23.481 (β_1 -фаза); a = 4.4472, c = 24.007 (β_2 -фаза); a = 8.8630, c = 13.008 Å (δ -фаза).

Сравнение этих данных с результатами [36, 44] показывает, что образец № 1 состоит из двухфазной смеси β_1 -фазы состава 40 мол. % TITbTe₂ вдоль сечения TIBiTe₂-TITbTe₂ и δ-фазы с составом 50 мол. % Tl₉TbTe₆ по разрезу Tl₉BiTe₆-Tl₉TbTe₆. Образец № 2 состоит из трехфазной смеси $\beta_1+\beta_2+\delta$ со следующими составами фаз: β_1 и β_2 -фазы 45 и 77 моль. % TITbTe₂ по разрезу, а δ - 50 моль. % Tl₉TbTe₆. Эти данные совпадают с данными рис. 1.

3.2. Поверхность ликвидуса $Tl_{2}Te-Tl_{9}BiTe_{6}-Tl_{9}TbTe_{6}$

Поверхность ликвидуса системы $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$ состоит из трех полей первичной кристаллизации α -, δ - фаз и β_2 -фазы на основе соединения $TlTbTe_2$ (рис. 3). Эти поля разделены кривыми p_1p_1' и p_2p_2' , которые соответствуют моновариантным перитектическим

процессам L+β₂↔δ и L+δ↔α. Поверхность солидуса состоит из двух областей завершения кристаллизации α- и δ-фаз.

3.3. Некоторые политермические

и изотермические разрезы фазовой диаграммы системы Tl₂Te-Tl₉BiTe₆-Tl₉TbTe₆

Для подтверждения правильного построения поверхности ликвидуса подсистемы $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$ и уточнения границ областей первичной кристаллизации δ -фазы и TlTbTe₂, были построены политермические разрезы $Tl_2Te-[A]$ и $Tl_9TbTe_6-[B]$ (A и B – сплавы составов 1: 1 граничных систем $Tl_9BiTe_6-Tl_9TbTe_6$ и $Tl_2Te-Tl_9BiTe_6$) фазовой диаграммы системы.

Кривая ликвидуса разреза $Tl_2Te-[A]$ состоит из двух кривых, соответствующих первичной кристаллизации α - и δ -фаз. Точка их пересечения соответствует началу моновариантной перитектической реакции L+ δ $\leftrightarrow \alpha$.

По разрезу Tl₉TbTe₆–[B] в области составов до ~65 мол. % Tl₉TbTe₆ из расплава первично кристаллизуется δ -фаза, в то время как в сплавах с более высоким содержанием Tl₉TbTe₆ сначала кристаллизуется β_1 -фаза на основе TlTbTe₂, затем протекает моновариантное перитектическое равновесие L + β_2 ↔ δ . В этой реакции β_1 -фаза полностью расходуется и избыток расплава кристаллизуется в δ -фазу.

Рис. 3. Проекции поверхностей ликвидуса (сплошные линии) и солидуса (пунктирные линии) подсистемы $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$. Поля первичной кристаллизации фаз: $1-\alpha$; $2-\delta$; $3-\beta_1$. Красные линии – изученные политермические разрезы $Tl_2Te-[A]$ и $Tl_9TbTe_6-[B]$ фазовой диаграммы подсистемы

Оригинальные статьи

Наличие моновариантных перитектических реакций L+ $\beta_2 \leftrightarrow \delta$ и L+ $\delta \leftrightarrow \alpha$ (рис. 3, кривые $p_2 p_2'$ и $p_2 p_2$) в системе Tl₂Te–Tl₉BiTe₆–Tl₉TbTe₆ должно приводить к образованию трехфазных областей L+ α + δ и L+ β_1 + δ на политермических разрезах Tl₂Te–[A] и Tl₉TbTe₆–[B], соответственно (рис. 4). Очень узкие диапазоны температур этих реакций не позволяют зафиксировать эти области методом ДТА. Учитывая известные принципы построения политермических срезов [45], области L+ β_1 + δ и L+ α + δ разделены пунктирными линиями.

Изотермические сечения объемной фазовой диаграммы важны для выбора состава растворов-расплавов при выращивании монокристаллов путем направленной кристаллизации.

Как видно из изотермических сечений при 740 и 780 К, первое состоит из сопряженных кривых ликвидуса и солидуса, разграничивающих однофазные области L и δ . Эти кривые связаны коннодами и разграничивают двухфазную область L + δ . Изотермическое сечение при 780 К в дополнение к этим фазовым областям также отражает гетерогенные области L+ β_1 , β_1 + δ и L+ β_1 + δ , которые разграничены с учетом данных о граничных системах Tl₂Te-Tl₂TbTe₆ и Tl₂Te-Tl₉TBiTe₆ [35, 43].

Сравнение изотермического (рис. 5) и политермических (рис. 4) сечений фазовой диаграм-

Рис. 4. Политермические сечения $Tl_2Te-[A]$ и $Tl_9TbTe_6-[B]$ фазовой диаграммы подсистемы $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$ четверной системы Tl-Sb-Tb-Te. А и В – эквимолярные составы на граничных системах $Tl_9BiTe_6-Tl_9TbTe_6$ и $Tl_2Te-Tl_9BiTe_6$ как показано на рис. 3

Рис. 5. Изотермическе сечения при 740 and 780 К фазовой диаграммы подсистемы Tl₂Te-Tl₃BiTe₆-Tl₃TbTe₆

Оригинальные статьи

мы системы $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$ наглядно демонстрирует, что направления коннод не совпадают с T-х плоскостями исследуемого внутренние сечения, что характерно для неквазибинарных политермических сечений.

4. Заключение

Методами ДТА и РФА установлен характер твердофазных равновесий в Tl, Te-TlTbTe,-TlBiTe₂. Построена диаграмма твердофазных равновесий при комнатной температуре, ряд поли- и изотермических сечений, а также проекция поверхности ликвидуса и солидуса системы в области составов Tl₂Te-Tl₂BiTe₄-Tl₂TbTe₄. Paspes Tl₉BiTe₆-Tl₉TbTe₆, характеризующийся образованием непрерывных твердых растворов $(\delta$ -фаза) делит систему $Tl_2Te-Tl_9BiTe_6-Tl_9TbTe_6$ на две независимые подсистемы. Подсистема Tl_oBiTe₆-TlBiTe₂-TlTbTe₂-Tl_oTbTe₆ характеризуется образованием широких областей твердых растворов на основе TlTbTe₂ (β₁-фаза) и TlBiTe₂ (β₂-фаза). Область гомогенности δ-фазы охватывает большую (> 90 %) часть площади подсистемы Tl₂Te-Tl₉BiTe₆-Tl₉TbTe₆. Полученные твердые растворы β_1 , β_2 и δ представляют большой интерес как потенциальные магнитные топологические изоляторы и термоэлектрические материалы.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Ahluwalia G. K. (ed.). *Applications of Chalcogenides: S, Se, and Te.* Switzerland: Springer; 2017. 461 p. https://doi.org/10.1007/978-3-319-41190-3

2. Alonso-Vante N. Outlook. In: *Chalcogenide* materials for energy conversion: Pathways to oxygen and hydrogen reactions. Nanostructure Science and Technology. Springer, Cham; 2018. 226 p. https://doi. org/10.1007/978-3-319-89612-0_7

3. Scheer R., Schock H-W. *Chalcogenide photovoltaics: physics, technologies, and thin film devices*. Wiley-VCH; 2011. 368 p. https://doi.org/10.1002/ 9783527633708

4. Palchoudhury S., Ramasamy K., Gupta A. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications. *Nanoscale Advances*. 2020;2(8): 3069–3082. https://doi. org/10.1039/D0NA00399A 5. Lin S., Li W., Bu Z., Shan B., Pei Y. Thermoelectric p-type Ag₉GaTe₆ with an intrinsically low lattice thermal conductivity. *ACS Applied Energy Materials*. 2020;3(2): 1892–1898. https://doi.org/10.1021/acsaem.9b02330

6. Banik A., Roychowdhury S., Biswas K. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. *Chemical Communications*. 2018;54(50): 6573–6590. https://doi.org/10.1039/C8CC02230E

7. Otrokov M. M., Klimovskikh I. I., Bentmann H., Zeugner A., Aliev Z. S., Gass S., Wolter A. U. B., Koroleva A. V., Estyunin D., Shikin A. M., Blanco-Rey M., Hoffmann M., Vyazovskaya A. Yu., Eremeev S. V., Koroteev Y. M., Amiraslanov I. R., Babanly M. B., Mamedov N. T., Abdullayev N. A., Zverev V. N., Büchner B., Schwier E. F., Kumar S., Kimura A., Petaccia L., Di Santo G., Vidal R. C., Schatz S., Kisner K., Min C.-H., Moser S. K., Peixoto T. R. F., Reinert F., Ernst A., Echenique P. M., Isaeva A., Chulkov E. V. Prediction and observation of the first antiferromagnetic topological insulator. *Nature*. 2019; 576(7787): 416–422. https:// doi.org/10.1038/s41586-019-1840-9

8. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevel'kov A. V., Amiraslanov I. R. Phase diagrams in the materials science of topological insulators based on metal chalcogenides. *Russian Journal of Inorganic Chemistry*. 2017;62(13): 1703–1729. https://doi. org/10.1134/S0036023617130034

9. Ding J., Liu C., Xi L., Xi J., Yang J. Thermoelectric transport properties in chalcogenides ZnX (X=S, Se): From the role of electron-phonon couplings. *Journal of Materiomics*. 2021;7(2): 310–319. https://doi.org/10.1016/j.jmat.2020.10.007

10. Segawa K. Synthesis and characterization of 3D topological insulators: a case TlBi($S_{1-x}Se_x$)₂. Science and Technology of Advanced Materials. 2015;16(1): 014405-8. https://doi.org/10.1088/1468-6996/16/1/014405

11. Usanmaz D., Nath P., Toher C., Plata J. J., Friedrich R., Fornari M., Nardelli M. B., Curtarolo S. Spinodal superlattices of topological insulators. *Chemistry of Materials*. 2018;30(7): 2331–2340. https://doi.org/10.1021/acs.chemmater.7b05299

12. Wang Z., Segawa K., Sasaki S., Taskin A. A., Ando Y. Ferromagnetism in Cr-doped topological insulator TlSbTe₂. *APL Materials*. 2015;3: 083302-7. https://doi.org/10.1063/1.4922002

13. Eremeev S. V., Koroteev Y. M., Chulkov E. V. Ternary thallium-based semimetal chalcogenides $TI-V-VI_2$ as a new class of three-dimensional topological insulators. *JETP Letters*. 2010;91(11): 594–598. https://doi.org/10.1134/S0021364010110111

14. Filnov S. O., Klimovskikh I. I., Estyunin D. A., Fedorov A., Voroshnin V., Koroleva A. V., Shevchenko E. V., Rybkin A. G., Aliev Z. S., Babanly M. B.,

С. З. Имамалиева и др.

Amiraslanov I. R., Mamedov N. T., Schwier E. F., Miyamoto K., Okuda T., Kumar S., Kimura A., Misheneva V. M., Shikin A. M., Chulkov E. V. Probedependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi_{0.9}Gd_{0.1}Se₂. *Physical Review B*. 2020;102: 085149-7. https://doi. org/10.1103/PhysRevB.102.085149

15. Arpino K. E., Wasser B. D., McQueen T. M. Superconducting dome and crossover to an insulating state in $[Tl_4]Tl_{1-x}Sn_xTe_3$. *APL Materials*. 2015;3(4): 041507-8. https://doi.org/10.1063/1.4913392

16. Ruan J., Jian S-K., Zhang D., Yao H., Zhang H., Zhang S-C., Xing D. Ideal Weyl semimetals in the chalcopyrites CuTlSe₂, AgTlTe₂, AuTlTe₂, and ZnPbAs₂. *Physical Review Letters*. 2016;116: 226801-5. https:// doi.org/10.1103/PhysRevLett.116.226801

17. Singh B., Sharma A., Lin H., Hasan M. Z., Prasad R., Bansil A. Topological electronic structure and Weyl semimetal in the TlBiSe₂ class of semiconductors. *Physical Review B*. 2012;86: 115208-7. https://doi.org/10.1103/PhysRevB.86.115208

18. Piasecki M., Brik M. G., Barchiy I. E., Ozga K., Kityk I. V., El-Naggar A. M., Albassam A. A., Malakhovskaya T. A., Lakshminarayana G. Band structure, electronic and optical features of Tl_4SnX_3 (X = S, Te) ternary compounds for optoelectronic applications. *Journal of Alloys and Compounds*. 2017;710: 600–607. https://doi.org/10.1016/j. jallcom.2017.03.280

19. Barchij I., Sabov M., El-Naggar A. M., AlZayed N. S., Albassam A. A., Fedorchuk A. O., Kityk I. V. Tl_4SnS_3 , Tl_4SnSe_3 and Tl_4SnTe_3 crystals as novel IR induced optoelectronic materials. *Journal of Materials Science: Materials in Electronic*. 2016;27: 3901-5. https://doi.org/10.1007/s10854-015-4240-4

20. Shi H., Lin W., Kanatzidis M. G., Szeles C., Du M.-H. Impurity-induced deep centers in Tl_6SI_4 . *Journal of Applied Physics*. 2017:121(14): 145102-5. https://doi.org/10.1063/1.4980174

21. Das S., Peters J. A., Lin W. W, Kostina S. S., Chen P., Kim J., Kanatzidis M. G., Wessels B. W. Charge transport and observation of persistent photoconductivity in $\text{Tl}_{o}\text{SeI}_{4}$ single crystals. *Journal of Physical Chemistry Letters*. 2017;8(7): 1538–1544. https://doi.org/10.1021/acs.jpclett.7b00336

22. Ding G., He J., Cheng Z., Wang X., Li S. Low lattice thermal conductivity and promising thermoelectric figure of merit of Zintl type TlInTe₂. *Journal of Materials Chemistry C*. 2018;6: 13269–13274. https:// doi.org/10.1039/C8TC03492C

23. Shi Y., Assoud A., Ponou S., Lidin S., Kleinke H. A. New material with a composite crystal structure causing ultralow thermal conductivity and outstanding thermoelectric properties: $Tl_2Ag_{12}Te_{7+\delta}$. *Journal of American Chemical Society*. 2018;140(27): 8578–8585. https://doi.org/10.1021/jacs.8b04639

Оригинальные статьи

24. Han C., Sun Q., Li Z., Dou S. X. Thermoelectric enhancement of different kinds of metal chalcogenides. *Advanced Energy Materials*. 2016;6(15): 1600498-1-1600498-36. https://doi.org/10.1002/aenm.201600498

25. Heinke F., Eisenburger L., Schlegel R., Schwarzmüller S., Oeckler O. The influence of nanoscale heterostructures on the thermoelectric properties of Bi-substituted Tl_5Te_3 . *Zeitschrift für anorganische und allgemeine Chemie*. 2017;643: 447– 454. https://doi.org/10.1002/zaac.201600449

26. Maier S., Lefèvre R., Lin X., Nunna R., Berthebaud D., Hèbert S., Mar A., Gascoin F. The solid solution series $Tl(V_{1-x}Cr_x)_5Se_8$: crystal structure, magnetic and thermoelectric properties. *Journal of Materials Chemistry C*. 2015;**3**: 10509–10517. https:// doi.org/10.1039/C5TC01766A

27. Guo Q., Kleinke H. Thermoelectric properties of hot-pressed (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb) and $Tl_{10-x}La_xTe_6$ (0,90<x<1,05). *Journal of Alloys and Compounds*. 2015;630: 37–42. https://doi.org/10.1016/j. jallcom.2015.01.025

28. Isaeva A., Schoenemann R., Doert T. Syntheses, Crystal structure and magnetic properties of Tl_9RETe_6 (RE = Ce, Sm, Gd). *Crystals*. 2020;10(4): 277-11. https:// doi.org/10.3390/cryst10040277

29. Bangarigadu-Sanasy S., Sankar C. R., Dube P. A., Greedan J. E., Kleinke H. Magnetic properties of Tl₉LnTe₆, Ln = Ce, Pr, Tb and Sm. *Journal of Alloys and Compounds*. 2014;589: 389–392. https://doi.org/10.1016/j.jallcom.2013.11.229

30. Villars P, Prince A. Okamoto H. Handbook of ternary alloy phase diagrams (10 volume set). Materials Park, OH: ASM International; 1995. 15000 p.

31. Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Taghiyev D. B., Yusibov Y. A. Some aspects of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenid systems by the EMF method. *Russian Journal of Inorganic Chemistry*. 2019;64(13): 1649– 1671. https://doi.org/10.1134/S0036023619130035

32. Имамалиева С. З. Фазовые диаграммы в разработке теллуридов таллия-РЗЭ со структурой Tl_5Te_3 и многокомпонентных фаз на их основе. Обзор. Конденсированные среды и межфазные границы. 2018;20(3): 332–347. https://doi. org/10.17308/kcmf.2018.20/570

33. Imamaliyeva S. Z., Alakbarzade G. I., Mahmudova M. A., Amiraslanov I. R., Babanly M. B. Experimental study of the $Tl_4PbTe_3-Tl_9TbTe_6-Tl_9BiTe_6$ section of the Tl-Pb-Bi-Tb-Te system. *Materials Research*. 2018;21(4): e20180189-6. https://doi.org/10.1590/1980-5373-mr-2018-0189

34. Imamaliyeva S. Z., Alakbarova G. I., Babanly K. N., Amiraslanov I. R., Babanly M. B. Tl₂Te-Tl₉SbTe₆-Tl₉TbTe₆system. *New Materials, Compounds and Applications*. 2018;2(3): 221–230. Режим доступа:

С. З. Имамалиева и др.

2021;23(1): 32-40

Оригинальные статьи

http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V2N3/Imamaliyeva%20et%20al.pdf

35. Имамалиева С. З., Гасанлы Т. М., Зломанов В. П., Бабанлы М. Б. Фазовые равновесия в системе Tl₂Te-Tl₅Te₃-Tl₉TbTe₆. *Неорганические материалы*. 2017;53(4): 354–361. https://doi. org/10.7868/S0002337X17040066

36. Имамалиева С. З., Гасанлы Т. М., Зломанов В. П., Бабанлы М. Б. Фазовые равновесия в системе Tl₅Te₃-Tl₉BiTe₆-Tl₉TbTe₆. *Неорганические материалы*. 2017;53(7): 701-705. https://doi.org/ 10.7868/S0002337X17070053

37. Асадов М. М., Бабанлы М. Б., Кулиев А. А. Фазовые равновесия в системе Tl–Te. *Известия АН СССР. Неорганические материалы*. 1977;13(8): 1407–1410.

38. Cerny R., Joubert J., Filinchuk Y., Feutelais Y. Tl_2Te and its relationship with Tl_5Te_3 . *Acta Crystallographica Section C*. 2002;58(5): 163. https://doi.org/10.1107/s0108270102005085

39. Babanly M. B., Azizulla A., Kuliev A. A. System Tl₂Te–Bi₂Te₃–Te. *Russian Journal of Inorganic Chemistry*. 1985;30(9): 2356–2359.

40. Pradel A., Tedenac J. C., Brun G., Maurin M. Mise au point dans le ternaireTl-Bi-Te. Existence de deux phases nonstoechiometriques de type TlBiTe₂. *Journal of Solid State Chemistry*. 1982;5(1): 99–111. https://doi.org/10.1016/0022-4596(82)90296-1

41. Duczmal M. Structure, własciwosci magnetzcyne i pole krzstalicyne w potrojnzch chalkogenkach lantonowcow i talu TlLnX_2 (X = S, Se lub Te). Monografie. Wrocław: Politechniki Wrocławskiej; 2003. 67 p. (In Polish)

42. Doert T., Böttcher P. Crystal structure of bismuth nonathallium hexatelluride BiTl₉Te₆. *Zeitschrift für Kristallographie*. 1994;209: 95. https://doi.org/10.1524/zkri.1994.209.1.95

43. Имамалиева С. 3., Мехдиева И. Ф., Гасымов В. А., Бабанлы М. Б. Система Tl–Bi–Er–Te в области составов Tl_2 Te– Tl_9 BiTe₆– Tl_9 ErTe₆. Журнал неорганической химии. 2019;64(7): 907–913. https://doi.org/10.1134/S0044457X19070195

44. Alakbarzade G. I. Solid-phase equilibria in the TlBiTe₂-TlTbTe₂ system. *Chemical Problems*. 2019;4: 565–570. https://doi.org/10.32737/2221-8688-2019-4-565-570

45. Афиногенов Ю. П., Гончаров Е. Г., Семенова Г. В., Зломанов В. П. *Физико-химический анализ многокомпонентных систем*. М.: МФТИБ; 2006. 332 с.

Информация об авторах

Самира Закир Имамалиева, PhD по химии, доцент, Институт катализа и неорганической химии, HAH Азербайджана, Баку, Азербайджан; e-mail: samira9597a@gmail.com. ORCID iD: https://orcid.org/0000-0001-8193-2122.

Ганира Ильгар Алекберова, аспирант, Национальное аэрокосмическое агентство Азербайджана, Баку, Азербайджан; e-mail: alakbarzadegi@ gmail.com. ORCID iD: https://orcid.org/0000-0001-8500-0007.

Дунья Магомед Бабанлы, д. х. н., доцент, Азербайджанский государственный университет нефти и промышленности, Французский Азербайджанский Университет, Баку, Азербайджан; e-mail: dunya.babanly@ufaz.az. ORCID iD: https://orcid. org/0000-0002-8330-7854.

Марина Вадимовна Буланова, д. х. н., ведущий научный сотрудник, Институт проблем материаловедения им. Францевича, НАН Украины, Киев, Украина; e-mail: mvbulanova2@gmail.com. ORCID iD: https://orcid.org/0000-0002-8691-0982

Вагиф Акпер Гасымов, PhD по химии, доцент, Институт катализа и неорганической химии, HAH Азербайджана, Баку, Азербайджан; e-mail: v-gasymov@rambler.ru. ORCID iD: https://orcid.org/0000-0001-6233-5840.

Магомед Баба Бабанлы, д. х. н., профессор, членкорр., зам. директора по научной работе, Институт катализа и неорганической химии, НАН Азербайджана, Баку, Азербайджан; e-mail: babanlymb@ gmail.com. ORCID iD: https://orcid.org/0000-0001-5962-3710.

Все авторы прочитали и одобрили окончательный вариант рукописи.

Поступила в редакцию 08.01.2021; одобрена после рецензирования 8.02.2021; принята к публикации 15.03.2021; опубликована онлайн 25.03.2021.