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Abstract
Using the Bridgman-Stockbarger method, crystals of triple fluoride CaF2-SrF2-BaF2 were grown in a composition range 
similar to that of CaSrBaF6. The crystals were 10-12 mm in diameter and 50–60 mm in length. The CaSrBaF6 crystal is a 
new optical material which is transparent in the mid-IR, visible and UV ranges. The uneven distribution of the components 
along the length of the crystal did not exceed 10 %. The edge of the absorption band in the IR range was 14.3 μm, and the 
optical absorption at the wavelength of 200 nm did not exceed 18 % (less than 0.2 cm–1). The refraction indices were 1.4527, 
1.4488, and 1.4458 for the wavelengths of 633, 969, and 1539 nm respectively. The crystal melts in the temperature range 
of 1150–1210 °С. The CaSrBaF6 composition is an appropriate matrix for doping with rare-earth ions in order to obtain 
functional single-crystal and ceramic materials of the visible and IR ranges. 
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1. Introduction
Calcium, strontium, and barium fluorides 

crystallise in the fluorite structure with the 
following parameters of the crystal lattice: 5.463, 
5.800, and 6.200 Å respectively. Single crystals 
of difluorides of alkaline earth elements are 
widely used as photonics materials [1–3] as well 
as matrices for doping with rare-earth ions [4-
10]. They are characterised by wide transmission 
regions from vacuum ultraviolet to the mid-IR 
range. However, the use of pure fluorides can be 
limited when designing optical systems [11]. The 
use of solid solutions allows varying the physical 
properties and characteristics of matrices over a 
wide range. Continuous areas of solid solutions 
with the valleys on the melting curves are formed 
in the СаF2–SrF2 [12, 13] and SrF2–BaF2 systems 
[14, 15]. We grew and studied the corresponding 
series of single crystals Са1–xSrxF2 and Sr1–xBaxF2 
[16–22]. Isomorphism in the CaF2–BaF2 system 
is limited [18, 23, 24]. The corresponding 
binary solid solutions are of interest as optical 
materials for photonics. When isovalent solid 
solutions are formed, physical properties of the 
crystals significantly change (compared to the 
components), including the refractive index [16–
18, 20], vibration spectra [25], and hardness [17, 
20]. On the whole, mechanical characteristics of 
solid solutions improve, thermal conductivity 
decreases, and electrical conductivity increases. 
Spectral-luminescent characteristics and cluster 
structure of doping REE change in a non-
monotonic way.

In recent years, multicomponent phases 
with several isostructural elements in their 
composition have been attracting greater 
interest. Such compositions containing 5 and 
more components were called high-entropy 
alloys (HEAs) [30, 31]. According to the third law 
of thermodynamics, these single-phase alloys 
cannot be stable at low temperatures, although 
only slow processes of atomic diffusion and 
phase relaxation in some cases help to reveal 
their kinetic stability and potential applications. 
Homogeneous materials with multicomponent 
compositions are usually found in glass [32]. 
Initially, this term had been used for metal alloys, 
but then HEA oxides were also found [33]. The 
synthesis of high-entropy fluoride ceramics 
CeNdCaSrBaF12 was reported [34]. 

The purpose of this work was to grow 
single crystals of the triple-component solid 
solution Са1–x–ySrxBayF2 similar to the CaSrBaF6 
composition and to study its properties. The 
corresponding composition can serve as a matrix 
for doping with rare-earth ions and obtaining a 
multicomponent functional material.

2. Experimental
We used shards of CaF2 (OST 3-6304-87) 

and BaF2 optical single crystals together with 
the remelted SrF2 powder (extra-pure grade) as 
the starting substances to grow CaF2–SrF2–BaF2 
crystals. It is preferable to choose crystal reagents 
along with powder that was remelted under 
fluorinating atmosphere, as the reagents do not 
absorb moisture and can be stored for a long time. 
Each initial reagent was controlled by differential 
scanning calorimetry (DSC), X-ray diffraction 
analysis (XRD), and electron microscopy.

We grew the crystals of triple fluoride CaF2-
SrF2–BaF2 in the composition range similar to 
CaSrBaF6 on an automated system NIKA-3 under 
conditions of induction heating of a six-cell 
graphite crucible placed inside the inductor. The 
temperature gradient was formed using graphite 
pipes and disks as screens that had radial sawcuts 
to exclude the heating with the induction current, 
which allowed obtaining the temperature gradient 
(according to the temperature of crucible wall) of 
about 30 °С/cm. The temperature was measured 
through the chamber windows using a manual 
IR pyrometer. As soon as the crucible was filled 
with the mixture, pumping was performed to the 
residual pressure of no more than 5·10–2 mbar. 
The CF4 gas that partially filled the chamber was 
used as a fluorinating agent. After that, it was 
smoothly heated (for 1.5–2 hours), and when 
the operational temperature was reached, the 
crucible was removed from the hot area to the cold 
area at 6 mm/hour. When the removal process 
was finished, the crucible was slowly cooled for 
4–6 hours.

We performed a thermal analysis of the 
crystals on a Netzsch DSC 404 F1 differential 
scanning calorimeter. The measurements were 
made in platinum crucibles in a flowing argon 
atmosphere. Ground fragments of the seed 
boule cone were used as samples. We performed 
thermal analysis of all the crystals in the range of 
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temperatures of 20-1400 °С in the mode of two 
heating-cooling cycles.

The refractive index of the samples of the 
crystals was measured on a Metricon 2010 refrac-
tometer. The measurement method was based on 
the determination of the critical angle of inci-
dence at which light starts going into the volume 
of the sample through the surface of the measur-
ing prism (similar to an Abbe refractometer). This 
device allows performing measurements at three 
wavelengths: 633, 969, and 1539 nm. The mea-
surements were performed on the crystal sam-
ples with the polished side surface in the region 
of 5–10 mm from the seed boule cone.

Spectrophotometers Shimadzu UV-2600 and 
Infralyum FT 02 were used to register optical 
transmission in the UV, visible, and IR ranges of 
the optical spectrum. The measurements were 
taken using a dual-beam method in the UV and 
visible range and using a single-beam method in 
the IR range. The measurements were performed 
on the samples with two polished side surface in 
the region of 5–10 mm from the seed boule cone.

The elemental composition of the crystals 
was studied on a Quanta 200i 3D FEI scanning 
electron microscope with the system of energy 
dispersive X-ray microanalysis which included 
an Apollo X energy dispersive silicon detector 
with a resolution of > 131 eV for an MnK line 
at 100000 imp/s. The peak-to-background ratio 
was no less than 10000/1. The concentration of 
the components of the crystals was measured in 
three regions along the crystal’s length at the 
distances of 1 mm, 20 mm, and 40 mm from the 
seed boule cone. Three measurements were taken 
at different points of each region, and then the 
results were averaged.

3. Results and discussion
We grew a series of crystals that were 10–

12 mm in diameter and 50–60 mm in length (Fig. 1). 
The crystals were optically transparent (Fig. 2). 
The uneven distribution of the components of 
the crystal along the length of the boule did not 
exceed 10 % for most of the crystals. The most 
uniform distribution was observed on the crystal 
of the CaSrBaF6 composition (33 mol % CaF2 – 
33 mol % SrF2 –33 mol % BaF2), Fig. 3.

The DSC curves for the sample of the crystal 
of the CaSrBaF6 composition for the first heating-

cooling cycle are presented in Fig. 4. The sample 
melts in the range of temperatures of 1150–
1210 °С. 

The results of the measurement of the 
refractive index are presented in Table 1. The 
maximum values of the refractive index are 
typical for the sample 31 mol % CaF2 – 31 mol % 

Fig. 2. Photo of a polished triple fluoride CaSrBaF6 
crystal

Fig. 3. Distribution of the components of a CaSrBaF6 
crystal along the length of the boule for the 33 mol % 
CaF2 – 33 mol % SrF2 – 33 mol % BaF2 composition

Fig. 1. Photo of untreated boules of triple fluoride 
CaF2–SrF2–BaF2 crystals in the composition range 
similar to CaSrBaF6
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SrF2 – 38 mol % BaF2 while the minimum values 
are typical for the composition 40.5 mol % 
CaF2 –33.6 mol % SrF2 – 25.9 mol % BaF2.

The transmission spectra for the crystal of 
the CaSrBaF6 composition in the region of UV 
and IR absorption edges are presented in Fig. 5 
and Fig. 6 respectively. The measured sample 
was 10 mm thick. The spectra are presented 
taking into account the Fresnel reflection from 
the surfaces of the sample. The edge of the UV 
absorption was beyond the operating area of the 
spectrophotometer, and the absorption at the 
wavelength of 200 nm did not exceed 18 % (less 
than 0.2 cm–1). 

The border region of the IR absorption for the 
transmission degree of 0.1 begins from 700 cm–1 
(14.3 μm). 50 % transmission occurred at 12.5 μm. 

Therefore, the crystal of the CaSrBaF6 
composition is a new optical material which is 
transparent in the mid-IR, visible, and UV ranges. 
A big difference between the temperatures of 
liquidus and solidus exceeding 50 °С is indicative 

of the incongruent nature of the melting of this 
composition. Consequently, the growth from 
the melt of CaSrBaF6 crystals of high optical 
quality which are suitable for laser applications 
can hardly be implemented due to the problems 

Table 1. Values of the refractive index n at three wavelengths for crystals of triple fluorides in the 
composition range similar to CaSrBaF6

Compositions l = 633 nm l = 969 nm l = 1539 nm
33 mol % CaF2 – 33 mol % SrF2 – 33 mol % BaF2 1.4527 1.4488 1.4458
40.5 mol % CaF2 – 33.6 mol % SrF2 – 25.9 mol % BaF2 1.4497 1.4458 1.4430
38 mol % CaF2 – 31 mol % SrF2 – 31 mol % BaF2 1.4522 1.4483 1.4451
31 mol % CaF2 – 38 mol % SrF2 – 31 mol % BaF2 1.4520 1.4472 1.4448
31 mol % CaF2 – 31 mol % SrF2 – 38 mol % BaF2 1.4566 1.4526 1.4491
35 mol % CaF2 – 33 mol % SrF2 – 32 mol % BaF2 1.4527 1.4486 1.4451

Fig. 4. Sections of the DSC curves of a crystal sample 
of the 33 mol % CaF2 – 33 mol % SrF2 – 33 mol % BaF2 
composition, first cycle: 1 – heating, 2 – cooling

Fig. 5. Transmission spectrum of a crystal sample of 
the 33 mol % CaF2 – 33 mol % SrF2 – 33 mol % BaF2 
composition in the UV and visible range. The thickness 
of the sample is 10 mm 

Fig. 6. Transmission spectrum of a crystal sample of 
the 33 mol % CaF2 – 33 mol % SrF2 – 33 mol % BaF2 
composition in the IR range. The thickness of the 
sample is 10 mm
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with concentration overcooling, instability of 
the crystallisation front, and the formation of 
a cellular and dendritic substructure [35, 36]. 
However, this composition can be a suitable 
crystal matrix for obtaining upconversion 
luminophores [37] and can be used in the 
production technology for optical ceramics [38]. 
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