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Dear colleagues and readers!
On September 20, 2021 we celebrate the 100th 
anniversary of the birth of an outstanding scien-
tist and teacher of Voronezh State University, DSc 
in Chemistry, Professor Yakov Aleksandrovich 
Ugai, the founder of a new priority branch of 
science "The chemistry of semiconductors". Yakov 
Aleksandrovich was the founder and head of the 
leading scientific school “Solid state chemistry 
and semiconductors”. The school has had more 
than 650 studies (including certificates of author-
ships and patents) published in central domestic 
periodicals: Proceedings of the USSR Academy of 
Sciences and RAS, Russian Chemical Reviews, 
Russian Journal of Inorganic Chemistry, Russian 
Journal of Physical Chemistry, Russian Journal of 
General Chemistry, Inorganic Materials, Journal 
of Applied Chemistry, Semiconductors, Sol-
id-state Physics and in foreign press. In addition, 
7 monographs have been published, including: 
Shevchenko V. Ya., Ugai Ya. A., et al. “Crystal-
lochemical problems of semiconductors”. M.: 
Science, 1975. 132 p., Ugai Ya. A., Goncharov E. G., 
Semenova G. V., et al. “Phase equilibria between 
phosphorus, arsenic, antimony, and bismuth”. M.: 
Science, 1989. 204 p.

The first studies by Yakov Aleksandrovich 
and his colleagues on the identification of new 
semiconductor substances (Proceedings of the 
USSR Academy of Sciences 1961–1965, Russian 
Journal of Inorganic Chemistry 1962–1964) 
have laid the foundations for a scientifically 
grounded classification of semiconductors. 
(Ugai Ya. A. “Introduction to the chemistry of 
semiconductors”. M.: High School, 1965. 332 p. 
and 1975. 300 p.).

The idea of the dependence of the properties of 
solids, not only on the qualitative and quantitative 
composition, but also on their crystallochemical 

Condensed Matter and Interphases. 2021;23(3): 307–308
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structure, runs like a golden thread in all the 
textbooks of Ya. A. Ugai, intended for students of 
chemical faculties of classical universities (Ya. A. 
Ugai “General chemistry”. M.: High School, 1977. 
408 p. and 1984. 438 p.). He was one of those who 
redefined the concepts and problems of inorganic 
chemistry relating to the solid state of matter. (Ya. 
A. Ugai “Inorganic Chemistry”. M.: High School, 
1989. 463 p.). His textbook “General and Inorganic 
Chemistry”. M.: High School, 1997. 527 p. was 
reprinted several times from 1997 to 2007. This 
textbook is still in demand, not only in the leading 
universities of Russia, but also abroad.

For his research on the chemical thermody-
namics of semiconductors as part of a group of 
scientists in 1981, Ya. A. Ugai was awarded the 
USSR National Prize in Science. Ya. A. Ugai took 
an active part in the certification of scientific 
personnel, for more than two decades he was a 
member of the expert committee on inorganic 
chemistry of the State Commission for Academic 
Degrees of the USSR and the Russian Federation. 
For more than 10 years he was the head of the 
doctoral dissertation board on chemical sciences 
of Voronezh State University and was a member 
of the editorial board of the journal “Inorganic 
materials” of the Russian Academy of Sciences. 

From 1962 to 1966 he was the head of the 
Department of Semiconductor Chemistry, the first 

of its kind in the USSR, which he created. From 
1975 to 1984 he was the vice-rector for research 
of Voronezh State University, at the same time 
he was the head of the Department of General 
and Inorganic Chemistry. He was awarded the 
Order of Friendship of Peoples. In 1995, the city 
council elected him as a Distinguished Citizen 
of Voronezh.

Yakov Aleksandrovich was the supervisor of 
more than 70 PhD students, out of which 9 people 
obtained DSc degree. Ya. A. Ugai was a bright, 
outstanding personality: highly erudite, cheerful, 
and possessed encyclopaedic knowledge. Until 
now, there are legends about his lectures, which 
were attended by both his students, who became 
teachers, and employees of other faculties and 
universities. In addition to the excellent, clear 
presentation of the main material, he kept the 
attention of the audience alive and always found 
the opportunity and time to share facts regarding 
the history of chemistry and the biography of 
scientists.

The staff of the Faculty of Chemistry, his 
students, and followers try to preserve all the 
traditions laid down by Yakov Aleksandrovich Ugai, 
as evidenced by the articles of this anniversary 
issue of the journal, which cover topics related 
to materials science in solid state chemistry and 
inorganic and physical chemistry.

Editor-in-chief of the journal “Kondensirovannye 
sredy i mezhfaznye granitsy = Condensed matters 
and interphases”, Dean of the Chemical Faculty 
of Voronezh State University, DSc in Chemistry, 
Professor V. N. Semenov

Translated by Valentina Mittova
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Nanoscale semiconductor and dielectric films and magnetic 
nanocrystals – new directions of development of the scientific school 
of Ya. A. Ugai “Solid state chemistry and semiconductors”. Review 
I. Ya. Mittova1, B. V. Sladkopevtsev1, V. O. Mittova2 *

1Voronezh State University,  
1 Universitetskaya pl., Voronezh 394018, Russian Federation
2Voronezh State Medical University named after N. N. Burdenko,  
12 Studencheskaya Street, Voronezh 394036, Russian Federation
Abstract 
New directions of development of the scientific school of Yakov Aleksandrovich Ugai “Solid state chemistry and 
semiconductors” were considered for the direction “Study of semiconductors and nanostructured functional films based 
on them”, supervised by I. Ya. Mittova. The study of students and followers of the scientific school of Ya. A. Ugai cover 
materials science topics in the field of solid-state chemistry and inorganic and physical chemistry. At the present stage of 
research, the emphasis is being placed precisely on nanoscale objects, since in these objects the main mechanisms of 
modern solid-state chemistry are most clearly revealed: the methods of synthesis - composition - structure (degree of 
dispersion) - properties. Under the guidance of Professor I. Ya. Mittova DSc (Chem.), research in two key areas is conducted: 
“Nanoscale semiconductor and dielectric films” and “Doped and undoped nanocrystalline ferrites”. In the first area, the 
problem of creating high-quality semiconductor and dielectric nanoscale films on AIIIBV by the effect reasonably selected 
chemostimulators on the process of thermal oxidation of semiconductors and/or directed modification of the composition 
and properties of the films. They present the specific results achieved to date, reflecting the positive effect of chemostimulators 
and modifiers on the rate of formation of dielectric and semiconductor films of the nanoscale thickness range and their 
functional characteristics, which are promising for practical applications.
Nanomaterials based on yttrium and lanthanum orthoferrites with a perovskite structure have unique magnetic, optical, 
and catalytic properties. The use of various approaches to their synthesis and doping allowing to control the structure and 
properties in a wide range. In the field of magnetic nanocrystals under the supervision of Prof. I. Ya. Mittova studies of the 
effect of a doping impurity on the composition, structure, and properties of nanoparticles of yttrium and lanthanum 
orthoferrites by replacing the Y(La)3+ and Fe3+ cations are carried out. In the Socialist Republic of Vietnam one of the talented 
students of Prof. I. Ya. Mittova, Nguyen Anh Tien, performs studies in this area. To date, new methods for the synthesis of 
nanocrystals of doped and undoped ferrites, including ferrites of neodymium, praseodymium, holmium, etc. have been 
developed.
Keywords: Semiconductors, Dielectrics, Magnetic nanocrystals, Ferrites, Nanoscale films, Nanocrystals
Acknowledgements: the authors are grateful to Full Member of the Russian Academy of Sciences V. M. Ievlev for providing 
the opportunity for further creative development of research within the framework of the scientific school, for their support 
and assistance.
For citation: Mittova I. Ya., Sladkopevtsev B. V., Mittova V. O. Nanoscale semiconductor and dielectric films and magnetic 
nanocrystals - new directions of development of the scientific school of Ya. A. Ugai “Solid state chemistry and semiconductors”. 
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(3): 309–336. https://doi.
org/10.17308/kcmf.2021.23/3524
Для цитирования: Миттова И. Я., Сладкопевцев Б. В., Миттова В. О. Наноразмерные полупроводниковые и 
диэлектрические пленки и магнитные нанокристаллы – новые направления развития научной школы Я. А. Угая 
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1. Introduction 
New research of the scientific school of 

Ya. A. Ugai “Solid state chemistry and semicon-
duc tors” [1] in the subdivision “Study of 
semiconductors and nanostructured functional 
films based on them”, supervised by I. Ya. Mittova, 
are developing in a number of directions “in 
breadth and depth”. They are performed by both 
the followers of Yakov Aleksandrovich’s work and 
by the “students of followers”, which is reflected 
in Table 1. In fact, we can talk about a deeper 
scientific continuity, since Yakov Aleksandrovich 
defended his Ph.D. thesis on the physical and 
chemical analysis of salt systems under the 

guidance of Prof. A. P. Palkin, who, in turn, was a 
student of Full Member of the Russian Academy 
of Sciences N. S. Kurnakov. The coverage of 
modern materials science topics in the field 
of solid-state chemistry and inorganic and 
physical chemistry as developed by students and 
followers of the scientific school of Ya. A. Ugai, 
his “scientific children, grandchildren, and great-
grandchildren” can be seen in Table 1. Here one 
cannot fail to mention one of the most talented, 
beloved, and successful students of Ya. A. Ugai, 
Evelina Domashevskaya. For many years she 
was the Head of the Department of Solid-State 
Physics and Nanostructures of Voronezh State 

Table 1. Defence of thesis

No. Thesis Full name of the 
applicant Title of dissertation Year of 

defence
1 2 3 4 5

Scientific advisor/consultant Prof. I. Ya. Mittova

1 Doctorate Natalia Ivanovna 
Ponomareva

Formation of functional layers on semiconductors by 
chemical vapour deposition from organoelement 
compounds

2004

2 Doctorate
Alexander 

Mikhailovich 
Samoilov

Directed synthesis of lead telluride films doped with 
gallium and indium with the controlled content of 
impurity atoms and deviation from stoichiometry

2006

3 Doctorate Viktor Fedorovich 
Kostryukov

Combined effect of chemostimulants on the thermal 
oxidation of gallium arsenide 2011

4 Doctorate Elena Viktorovna 
Tomina 

Chemically stimulated oxidation of GaAs and InP 
under the action of d-metals (Ni, Co, V), their oxides 
and oxide compositions 

2017

5 PhD
Tatiana 

Alexandrovna 
Gadebskaya

Growth kinetics and some properties of doped oxide 
films on silicon 1983

6 PhD Natalia Ivanovna 
Ponomareva

Interaction of chlorides of elements of III, IV and V 
groups with the surface of silicon and gallium arsenide 
in an oxidizing atmosphere

1984

7 PhD
Victoria 

Vladimirovna 
Pukhova

Interactions in Si-EхSy structures (E = In, Ge, Pb, Sb, Bi) 
and GaAs-ExSy(E = In, Pb, Sb) during their thermal 
oxidation

1986

8 PhD Vera Vasilievna 
Sviridova

Thermal oxidation of gallium arsenide and indium 
phosphide in the presence of impurity oxides 1995

9 PhD Irina Vladimiovna 
Kuznetsova

Phase formation processes in alumina ceramics 
modified with oxides of copper, nickel and boron 1995

10. PhD Elena Viktorovna 
Tomina

Thermal oxidation of gallium arsenide and indium 
phosphide with the participation of chlorides and 
oxochlorides of elements of groups IV - VI 

1997

11 PhD Viktor Fedorovich 
Kostryukov

Nonlinearity of the combined effect of lead, antimony 
and bismuth oxides on the thermal oxidation of 
gallium arsenide

2000

12 PhD Olga Anatolyevna 
Pinyaeva

Chemostimulating effect of chromium derivatives on 
thermal oxidation of gallium arsenide 2001

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 309–336
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End of Table 1
1 2 3 4 5

13 PhD Olga Vladimirovna 
Artamonova

Synthesis of nanoceramic materials based on zirconium 
dioxide stabilized with indium oxide 2004

14 PhD Alexey Sergeevich 
Sukhochev

Solid-phase interactions during the thermal oxidation 
of Me/GaAs and MeO/GaAs structures (Me = Fe, Co, 
Ni)

2006

15 PhD Irina Alexandrovna 
Donkareva

Localization regions of interactions between activator 
oxides during the thermal oxidation of gallium 
arsenide

2006

16 PhD Petr Konstantinovich 
Penskoy

Thermal oxidation of GaAs under the influence of 
Sb2O3, Bi2O3, MnO, MnO2 chemostimulant compositions 
with inert components Ga2O3, Al2O3, Y2O3

2009

17 PhD Nguyen Anh Tien 
Synthesis, structure and properties of  
La(Y)1–xSr(Ca)xFeO3 (x = 0.0; 0.1; 0.2; 0.3) 
nanopowders

2009

18 PhD
Alexander 

Alexandrovich 
Lapenko

Evolution of nanoscale film and island structures Me/
InP (GaAs) and MexOy/ InP (GaAs) (Me = V, Co) during 
thermal oxidation

2010

19 PhD Dinh Van Tac
Sol-gel synthesis and properties of nanocrystalline 
ferrites based on Y2O3-Fe2O3 system 2012

20 PhD Boris Valdimirovich 
Sladkopevtsev

Influence of the methods for the formation of VxOy/InP 
structures on the features of their thermal oxidation 
and the composition of the films

2013

21 PhD Alexey Alekseevich 
Samsonov

Thermal oxidation of InP modified by deposited 
compositions of NiO+PbO, V2O5+PbO oxides 2013

22 PhD Maria Viktorovna 
Berezhnaya

Effect of zinc and barium on the structure and 
properties of YFeO3 and LaFeO3-based nanopowders 
synthesized by the sol-gel method

2019

Scientific adviser prof. N. I. Ponomareva

23  PhD Pavel Ivanovich 
Manelyak

Influence of an anolyte disinfectant solution on the 
stability of geometric shapes of silicone imprints
(joint supervision with DSc in Medical Sciences, 
Professor Edward Sarkisovich Kalivrajian, now 
deceased)

2009

24 PhD Elena Viktorovna 
Budakova

Clinical and experimental substantiation of the use of 
an isoprene-styrene thermoplastic elastomer for basic 
removable laminar dentures
(joint supervision with DSc in Medical Sciences, 
Professor Edward Sarkisovich Kalivrajian, now 
deceased) 

2009

25 PhD Tatiana Dmitrievna 
Poprygina

Synthesis, structure, and properties of hydroxyapatite 
and the composites and coatings based on it 2012

Scientific adviser Prof. A. M. Samoilov

26 PhD
Mikhail 

Konstantinovich 
Sharov

Synthesis and properties of lead telluride films doped 
with gallium on silicon substrates 2000

27 PhD Sergey Vladimirovich 
Belenko

One-step synthesis of gallium-doped PbTe/Si films 
with a specified composition and optimized functional 
parameters

2013

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 309–336
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University, and now she is a professor of this 
department. The scientific school created by her 
“Atomic and electronic structure of solid state 
and nanostructures” is widely known not only in 
Russia, but also around the world. Undoubtedly, 
a great contribution in the formation of our 
scientific school was made by such outstanding 
students of Yakov Aleksandrovich as Associate 
Professor E. M. Averbakh (his first graduate 
student), professor V. Z. Anokhin, Associate 
Professors V. R. Pshestanchik and V. L. Gordin, 
who have unfortunately passed away. All of them 
laid the foundations for the study of objects that 
were new for that time, thin films of various 
functional purposes on semiconductors. New 
objects of research are mainly nanoscale, since in 
this area the main regularity of modern solid-state 
chemistry is most visibly and clearly manifested: 
synthesis method – composition – structure 
(degree of dispersion) – properties. This choice 
was due to the need to establish new fundamental 
laws of solid-state chemistry, the requirements of 
modern materials science, reflected in the current 
List of Critical Technologies (Technologies for 
the Production and Processing of Functional 
Nanomaterials) and the List of Priority Areas 
for the Development of Science, Technology and 
Engineering in the Russian Federation (Industry 
of Nanosystems).

2. Nanoscale semiconductors and dielectric 
films

Prospects for the development of all spheres 
of human activity are unambiguously associated 
with the improvement of microelectronic 
and nanoelectronic element bases. A variety 
of properties of AIIIBV type semiconductors 
determines their widespread use in devices for 
various technical purposes: for the production 
of the variety of optoelectronic devices in the 
infrared and visible ranges, high-speed electronic 
and powerful microwave devices [2].

One of the main tasks of the targeted 
formation of heterostructures on AIIIBV with the 
desired properties is the production of high-
quality dielectric and semiconductor films of 
nanometer thickness and the improvement of 
the properties of the interfaces. The creation of 
high-quality heterostructures on AIIIBV by thermal 
oxidation is complicated by the mechanisms of 

ongoing processes, due to the implementation of 
a negative communication channel between the 
stages of component-wise oxidation in the case 
of InP, the enrichment of films with unoxidized 
indium, and the segregation of arsenic in the 
elementary state at the inner interface of the 
heterostructure for GaAs [3]. Thermal oxidation 
of AIIIBV with the simultaneous action of interface 
modifiers and growing films, allowing to control 
their composition, nanostructure and properties, 
and chemostimulating agents promoting the 
accelerated formation of films with a decrease 
in the operating parameters of the process and 
blocking the negative communication channel of 
the intrinsic thermal oxidation of AIIIBV, allows 
achieving acceptable optical and electrophysical 
characteristics and to control the nanostructure 
of films, which is one of the factors determining 
their properties.

High-quality thermal oxide films on InP can 
be used in the development of highly efficient 
and cheap photoconverters of natural and 
linearly polarized radiation based on InP. Gallium 
arsenide, along with indium phosphide, is the 
most promising material for the production of 
next generation microwave integrated circuits [4]. 

The emergence of  gal l ium arsenide 
microelectronics resulted in the creation of 
efficient and high-power injection lasers and 
LEDs in the wavelength range of 600-900 nm 
based on GaAs/GaAlAs heterostructures. Indium 
phosphide turned out to be a necessary component 
of more complex heteroepitaxial structures. As a 
result of these studies, InP technology arose 
and was rapidly developed, which currently 
constitutes a significant portion of micro- and 
optoelectronics. Laser diodes based on InP/
InGaPAs/InP are a key element of optoelectronics 
for fiber-optic communication, processing, data 
storage, etc., since they cover the ranges of the 
highest optical fibre transparency (wavelengths 
1.3 and 1.55 μm) [5]. In modern commercial and 
technical cable communications (intercomputer 
communications, long-distance telephony, local 
networks, etc.), these heterolasers are mainly 
used.

The energy parameters of the single-crystal 
phase of InP and GaAs are very close to the 
parameters of single-crystal silicon, which allows 
the manufacture of hybrid integrated electronics 

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 309–336

I. Ya. Mittova et al. Review



313

devices compatible with silicon [6]. In addition 
to the production technology of microwave 
integrated circuits [4, 7, 8], heterostructures 
based on indium phosphide and gallium arsenide 
find many other applications, for example, as 
photodetectors [9, 10], in field-effect transistors 
based on Gatestacktechnology [11], memory cells 
[12], optoelectronic devices [13], in solar cells [14].

Wide-gap and optically transparent gallium 
phosphide is the main material for the creation of 
light-emitting diodes, photodetectors, photode-
tectors; it is promising for the development of 
high-temperature electronics devices capable of 
operating at temperatures significantly exceeding 
the reached limits of modern temperature 
sensors [15–17]. The unique optical properties 
of GaP single crystals are used to manufacture 
optical lenses and lenses for lasers [13]. However, 
any practical application of GaP requires the 
formation of various functional films (conductive, 
dielectric, antireflection, etc.) on its surface, 
which is undoubtedly associated with a number 
of technical difficulties. The use of gallium 
phosphide as waveguides and optical lenses for 
lasers is usually associated with the encapsulation 
of GaP single crystals in layers of a material 
with a lower refractive index (nGaP < 3.3), i.e., 
antireflection. Usually, AlGaP is used as the 
deposited material, which is well matched in 
lattice size with GaP [18].

Separately, it is necessary to highlight the 
areas of research associated with the formation of 
AIIIBV metal oxide semiconductor heterostructures 
by various methods. Among them are ZnO/InP 
heterostructures used to create optoelectronic 
devices and acoustic sensors [19, 20]; SnO2/InP with 
certain electrophysical properties, allowing their 
use as gas-sensitive sensors [21, 22]; multilayer 
heterostructures with a manganese dioxide 
layer with promising magnetic characteristics 
[23]. The range of synthesis methods used for 
such heterostructures is extremely wide: aerosol 
pyrolysis, molecular beam epitaxy, magnetron 
sputtering, CVD processes, etc. However, now, the 
idea of multipurpose control of the formation of 
functional nanoscale films on the surface of AIIIBV 
semiconductors by dopants remains practically 
unrealized. This approach allows fine adjustment 
of the kinetics and mechanism of the synthesis 
processes of these objects and the variation of their 

composition, nanostructure, and, consequently, 
their properties within wide limits.

In the modern world, the demand for portable 
gas sensors is increasing due to the need for their 
widespread use in various branches of technology 
(for the prevention of explosions, fires) and for 
the control of environmental pollution. All these 
circumstances stimulated the development of 
research in the field of semiconductor gas sensors 
around the world. However, the study of the 
physical and chemical processes underlying the 
operation of sensors is still far from complete. 
Namely, the understanding of these processes 
allowed creating a new generation of highly 
efficient, reliable, and economical devices based 
on sensor elements. Among the materials studied, 
nanocrystalline tin dioxide has found the greatest 
practical application [24–27]. In addition to tin 
dioxide materials, other oxide materials are also 
studied (In2O3, ZnO, MoO3, Ga2O3), which may be 
of interest for creating chemical sensors. Indium 
oxide is characterized by its high sensitivity, 
fast response, a convenient range of resistance 
variation, and a sufficiently low temperature for 
detecting oxidizing and reducing gases in air [24]. 
The data [28, 29] and the results of studies [30] 
suggest that the decisive role in the exceptional 
sensory properties of In2O3 belongs to the high 
mobility of surface oxygen, which is characteristic 
for this oxide. There is an adsorption-competitive 
mechanism of the sensory response, which is 
associated with the displacement of oxygen from 
the surface with the subsequent adsorption of 
the detected gas molecules on the active sites 
of indium oxide. However, the low-dimensional 
structure of a single semiconducting metal oxide 
obtained by various methods does not solve the 
problem of selectivity and stability of the sensor 
material.

Therefore, it becomes necessary to alloy 
the oxide. It was shown in the study [24] 
that Fe2O3·In2O3 thin films exhibit maximum 
sensitivity to ozone at an operating temperature 
of 370 оС. In addition, the number of studies in 
which it was proposed to use multicomponent 
systems based on indium oxide with additives 
of other metal oxides ZnO – In2O3, MgO – In2O3, 
In2O3–SnO2 for the detection of chlorine in air 
is currently increasing [31, 32]. Attention is also 
paid to sensors based on copper oxide [33–35].
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A significant disadvantage of the materials 
presented in the literature by various authors for 
the production of sensors is the high operating 
temperature (above 200 °C). This disadvantage 
can be offset by creating materials of mixed 
compositions [35].

The main direction of the development 
of our ideas, continuing the development 
of the considered section of the scientific 
school, is the use of chemostimulators and 
modifiers of the interface and growing films in 
the process of AIIIBV oxidation for the control 
of the rate of their formation, composition, 
nanostructure, and properties [36–39]. The 
solution to the problem of creating high-
quality semiconductor and dielectric films of 
nanometer scale thickness on AIIIBV is possible 
when changing the mechanism of thermal 
oxidation of these semiconductors from intrinsic 
to chemostimulated by influencing the process 
using reasonably selected chemostimulators 
and/or directed modification of the composition 
and properties of the films. The participation 
of chemostimulators in the oxidation process 
ensures the occurrence of new interface reactions 
with kinetically coupled and heterogeneous 
catalytic stages. In this case, the kinetic blocking 
of negative communication channels between 
the stages of oxidation of components AIII and 
BV due to the creation of new, positive channels 
with the participation of chemostimulators, the 
temperature and time of the synthesis process 
are reduced with a simultaneous modification 
of the composition and properties of functional 
films of nanometer thickness in the case of a 
chemostimulator with a modifying effect. We 
have previously shown [40–42] that the use of 
only modifiers of the inner interface and the films 
themselves already prevents the evaporation of 
the volatile component and degradation of the 
inner interface, reduce the density of surface 
states at the inner interface of the heterostructure, 
and control the structure and surface relief at the 
nanoscale. Naturally, the use of the combined 
action of a chemostimulator and a modifier is the 
most effective approach to solving this scientific 
problem. Based on many years of research, we 
have developed 2 methods for introducing a 
chemostimulator (modifier) into an oxidizing 
environment: directly in the process of thermal 

oxidation of a semiconductor through the gas 
phase (method 1) and preliminary application 
to the surface, after which thermal oxidation 
of an already formed heterostructure occurs 
(method 2). At the same time, depending on the 
effect on the semiconductor surface, is the process 
of applying a chemostimulator (modifier), in the 
framework of method 2 we used two methods: 
method 1 (hard method) magnetron or vacuum-
thermal deposition on the semiconductor surface 
and method 2 (soft method) of aerosol deposition 
or centrifugation. There is no noticeable effect on 
the semiconductor surface during the creation of 
the heterostructure using method 2 [43, 44]. 

The use of modifiers in combination with 
chemostimulators, in addition to blocking 
the diffusion of component A into the film in 
the unoxidized state and chemical bonding of 
component B at the inner interface, provides 
control over the growth rate, nanostructure, 
and properties of thermal oxide films and allows 
the development of new processes for the 
formation of functional nanosized dielectric and 
semiconductor films on AIIIBV semiconductors. 
The combined use of growth chemostimulators 
and modifiers is especially important in the 
formation of nanoscale films of a given thickness, 
when in the process of oxidation using only 
a chemostimulating agent due to the small 
thickness of the synthesized samples, the 
positive effect of the chemostimulator may not 
be fully realized [45, 46]. Chemostimulating and 
modifying agents can be introduced during the 
oxidation of semiconductors in one compound. 
In particular, with the chemical deposition of 
sulphides (PbS, Sb2S3, etc.) on the surface of 
semiconductors, during the oxidation of the 
formed heterostructures, the cation-forming 
element capable of the transit transfer of 
oxygen to the substrate components provides 
the rapid formation of the film by the catalytic 
or transit mechanism, partially performing 
the modifying function during its doping. 
The main modifying role is played by the 
anionic agent, influencing the characteristics 
of the internal interface, the composition, and, 
consequently, the characteristics of the films. 
The change in the composition of the films in the 
processes of oxidation of sulphide/semiconductor 
heterostructures according to the sulphide – 
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sulphate – oxosulphate – oxide scheme allows 
obtaining a whole spectrum of their different 
characteristics. The effectiveness of the effect of 
sulphur on the properties of the internal interface 
of a thermal oxide film with a semiconductor was 
demonstrated by preliminary treatment of the 
substrate surface in sulphur vapour [47, 48].

The use of complex compounds such as 
manganese and bismuth vanadate phosphates 
in the processes of chemically stimulated AIIIBV 
oxidation demonstrated a positive effect [49, 50], 
since manganese and bismuth oxides previously 
were demonstrated as effective chemostimulators 
of thermal oxidation of АIIIВV, in which the cation 
has a pronounced chemo-stimulating activity, 
and the anion can provide ready-made fragments 
of growing oxide films such as РО4

3– groups or 
groups that are isostructural to them.

The use of chemostimulators and/or modifiers 
is promising for the stepwise synthesis of 
nanoscale films on AIIIBV in combination with 
different types of activation of their action, heat 
treatment or pulsed photonic treatment, which 
expands the possibilities of controlling the rate of 
formation of films, their composition, structure, 
and properties [43, 44, 51].

Some of the specific results achieved to date 
reflecting the positive effect of chemostimulators 
and modifiers on the rate of formation of 
dielectric and semiconductor films of the 
nanoscale thickness range and their functional 
characteristics that have prospects for practical 
application are summarized in Table 2.

The main fundamental results achieved by 
the scientific group under the supervision of 
DSc in Chemistry, Professor I. Ya. Mittova, which 
includes DSc in Chemistry E. V. Tomina and 
V. F. Kostryukov, PhD in Chemistry B. V. Sladko-
pevtsev and A. A. Samsonov, PhD students and 
students, are as follows:

1. The concept of the multifunctional effect 
of chemostimulators-modifiers, often in one 
compound and in a single process, was proposed. 
Schemes were also proposed for the mechanisms 
of thermal oxidation processes of AIIIBV under 
the influence of simple and complex compounds 
and their compositions as a physicochemical 
basis for the development of new processes for 
the formation of semiconductor and dielectric 
films on AIIIBV with a given growth rate and 

target characteristics. The specificity of catalytic 
processes in new nonequilibrium systems with 
solid-phase thin-film catalysts, reagents, and 
products has been revealed. The nature of the 
synergistic effects of the joint action of the 
chemostimulators deposited on the surface 
of AIIIBV semiconductors and modifiers of the 
processes of oxidation of heterostructures was 
established [36–38,52–55].

2. The nonlinear effects of the influence of 
binary compositions of oxide-chemostimulators 
on the formation of thin films on GaAs and InP 
were established and quantitatively interpreted 
using the concept of relative partial and integral 
thicknesses [39, 56–64].

3. The dependence of the nonlinear effect 
of the combined action of chemostimulators on 
the oxidation state of the element forming one 
of the oxides of the composition was revealed, 
both paired with the oxide of another element, 
and with the oxide of the same element, but in a 
different oxidation state [59, 65, 66].

4. The nature and spatial localization of 
binding stages under the combined action of 
chemostimulators on the thermal oxidation 
of GaAs and InP, responsible for the observed 
nonlinear effects, have been established [67–71].

5. The fundamental possibility of the additive 
effect of a composition of oxides, one of which is 
an inert component, on the process of thermal 
oxidation of GaAs has been proved [72–78].

6. The presence of a sensor signal for the 
presence of reducing gases in the atmosphere 
for of thin films synthesized on the surface of 
GaAs and InP by chemically stimulated thermal 
oxidation under the influence of both individual 
chemostimulating oxides and their compositions 
was established [79–82].

7. Methods for precision doping of thin 
films on the surface of GaAs and InP have been 
developed [81, 83, 84].

8. Methods were developed for the synthesis 
of nano-sized nanostructured oxide films on InP 
and GaAs using a V2O5 gel allowing to modify 
the surface of semiconductors under mild 
conditions, characterized by their efficiency 
and ease of implementation, variability of the 
composition, the thickness and morphology of 
deposited layers of oxide dopants over a wide 
range [43, 51, 85, 86].
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9. Studies of the chemically stimulated thermal 
oxidation of GaAs and InP have established the 
decisive influence of the physicochemical nature 
of the chemostimulator, the procedure and the 
method of its introduction into the system on 
the mechanism of the process. It was shown that 
the introduction of an oxide chemostimulator 
through the gas phase and its application by soft 
methods on the semiconductor surface causes the 
transit mechanism of oxidation. The application 
of compounds providing a renewable cyclicity 
of the process by rigid methods provides a 
synchronous catalytic mechanism for the process. 
Data on the dependence of the composition, 
thickness, and rate of formation of films, their 
morphology on the procedure and method of 
introducing various chemostimulators-modifiers 
into the system were obtained [46, 51, 86–90].

10. The high efficiency of the application of the 
spectral ellipsometry method for determination of 
the thickness and optical constants of nanoscale 
films of complex compositions, grown as a result 
of thermal oxidation of InP and GaAs under the 
influence of chemostimulators-modifiers was 
proved [81, 91–94].

11. It was found that magnetron sputtering 
is the optimal method for the formation of 
oxide heterostructures (V2O5, MnO2, etc.)/
semiconductor efficiently blocking the diffusion 
of unoxidised indium into the film during 
thermal oxidation in comparison with mild 
methods of modifying the semiconductor surface. 
Weakly absorbing films with a low content of 
unoxidised indium, no more than 1–2%, have 
been synthesized [89, 93].

12. Chemically stimulated oxidation of 
indium phosphide with a nanosized layer of 
bismuth vanadate phosphate on the surface led 
to a significant decrease in EAE (~ 50  kJ/mol) 
as compared to the intrinsic oxidation of InP 
(~ 270 kJ/mol), which indicates a significant 
chemostimulating effect  of  a  complex 
chemostimulators on the thermal oxidation 
process of InP due to the decomposition of a 
complex chemostimulator-modifier with the 
formation of oxides-chemostimulators, as well as 
isostructural phosphate and vanadate fragments 
embedding in the forming film. The presence of 
V2O5 in films with a significant decrease in EAE 
and a large relative increase in the thickness of 

the films throughout the entire process suggest 
the presence of the catalytic component of the 
oxidation mechanism [95]. The composition 
and optical properties of the films confirm the 
effective blocking of the diffusion of unoxidised 
indium into the forming films, which favourably 
affects their functional properties. The chemically 
stimulated oxidation of gallium arsenide with 
a nanosized layer of manganese vanadate 
phosphate on the surface proceeds by a transit 
mechanism as was evidenced by the EAE value 
of the process (about 150 kJ/mol), comparable by 
an order of magnitude with that of the reference 
oxidation of InP (~ 270 kJ/mol). According to 
the XRD results, a chemostimulator with a 
pronounced catalytic mechanism of action (V2O5), 
originally present in vanadate-phosphate was not 
revealed in films, which indicates the absence 
of a catalyst regeneration cycle: V2O5 ↔VO2. 
Vanadate-phosphates of bismuth and manganese 
act simultaneously as both chemostimulators 
and modifiers of the thermal oxidation process, 
acting according to the transit mechanism for 
heterostructures on GaAs and according to transit-
catalytic mechanism for heterostructures on InP, 
and leading to an acceleration of the process up 
to 220–248% (see Table 2). Thermal oxidation 
of InP with magnetron deposited nanoscale 
layers of the MnO2chemostimulator and the 
simultaneous introduction of a chemostimulator-
modifier Mn3(PO4)2 through the gas phase led to 
an increase in the growth rate of the films up 
to 240% compared with the intrinsic oxidation 
of InP, the absence of under-oxidized indium in 
the films, the high content of a whole spectrum 
of phosphates (XRD, IRS, AES, USXES, SE), and, 
as a consequence, their dielectric characteristics 
(resistivity up to 1010 Ohm·cm, see Table 2).

The traditions established by the scientific 
school of Professor Yakov Aleksandrovich Ugai 
are continued by DSc in Chemistry, Professor A. 
M. Samoilov [96-101].

The main objectives of these studies are the 
investigation of the fundamental physicochemical 
properties of semiconductor systems with 
sensor properties and the improvement of 
methods for the directed synthesis of hetero- and 
nanostructures based on these materials for the 
achievement of optimal values of their functional 
parameters. 
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The focus of studies is on multicomponent 
narrow-bandgap AIVBVI semiconductors capable of 
efficiently detecting electromagnetic radiation in 
the terahertz and infrared regions of the spectrum 
[102–115], as well as wide-bandgap transparent 
metal oxides, which are promising for the 
creation of gas sensors and ultraviolet radiation 
sensors [116–129]. The study of these materials 
is currently carried out in several directions: the 
investigation of fundamental physicochemical 
properties, which are fundamental for the 
functioning of these systems as sensor materials 
[102, 103, 105, 109–112]; methods for the 
synthesis of PbTe thin films were optimized 
based on the data on the solubility of Ga and In 
in PbTe<Ga> and PbTe<In> with high sensitivity 
to IR radiation [104, 106, 111, 124, 125].

The obtained experimental data on the 
thermal stability and crystal structure of 
palladium (II) oxide allowed developing methods 
for the synthesis of nanostructures with different 
morphological organization, which demonstrated 
high sensitivity to toxic gases with oxidizing 
properties as well as good speed and stability of the 
sensory response over time [120–123]. The results 
of calculating the region of nonstoichiometry of 
nanocrystalline PdO films [127–129] in the future 
will allow finding the optimal conditions for the 
synthesis of nanostructures with high selectivity 
for detecting poisonous and explosive gases with 
oxidizing and reducing properties in atmospheric 
air [126].

The materials science traditions of the 
school were developed somewhat unexpectedly 
in the studies of DSc in Chemistry, Professor 
N. I. Ponomareva by the development of new 
methods for the synthesis of hydroxyapatite (HA) 
composites, allowing to obtain particles included 
in a biopolymer matrix. Since the properties 
of both HA itself and composites based on it 
depend on the particle size, the research task was 
to obtain nano-HA. It was shown that with the 
dropwise mixing of the reagents and the addition 
of alizarin red, promoting the formation of centres 
of induced crystallization, the rate of formation 
of stoichiometric HA in an aqueous solution 
increased by more than 100 times in comparison 
with the reference process. Synthesis of GA in a 
model body fluid (SBF) leads to the formation of 
type A carbonate hydroxyapatite corresponding 

to the formula Са10(РО4)6(СО3)0.5x(ОН)2–x, where 
x < 2 (EPXMA, IRS), which was explained by the 
presence of a bicarbonate ion in SBF and carbon 
dioxide in the air [130, 131]. A method for the 
synthesis of nano-HA in drops of microemulsions 
prepared on the basis of toluene/octane and water 
with the addition of AOT as a surfactant has been 
developed, and it was shown that the particles 
had needle shape (length 10–20 nm and width 
2–4  nm) and were covered with an amorphous 
shell. It was found that in the formation of HA 
composites with biopolymers, the determining 
factors are the presence of carboxyl, hydroxyl, 
and sulpho groups in the used biopolymers and 
the negative surface charge of the polymers. An 
excess of calcium ions increased the degree of 
binding of these organic components with HA and 
significantly increased the hardness of composites 
(up to 260 MN/m²) [132–134]. N. I. Ponomareva 
et al. Proposed a new economically viable 
method for the formation of bioactive coatings 
on the surface of titanium by the deposition 
of carbonate films from the solution with their 
subsequent transformation into phosphate and 
hydroxyapatite films [133–137]. The authors 
provided recommendations for the impregnation 
of HA with carbon implants [138, 139].

3. Doped and undoped nanocrystalline 
yttrium and lanthanum ferrites

The development of research in the field 
of semiconductor and dielectric films of the 
nanoscale thickness range by the followers of the 
scientific school of Ya. A. Ugai naturally spread to 
the area of magnetic nanocrystals. The increased 
interest in nanomaterials based on yttrium 
and lanthanum orthoferrites with a perovskite 
structure was caused by their unique magnetic, 
optical, and catalytic properties [140, 141] and the 
ability to control their structure and properties 
through doping over a wide range.

Among the methods for obtaining nanosized 
REE ferrites, the sol-gel method is widely used, 
allowing nanopowders with a narrow particle 
size distribution to be formed at relatively low 
temperatures using simple and inexpensive 
equipment. Variations of the sol-gel method include 
the polymer-gel process, in which the formation 
of a gel is achieved by introducing a water-soluble 
polymer into the initial solution followed by 
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evaporation, and the Pechini method (citrate-gel), 
which uses citric acid, ethylene glycol, or polyvinyl 
alcohol [142–144]. Hydrothermal treatment of 
precipitated yttrium and iron (III) hydroxides 
makes it possible to obtain single crystals of 
yttrium ferrite [145, 146], microcrystalline [147, 
148] and nanocrystalline powders [147, 149, 150] 
by selecting the appropriate precursors, pH of 
the medium, and conditions of hydrothermal 
treatment. The mechanism of the formation of 
yttrium ferrite nanopowders under the conditions 
of glycine-nitrate combustion is described in [151, 
152]. The synthesized particles are characterized by 
a rhombic and hexagonal structure with a particle 
size of 30 to 53 nm and 6 to 14 nm, respectively. 
It was found that the phase composition and 
average crystallite size are significantly influenced 
by the glycine/nitrate ratio, which determines the 
combustion temperature. 

By the method of decomposition of alkoxide 
complexes, yttrium orthoferrite nanopowders are 
formed at a temperature of 680 °C and exhibit 
weak ferromagnetism [153]. One of the modern 
methods for the synthesis of ferrite nanocrystals 
is microwave synthesis. The method for the 
synthesis of vanadate and ferrite precipitation 
from a solution of precursors under the influence 
of microwave radiation is characterized by the 
simplicity of implementation, economy, and high 
synthesis rate. Microwave radiation stimulates 
the decomposition of salt precursors, the 
dehydration and synthesis of target products is 
due to the uniformity and high rate of microwave 
heating and acceleration of the processes of 
“nucleation” under the influence of “non-
thermal” effects [154]. 

Effective absorption of microwave radiation 
requires the presence in the substance of either 
dipoles that can reorient and rotate under 
microwave action, or free charge carriers that 
can move when the microwave field is applied. 
Water molecules located in the crystal lattice of 
crystalline hydrates-precursors have a significant 
dipole moment. The decomposition of the used 
crystalline hydrates in a microwave field proceed 
to oxides, since the formation of an oxide product 
begins before the removal of all water contained 
in the system. 

Compared to traditional heating methods, 
microwave heating has several undoubted 

advantages: during microwave heating, the walls 
of the vessel are not heated, only the reaction 
mixture is heated. As a result of this: the reaction 
time was reduced (by 10-1000 times); directed 
activation of reacting molecules was carried 
out; there wee no side processes of destruction 
on the walls of the vessel, the overheating of the 
solvent above the boiling point was absent; the 
flow of energy stopped after the termination of 
the reaction [155, 156].

Microwave exposure followed by ultrasonic 
treatment of synthesized YFeO3 and BiFeO3 
samples using sodium hydroxide as a precipitant 
allowed synthesizing chemically homogeneous 
nanopowders with a significant decrease in the 
energy intensity of the process. The resulting 
YFeO3 and BiFeO3 particles had a nearly spherical 
shape, they were characterized by a small size 
dispersion in the range of 20–100 nm [157, 158].

The change in the magnetic properties of 
doped ferrites was caused by several reasons: 
a change in the size and shape of particles, 
a distortion of the crystal lattice due to the 
difference in ionic radii, a change in the valence 
state of iron upon the introduction of a dopant, 
and the appearance of oxygen nonstoichiometry. 

Studies of the effect of a doping impurity on 
the composition, structure, and properties of 
yttrium orthoferrite nanoparticles can be divided 
into two directions: substitution of the Y3+ and 
Fe3+ cation. We are working in both directions.

During the first stage of research, it was shown 
that the substitution of Y3+ by La3+ in yttrium ferrite 
nanopowders synthesized by coprecipitation 
led to an increase in magnetization from 
0.041 A·m2/ kg for x = 0 to 0.231 A·m2/ kg for 
x = 0.4 and a decrease in the coercive force, which 
indicates a significant contribution of crystal 
lattice distortion in the formation of the magnetic 
properties of the material [159]. This effect was 
found even in the case of isovalent substitution, 
and in this case, it was due to the size factor.

The change in the magnetic properties in 
the case of heterovalent substitution was due 
not only to size factors, but also due to a change 
in the valence state of iron for compensation 
of the charge and the appearance of oxygen 
nonstoichiometry. 

Data obtained by doping yttrium ferrite with 
some doubly charged cations are presented by 
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us in [160–162]. Sol-gel synthesis of Y1–xAxFeO3 
samples (where A – Ca2+, Sr2+, Cd2+) is based on 
the processes of co-deposition of cations and 
annealing in a muffle furnace at a temperature 
of 750 °C for 1 h. Doping with Ca2+ and Cd2+ 

cations with ionic radius slightly exceeding 
the ionic radius of Y3+, led to a decrease in 
the particle size, specific magnetization, and 
coercive force. Decrease in Dav was explained by 
the appearance of internal stresses, limiting the 
growth of crystals [163]. Despite the deviation 
from Goldschmidt’s rule [164], the substitution of 
Y3+ with strontium cations is possible and causes 
a significant increase in the coercive force from 
3.98 kA/m (x = 0) up to 409.94 kA/m (x = 0.3), i.e. 
the formation of a new type of magnetic material, 
a hard magnetic ferromagnet. 

It could be assumed that the doping of yttrium 
ferrite with barium cations would lead to a strong 
increase in the magnetic characteristics due to 
the incorporation of Ba2+ into position of Y3+ 
(since r(Ba2+)> r(Y3+) [165]), and the introduction 
of Zn2+ can change the magnetic properties 
both in the direction of decreasing (since zinc 
cations have a small radius) and increasing 
their value in the case of substitution of iron 
cations with Zn2+ ions. Indeed, in the studies 
of our team it was shown [165, 166] that the 
substitution of La3+ or Y3 cations in orthoferrites 
by doubly charged Zn2+ and Ва2 caused the 
distortion of the crystal lattice, a change in the 
valence state of iron, which, in turn, affects the 
strength of the exchange interaction and leads 
to a change in physicochemical properties, 
which expands the scope of the synthesized 
materials. Thus, nanocrystalline powders 
(1–x) YFeO3-d : xZn2+ and (1–x)LaFeO3–d : xZn2+, 
which are characterized by weak ferromagnetism, 
are promising materials for the production of 
devices requiring rapid re-magnetization of 
the sample with minimal energy consumption, 
for example, when creating transformer coils, 
and, nanopowders (1–x)YFeO3–d  : xBa2+ and 
(1–x) LaFeO3–d : xBa2+ can be used to solve the 
problem of increasing the density of media for 
the magnetic recording of information, since they 
are magnetically hard materials. It was shown 
that the doping of nanocrystalline yttrium ferrite 
powders with zinc by coprecipitation followed 
by heat treatment causes a nonmonotonic 

decrease in the crystallite size from 60 ± 6 nm 
x = 0 to 50 ± 4 nm x = 0.2 (XRD), contributes to an 
increase in the specific magnetization from 0.242 
A m2/kg for x = 0 to 0.556 A m2/kg for x = 0.2 (in 
the field 1250  kA/m). The presence of ZnFe2O4 
impurities in the samples led to an increase in the 
ferromagnetic character of the samples.

It was found that the developed technique 
for the synthesis [167] of (1–x)YFeO3–d : xВа2+ 
nanopowders led to the formation of particles 
with a size of 30 ± 2 nm for x = 0 to 55 ± 5 for 
x = 0.1 (XRD), characterised by the presence of 
a soft magnetic and magnetic hard sublattice 
within the same chemical phase.

In our studies [168], a method for the sol-gel 
synthesis of LaFeO3 using an aqueous solution 
of ammonia as a precipitant was demonstrated, 
lanthanum ferrite was doped with calcium and 
strontium. It was found that the introduction of 
Ca2+ into the ferrite lattice caused an increase in 
the average crystallite diameter from 30 nm for 
LaFeO3 up to 50 nm, in the case of Sr2+ it was up 
to 70 nm. Doping with calcium and strontium 
cations led to an increase in the coercive force 
and specific magnetization of the samples. The 
change in the magnetic properties of lanthanum 
ferrite upon doping with doubly charged cations 
was caused by the partial transition of Fe3+ 
in Fe4+, as well as distortion of the crystal 
lattice due to the difference in the ionic radii 
of La3+ and the dopant. With an equal content 
of Ca2+ and Sr2+ cations in the composition of 
the samples, the magnetic properties were 
different: Hc(La0.7Ca0.3FeO3) < Hc(La0.7Sr0.3FeO3), а 
J(La0.7Ca0.3FeO3) > J(La0.7Sr0.3FeO3). 

The complexity of the formation of lanthanum 
ferrite nanopowders doped with zinc and barium 
is due to the large difference in the ionic radii of 
lanthanum and the dopant introduced. However, 
despite the narrow homogeneity region, single-
phase samples with a complex magnetic structure 
were obtained [169, 170]. The maximum degree 
of doping of lanthanum ferrite with zinc was 
xreal = 0.07. As the amount of the introduced dopant 
increased, the unit cell volume nonmonotonically 
increased from 240.634 Å3 (x = 0) up to 242.245 Å3 
(x = 0.2) and the average crystallite size increased 
from 58 (x = 0) to 123 nm (x = 0.2), which was due 
to the incorporation of Zn ions2+ into the position 
of Fe3+, since r(Zn2+) > r(Fe3+). (1–x)LaFeO3–d : xZn2+ 
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nanoparticles, depending on the composition, 
possess different types of magnetic ordering: 
antiferromagnetic and ferrimagnetic. The doping 
of YFeO3 nanopowders with Zn2+ cations with a 
radius of less than Y3+, should negatively affect 
the magnetization and coercive force. However, 
the formation of nanocrystals, characterized by 
a complex distribution of the doping cation was 
observed. The formation of particles with the 
structure “crystal core - amorphous shell” led 
to the arrangement of a part of the dopant ions 
in the form of an amorphous shell of zinc oxide. 
The increase in specific magnetization (1-x)
YFeO3–d : xZn2+ with an increase in the amount 
of Zn2+ was due to the reorientation of the 
magnetic moments of iron ions, as was observed 
in the study [171]. The distortion of the crystal 
lattice was insignificant, therefore, in this case, 
it did not significantly affect the properties. The 
enhancement of the ferromagnetic character of 
the material was also due to the presence of zinc 
ferrite in the spinel phase [166]

The introduction of Ва2+ cations into a LaFeO3 
lattice in the position of La3+ caused an increase 
in the parameters of the crystal lattice and the 
average particle diameter from 25 (x = 0) up to 
42 nm (x = 0.1). The maximum nominal doping 
level was x = 0.1 (XRD). The synthesized particles 
exhibited the properties of a hard magnetic 
ferromagnet with a wide hysteresis loop. The non-
monotonic change in the magnetic characteristics 
was due to the formation of a complex magnetic 
structure combining a hard magnetic and soft 
magnetic sublattice. 

Thus, as in the case of yttrium ferrite, the 
doping of lanthanum ferrite with doubly charged 
barium and zinc cations led to the formation 
of materials exhibiting different magnetic 
properties, which allows using them for the 
production of information storage devices [165, 
166, 169, 170]

Changes in the magnetic properties of yttrium 
ferrite upon doping with doubly charged cations 
were caused by several factors: first, due to 
the difference in ionic radii of Y3+ and dopant, 
distortion of the crystal lattice occurred and the 
particle size changed; secondly, such doping refers 
to heterovalent isomorphic transformations, 
which resulted in the formation of Fe4+ cations, 
i.e., a double exchange interaction of Fe3+–O2-–

Fe4+ occurred, holes which were charge carriers 
in the transition from the Fe4+ ion to Fe3+ ion 
through the p-orbital of oxygen were generated 
[172]. It was shown in studies [159, 161] that 
upon the doping of lanthanum ferrite, an increase 
in the magnetization can be caused by similar 
reasons. The absence of such an interaction in 
perovskite Y1–xLaxFeO3 [159] explains its lower 
magnetization compared to Y1–xCdxFeO3 [161] 
with the same degree of substitution, since with 
an increase in the cadmium content, although 
the size of the resulting particles Y1–xСdxFeO3 
decreased, their magnetization increased 
monotonically. Therefore, the compensation 
described above probably has a stronger effect on 
the magnetization than a change in particle size.

It should be noted that the data available in 
the literature on the effect of zinc on the size 
of nanocrystals and the magnetic properties of 
LaFeO3 nanopowders are very controversial. In 
studies [173, 174], the possibility to substitute La3+ 
cations with Zn2+ cations in lanthanum orthoferrite 
synthesized by the coprecipitation method was 
shown. A decrease in the crystal lattice volume 
with an increase in the dopant concentration led 
to an increase in the orthorhombic distortion of 
the LaFeO3 perovskite lattice, which caused an 
increase in magnetization.

In studies [175, 176], the results of the 
synthesis of LaFe1–xZnxO3 nanopowders by the 
gel combustion method were presented, the 
mechanism of incorporation of the dopant and 
the effect on the magnetic structure of the 
material were described. The introduction of Zn2+ 
instead of Fe3+ led to the transformation of Fe3+ – 
Fe4+ and the formation of oxygen vacancies in the 
perovskite structure, which changed the angle 
and length of the Fe-O bonds. The structural 
analysis showed that zinc doping causes oxygen 
nonstoichiometry in the system. This can 
change the valence state of Fe3+ and hence the 
magnetization [176]. 

The doping of lanthanum ferrite with zinc, 
regardless of the preparation method and the 
position of the dopant in the perovskite lattice (in 
the position of La3+ or Fe3+) led to the formation 
of particles with a complex magnetic structure: 
an antiferromagnetic core - a ferromagnetic shell, 
as was evidenced by the shift of the hysteresis 
loop towards a negative field strength [174–176].
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Due to the fact that the difference between 
the radii of La3+ – Zn2+ is much higher than that 
of Fe3+ – Zn2+, the substitution of iron cations 
by zinc is more likely. This was proved by us for 
(1–x)LaFeO3–d : xZn2+ nanopowders synthesized by 
co-deposition followed by annealing in a muffle 
furnace [170]. The substitution of some Fe3+ ions 
with Zn2+ ions led to the formation of a material 
with a complex magnetic structure. By controlling 
the amount of dopant introduced, it was possible 
to obtain materials with antiferromagnetic (for 
x = 0; 0.075; 0.15) or ferrimagnetic (x = 0.05; 0.1; 
0.2) properties. 

Lower specific magnetization for samples of 
yttrium ferrite doped with Zn2+, Cd2+, Ca2+, Sr2+, 
Ba2+ cations compared with (1–х)LaFeO3–d:хE2+, 
indicates a significant contribution of the effect 
of double exchange interaction on the magnetic 
properties of the material. The magnitude of the 
magnetization and coercive force of lanthanum 
ferrite nanopowders doped with doubly charged 
cations depends on the difference in ionic radii, 
i.e., on the distortion of the crystal lattice. 
With an increase in the dopant content, the 
dependence of the magnetization on the particle 
size has not been established. Consequently, the 
above compensation and the structure factor 
seem to have a stronger effect on magnetization 
than a change in the particle size of the studied 
yttrium and lanthanum ferrites. The described 
results can be used to obtain composite materials 
[177, 178]. In addition, the detected inclusions of 
the ferromagnetic Fe2O3, BaFe2O4, ZnFe2O4 phases 
show that the synthesized samples are promising 
for creating granular structures [179, 180].

From the described above information, a 
complex mechanism for the incorporation of 
zinc into the lattices of yttrium and lanthanum 
ferrites can be proposed, and, based on the 
difference in atomic radii, it is most likely to be 
incorporated into the place of iron. However, as 
shown above, this statement is far from clear. 
Such transition elements as manganese and 
nickel should occupy positions of iron in the 
structure, since they are quite similar in their 
properties. The corresponding studies belong 
to the above-mentioned second direction. A 
significant increase in the magnetic parameters 
of YFeO3 nanoparticles was observed upon doping 
with magnetic ions Mn3+, as shown in [181]. It is 

believed that the magnetic moment of the Mn3+ 
ion is higher than Fe3+ in oxides of the perovskite 
type, and this should be the reason for the 
increase in magnetic moments with an increase 
in the amount of dopant in YFe1-xMnxO3 [182]. In 
addition, the enhancement of antiferromagnetic 
ordering is due to distortions in the crystal 
lattice. In studies [183, 184] the results of doping 
of yttrium and lanthanum ferrite powders with 
nickel Ni2+ by successive precipitation using 
an aqueous solution of potassium hydroxide 
are presented [184]. The single-phase of YFe1–

xNixO3 (x = 0–0.25) samples is achieved at a 
temperature of 800 °C for 1 h, respectively 
(XRD). With an increase in the content of the 
dopant Ni to x = 0.3 after annealing at 800 °С for 
1 h, in addition to YFeO3, NiO and Y2O3 impurity 
phases are formed. With an increase in Ni2+ 
content in the YFeO3 lattice from x = 0.1 to 0.25, 
a decrease in the coercive force from 1332.6 to 
887.9 Oe was observed, while the values of excess 
magnetization Mr and saturation magnetization 
Ms increased: from 1.8·10–1 up to 3.2·10–1 emu/g 
and 0.67 to 1.18 emu/g, respectively. 

The introduction of Ni2+ cations into the 
LaFeO3 lattice in the position of Fe3+ causes a 
decrease in the parameters of the crystal lattice 
and a decrease in average particle diameter 
from 28.72 (x = 0) to 23.59 nm (x = 0.25). For 
LaFe1–xNixO3 samples with an increase in the 
content of Ni2+ dopant from x = 0 to 0.25, an 
increase in the coercive force from 42.53 Oe to 
160.76 Oe was observed, while the values of excess 
magnetization Mr and saturation magnetization 
Ms decreased: from 1.0·10–2 up to 3.8·10–4 emu/g 
and from 0.24 10° up to 0.74·10–4 emu/g [183]. It 
was found that an increase in the content of the 
dopant Ni2+ in YFeO3 and LaFeO3 lattices allows 
varying the value of the coercive force (Hc) and 
saturation magnetization (Ms), which expands 
new possibilities of using doped yttrium and 
lanthanum ferrites in a strong magnetic field. 

In the study [185], YFe1–хMnхO3 (x = 0.1; 
0.2; 0.3; 0.4) perovskite nanopowders were 
synthesized by chemical coprecipitation using 
5% KOH as the precipitating reagent. The 
introduction of manganese ions into the YFeO3 
lattice using the proposed method led to an 
increase in the parameters of the crystal lattice 
(b = 7.7373÷7.5194 Å, c = 5.3014 ÷ 5.2592 Å); unit cell 
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volume (V = 229.425÷224.4012 Å), average particle 
size (DXRD = 23.6081÷22.9449 nm). An increase in 
the coercive force (Hc  =  56.94÷150.95  Oe) and 
residual magnetization (Mr = 0.23–0.50 emu/g) 
with an increase in the dopant content was 
revealed. 

Nanocrystalline La1–xCdxFeO3 (х = 0, 0.05, 0.1, 
0.15, 0.2) powders, characterized by a narrow 
region of homogeneity xmax = 0.09 (EPXMA, XRD) 
were synthesized by co-deposition followed by 
thermal annealing at 950 °C for 1 h. Introduction 
of Cd2+ cations led to a decrease in the average 
crystallite size from 10–70 nm for x = 0 to 5–60 nm 
for x = 0.1 (TEM). The synthesized nanocrystals 
exhibited the properties of ferrimagnets [186].

In this direction, the work related to the 
section of the scientific school of Ya. A. Ugai, 
continue abroad. Thus, in the Socialist Republic 
of Vietnam, Nguyen Anh Tien, who defended 
his PhD thesis in Russia under the supervision 
of I. Ya. Mittova, is the Head of the Department 
of General and Inorganic Chemistry of Ho Chi 
Minh City University of Education, and with his 
colleagues and co-authors successfully conducts 
research into the synthesis and characterization 
of ferrite nanocrystals. The studies are being 
carried out in co-authorship with Russian 
colleagues (a scientific group led by I. Ya. 
Mittova) in accordance with the Memorandum 
of Understanding, concerning the program for 
the development of cooperation in the field of 
higher education, signed between Voronezh 
State University and Ho Chi Minh City University 
of Education. To date, new methods for the 
synthesis of nanocrystals of doped and undoped 
ferrites, including REE ferrites (neodymium, 
praseodymium, holmium, etc.) by solution 
methods have been developed; the regularities of 
changes in magnetic properties depending on the 
synthesis method, particle size, physicochemical 
nature of the dopant, and the level of doping 
have been established [187-192]. This research 
has been repeatedly supported by internal grants 
from the Socialist Republic of Vietnam.

In our country, studies that continue the 
foundations and traditions of the scientific school 
of Ya. A. Ugai, supported by the following grants 
and Programs (Head Researcher – Prof. I. Ya. 
Mittova): 

1. Soros Fund No. NZN000 + NZN300.

2. STP “Scientific research of higher education 
in priority areas of science and technology”, 
subprogram (208) – electronics, project code 
01.01.004.

3. Grant of the Ministry of Education Е00-5.0-
363 (registration number 01.2.00104702).

4. STP Research of the Higher School in the 
priority areas of science and technology.

5. Federal Program “Universities of Russia – 
Basic Research” (grants No. 06.01.07, No. 
UR.06.01.020, No. UR.06.01.001).

6. Basic Research Program in Radio Engineering 
and Electronics (Grant No. 97-5-1.1-32).

7. RFBR No. 02-03-32418: Chemically 
stimulated oxidation of AIIIBV semiconductors 
during the formation of heterostructures.

8. RFBR No. 03-03-96500-r2003tschr_a – 
Nonlinear effects in the processes of chemically 
stimulated synthesis of dielectric oxide layers 
on AIIIBV.

9. RFBR No. 06-03-96338_r_center_a  – 
Effect of chemostimulators on the kinetics 
and mechanism of thermal oxidation of 
semiconductors AIIIBV in the formation of thin 
films and hetero struc tures.

10. RFBR No. 09-03-97552-r_center_a – 
Catalytic and transit solid-phase interactions in 
nanosystems based on semiconductor materials.

11. RFBR 10-03-00949-a – Size effects in the 
processes of synthesis of oxide layers on GaAs 
and InP.

12. RFBR No. 13-03-00705-a – Role of V2O5 as 
an oxidation catalyst, interface modifier and the 
nanostructure of functional nanometer films on 
InP and GaAs.

13. RFBR No. 16-43-360595 p_a – Modification 
of the surface of GaAs, GaP and InP as a method 
of controlling the nanostructure, optical and 
electrophysical properties of oxide films of 
nanometer thickness range for microelectronics.

14. RFBR No. 18-03-00354_а – Development 
of the fundamental principles of chemically 
controlled synthesis of functional nanoscale 
films on semiconductors А3В5 for opto- and 
microelectronics, gas-sensitive sensors.

15. Analytical departmental target program 
(No. G.R. 01200602176) “Development of the 
scientific potential of higher education” within 
the framework of program action 1 “Conducting 
fundamental research within the framework 
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of thematic plans” “Development of synthesis 
methods and establishment of the mechanism for 
the formation of nanoscale layers, nanopowders 
and crystals of semiconductor, dielectric and 
magnetic materials”.

16. Project of the Ministry of Education and 
Science of the Russian Federation: Goverment 
Order 3.1673.2011.

17. Government Order for higher education 
institutions in the area of scientific research for 
2014-2016 (projects No. 673, 225).

18. RFBR grant No. 20-33-90048 “Formation 
mechanisms, structural features and properties 
of carbon-containing nanocomposites based on 
nanocrystalline ferrites with a perovskite-like 
structure” (“Postgraduate students”).

Postgraduate student Kopeichenko E. I. 
(scientific advisor – Proffessor I. Ya. Mittova) 
won the competition for the best scientific 

projects carried out by young scientists under 
the supervision of scientists with PhD and DSc 
degrees in scientific organisations of the Russian 
Federation (RFBR grant No. 19-33-50104 mol_nr 
“Mobility”).

The Russian Academy of Natural Sciences 
issued a certificate to I. Ya. Mittova as the head 
of the scientific school “Control of synthesis 
processes, composition and properties of 
funct ional  (semiconductor, d ie lectr ic , 
para- and ferromagnetic) nanoscale films, 
magnetic nanocrystals and nanophosphors 
by chemostimulators and dopants “(Russian 
Academy of Natural Sciences, certificate 
No. 01165, “Leading scientific schools. – Moscow: 
Publishing House of the Academy of Natural 
Sciences, 2018. – Vol. 11. – 132 p.; Mittova Irina 
Yakovlevna, p. 81; http://www.famous-scientists.
ru/school/1393”), which is the embodiment of the 
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ideas of Ya. A. Ugai, his students and followers in 
the study of semiconductors and nanostructured 
functional films based on them, their spread to 
the field of new challenges and scientific trends 
of today.
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1. Introduction
In 1962, the first Department of Semiconductor 

Chemistry in the USSR was opened at the Faculty 
of Chemistry of Voronezh State University, and 
in 1965 the “Vysshaya shkola” publishing house 
published Yakov A. Ugai’s textbook for chemistry 
and physics students of higher educational 
institutions “Introduction to semiconductor 
chemistry” [1]. In 1965, Yakov Ugai defended his 
doctoral dissertation in chemistry on the topic “A 
study in the field of semiconductor phases based 
on antimony, arsenic, and phosphorus”. Apart 
from AIIIBV compounds that are by their nature 
coordinate compounds in a solid state, he also 
studied such semiconductors as AIIBIV, AIIBVI, AIBV, 
and others. For his series of works on chemical 
semiconductor thermodynamics, in 1981 Y. A. Ugai 
was granted an honorary title of the USSR National 
Prize laureate in the field of science, the first such 
title in the history of VSU.

Yakov Ugai was the founder and long-standing 
head of the scientific school of chemical study of 
semiconductors. At first, all studies were conducted 
on massive crystals, but the needs of modern 
microelectronics required the miniaturisation of 
devices, so the interest to thin-film technologies 
increased. VSU’s Department of General and 
Inorganic Chemistry started working on synthesis 
and study of the properties of semiconductor films. 
Among the promising methods of deposition of 
wide-band semiconductor films was aerosol spray 
pyrolysis (ASP, originally named the method of 
“solution spray”). Evgeny M. Averbakh, Viktor N. 
Semenov, and Oleg B. Yatsenko, employees of the 
department, began working on the application of 
this method for the deposition of metal sulphides. 
Over the past years, we have continued exploring 
this topic in line with the scientific field developed 
by Y. A. Ugai in 1960s.

Metal sulphides with promising optical, 
electrical, and luminescent properties are indeed 
highly important for the film technology of 
semiconductor materials. A number of devices 
were created based on them, such as radiation 
receivers and converters, thermal resistors, etc. 
At the same time, the potential of these materials 
has not been exhausted yet when it comes to 
creating optoelectronic devices, solar cells, and 
luminescent devices based on them.

In this regard, there is a promising chemical 
method of obtaining the films of metal sulphides 
based on thermal destruction of thiourea 
coordination compounds (TCC). Thermal destruction 
was conducted by spraying aqueous solutions of 
coordination compounds on a heated substrate, 
which is the technological basis of aerosol spray 
pyrolysis [2]. The conditions for the growth of 
polycrystalline layers of metal sulphides were 
created. This method can be used for the deposition 
of metal sulphides of groups III(a)–V(a) (Ga, In, Sn, 
Pb, Bi), transition metals I(b)–II(b) (Cu, Ag, Cd, Zn), 
and groups VI(b)–VIII(b) (Cr, Mn, Fe) of the periodic 
system (Table. 1).

The method offers great possibilities for the 
formation of thin-film compositions both on 
dielectric (quartz, sitall) and transparent conductor 
(doped SnO2) substrates. Thus, using only a 
“spray” technology, we obtained heterostructures 
SnO2/CdxZn1–xS/Cu2–xS that are able to work as 
photoelectric converters [3]. Recently, it has been 
found that using thiourea as a sulphidising reagent 
without changing the deposition method, some 
sulphides (In3S4, CuInS2) can be obtained not 
only on glass-shaped but also on single-crystal 
substrates, including silicon, gallium arsenide, 
indium phosphide, and other AIIIBV [4–6]. Such 
films have a number of specific features, the 
principal of which is their expressed orientation 
in relation to the substrate.

From the point of view of chemistry of 
sulphides and applied tasks of inorganic material 
science, it is important that using ASP, we can 
obtain layers of sulphides of different metals with 
random bulk composition. Also, depending on the 
nature of sulphides and conditions of deposition, 
the interaction of the components in the layers 
varies from the formation of a simple heterophasic 
mixture to limited solid solutions and chemical 
compounds of sulphides. It is notable that the 
release of such compounds and solid solutions on 
a substrate occurs at relatively low temperatures. 
Aerosol of TCCs dissolved in water decomposes in 
the range of temperatures 250–500 °C, however, 
in order to dope, for example, cadmium sulphide 
with activators (Cu, Mn, etc.), it is sufficient to 
introduce the corresponding addition of Cu2+ and 
Mn2+ salts to the TCC solution [Cd(thio)2Cl2]. The 
study of solid-phase interactions of sulphides in 
films deposited using ASP has become a separate 
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task. It includes: a) determining the mechanisms 
of deposition of “mixed” layers and formation of 
phases with different chemical nature in them 
and b) the dependences of properties of “mixed” 
layers on the composition and nature of solid-
phase interactions.

In this work we discuss the properties of films 
of sulphide systems with the participation of 
cadmium sulphide. The goal of the work was to 
determine the nature of interaction of sulphides 
in the CdS–MеmSn layers. Cadmium sulphide was 
chosen as the common component of all the 
studied systems due to its great photoelectric 
and luminescent properties of this well-studied 
material.

2. Formation of metal sulphides 
from  thiourea coordination compounds

The idea of aerosol spray pyrolysis is simple 
and involves the following. We chose the cation-
forming salts that are soluble in some solvent 
(usually it is water, more rarely ethanol or 
mixtures of ethanol and water) and reagents that 
are required for the delivery of the anion former. 
The obtained solution was sprayed on a heated 

substrate where after the evaporation of the 
solvent (or with the participation of the solvent) 
the components decomposed, leaving a layer of 
the most thermally stable substance forming a 
film on the substrate. Thiourea (thiocarbamide, 
SC(NH2)2) is a promising sulphidising agent used 
to obtain the films of metal sulphides. This is due 
to a number of reasons, among which are low 
temperatures of the start of aerosol decomposition 
(from 200 to 300 °С) and high coordination affinity 
of thiourea to cations of various metals [7]. It was 
reliably established that the deposition of sulphide 
films in the studied method occurred through the 
stage of formation of a coordination compound of 
thiocarbamide with a metal salt.

TCCs of metals are various in their composition 
and structure, thermal stability, and mechanisms 
of thermal destruction. It should be noted that 
we only refer to true coordination compounds 
(CC) with the participation of thiourea which is 
able to produce ionic complexes and inclusion 
compounds with a number of s- and p-elements 
[7]. Apparently, these compounds did not result 
in the formation of the corresponding sulphides 
due to the ion-dipole nature of chemical bonds 

Table 1. Physical properties of metal sulphides deposited from solutions of thiourea coordination 
compounds using ASP

Sulphide Eg, eV Epc, eV Epl, eV s, cm/m r, g/cm3

I
Cu1.76S 1.8 – – 8·104 –
Ag2S 1.2 – – 6·10–1 –

II
CdS 2.4 2.3–2.6 *

1.48
1.58
1.70

(0.2–11.2)×10–7 * 4.82

ZnS 3.60 3.5 2.65 8·10–7 4.25

III

Ga2S3 2.85 3.11 1.80 3·10–8 3.45

In2S3 2.3 2.3
1.66
2.3
2.8

1·10–3 4.60

IV

SnS 1.2 – – 1·10–2 –
SnS2 2.2 2.3 – 1·10–5 4.80

PbS 0.4 0.8
1.1 – 1·10–1 7.45

V Bi2S3 1.4 1.46 – 1·10–3 7.10
VI Cr2S3 1.1 – – 4·10–2 –
VII MnS 2.5 – – 5·10–6 –
VIII FeS2 1.3 – – 6·10–3 –

Designations: Eg is band gap; Epc is photoconductivity band; Epl is photoluminescence band; s is specific electric 
conductivity; r is density.

* Depending on the initial TCC
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as compared to true TCCs. In the latter ones, 
thiourea is always coordinated through an atom 
of sulphur of thiocarbamide group (S=C) and can 
act both as terminal and bridge ligands (in such 
compounds as [Cu(thio)2Cl], [Bi(thio)3Cl3], etc.) 
[7, 8]. The existence of covalent bonds of Me-S 
determines the mechanism of sulphide formation 
by direct introduction of sulphur atoms into the 
composition of the immediate environment of the 
metal atom. This explains the great difference of 
the method of obtaining sulphides from TCCs from 
hydrolytic methods.

In the complexes with coordination number of 
4, such as cadmium, copper, and zinc complexes, the 
central atom was in the state of sp3- hybridisation, 
so the configuration of its immediate environment 
can be considered to be a distorted tetrahedral one. 
The configuration of the immediate environment 
meant the position of atoms that were directly 
related to the complexing agents by covalent 
bonds. It should be noted that molecules or 
ions of thiocarbamide coordination compounds 
have low symmetry. For instance, particle 
[Cd(thio)2Cl2] had a symmetry of either point 
group C2 (in this case it was chiral), or point group 
CS [8, 10–11]. At the same time, the symmetry 
of the immediate environment was increased 
and could be described by point groups C2v − in 
such structures as [Cd(thio)2Hal2] (here Hal − is 
halogen); C3v − in such structures as [Cu(thio)3Cl]; 
Td − in such structures as [Cd(thio)4]

2+. Analysis of 
the composition and structure of the coordination 
compounds that acted as the starting material 
for the formation of the sulphide phase, allowed 
drawing a fundamental conclusion that fragments 
of the sulphide structure started forming in the 
inner sphere. In case of S→Me coordination with 
the use of py АО S, the order of the C–S bond may 
decrease (Scheme (1), Fragment I). It is well-
known [7] that S-coordination of thiourea causes 
a shift in the frequencies of valence bonds nCS 
into the long-wave region, while frequencies 
nCN and dNCN, by contrast, shift to the short-wave 
region of the IR spectrum. Thus, the decrease of 
the order and weakening of the C–S bond with 
simultaneous reinforcement of the C–N bonds in 
the TCCs created conditions for the elimination of 
the organic residue in case of thermal excitation 
(Scheme (1), Fragment II). 

   (1)

The immediate environment of the complexing 
agent influenced the formation of various point 
defects in the metal sulphide lattice. As we know, 
there is always a variability of complex forms in 
the solutions of metal salt, and their distribution 
depends on the composition (gross composition) 
of the solution. Previous experimental and 
theoretical studies [12–13] provide a better 
understanding of this distribution in case of 
different cadmium salts. Depending on the nature 
of the salt and composition of the solution, 
different coordination forms may dominate, and in 
addition to molecules of thiocarbamide the inner 
sphere may include anions of Cl−, Br−, I–, CH3COO−, 
and, under certain circumstances, SO4

2−. Therefore, 
the immediate environment of a cadmium atom 
may include atoms of sulphur, halogens, and 
oxygen, and in case of thermal destruction some 
of the Cd−Hal or Cd−O bonds remain, and defects 
HalS

+ and OS are formed in the sulphide lattice 
[14–15]. The use of coordination compounds 
with an inner coordination sphere saturated with 
thiocarbamide, such as [Cd(thio)4]F2, allowed 
obtaining sulphides with the composition that is 
very close to stoichiometric, and the introduction 
of additives of selenium-(SeC(NH2)2) and tellurium 
carbamide (ТeC(NH2)2) allowed doping metal 
sulphides with selenides and tellurides. 

The influence of the composition and structure 
of starting coordination compounds on the 
crystal structure of deposited sulphides is of great 
interest. Thus, depending on the covalent radius of 
halide ligands in the [Cd(thio)2Cl2], [Cd(thio)2Br2], 
[Cd(thio)2I2] series, the structure of the deposited 
cadmium sulphide changed from wurtzite to 
sphalerite. In case of a complex compound 
[Cd(thio)2(ac)2] (ac is ion acetate), the wurtzite 
modification of cadmium sulphide was deposited 
together with the sphalerite one, while in case of 
the compounds with the inner coordination sphere 
saturated with thiocarbamide [Cd(thio)4](NO3)2 
and [Cd(thio)4]SO4, a sulphide of mostly sphalerite 
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modification was formed [11, 14]. Thus, point 
symmetry and the composition of the inner sphere 
of thiocarbamide complexes influenced the spatial 
symmetry and defect structure of metal sulphides, 
which allowed purposefully influencing a number 
of properties of films. 

Another important aspect of the influence 
of the processes of formation of complexes on 
the properties of sulphide films is a possibility 
to control the state of oxidation of the cation-
forming metal with a variable oxidation state. In 
this context, a typical example is copper sulphide 
(I) obtained from thiocarbamide coordination 
compounds of copper.

The formation of complexes of copper chloride 
(II) with thiocarbamide is associated with redox 
processes, as a result of which copper (II) is 
reduced to copper (I) [7, 16]. The process is 
preceded by the coordination of a thiocarbamide 
molecule, and such mutual influence of ligands 
leads to a homolytic break in the Cu−Cl bond in 
the inner sphere of the complex [17–18]:

(NH2)2C=S−Cu←Cl → (NH2)2C=S−Cu˙ + Cl˙

(the scheme shows a part of the coordination en-
vironment of the copper ion). In [17] it is assumed 
that the separated radicals of Cl˙oxidise water, and 
the overall scheme of the process is as follows:

4CuCl2 + 4SC(NH2)2 + 2H2O →  
→ 4[Cu(SC(NH2)2)]Cl + 4HCl + O2.

The displacement of chlorine anions into the 
inner sphere was achieved by the increase in the 
ratio of concentrations of Cthio/CCuCl2

, which allowed 
increasing to some extent the portion of copper 
(II) in the solution. The processes similar to those 
described above also occurred in case of ferrous 
chloride (III), where, as we proved experimentally, 
the oxidation state of Fe2+ was stabilised in the 
presence of thiocarbamide. Thus, by varying the 
concentration of metal salt and thiocarbamide in 
the solution, we can regulate the oxidation state 
of the cation-forming metal.

It should be noted that if doping sulphides 
with anion formers, substitutes in the anion 
sublattice were achieved by the introduction of 
the complexes of corresponding ligands to the 
inner sphere, then doping with cation formers can 
be achieved by the introduction of the additives 
of salts of corresponding metals to the initial 

solution. As a rule, in this case, a substitutional 
solid solution is formed at first, and then an 
interstitial solid solution is formed [19]. Thus, we 
obtained the luminescent layers of CdS and ZnS, 
activated by Cu2+ and Mn2+ ions, as well as Cl− and 
Br− [19−21].

Therefore, unique conditions for predicting the 
properties of sulphides and controlling them were 
created during the synthesis of metal sulphides 
from thiocarbamide coordination compounds.

The processes occurring when the aerosol 
solution reaches the heated substrate are 
complex and are characterised by significant 
nonequilibrium. The behaviour of the solvent in 
a dispersed, quickly heated medium of aerosol 
has not been thoroughly studied. According to 
our studies, a series of approximations can be 
used that suggest either instant evaporation 
of the solvent similar to quenching, or gradual 
evaporation that leads to the concentration of 
the solution, the change in the distribution of 
coordination forms, and, finally, to the release 
of crystals of the complexes that are subject to 
thermal destruction. 

Thermal destruction of thiocarbamide 
complexes is thought to occur due to the thermal 
excitation of the C−S bond in the coordinated 
molecule of thiocarbamide [9]. At the same time, 
there is an opinion that the excitation of this 
bond was caused by negative charge fluctuation 
that was localised on the complex upon the 
destruction of hydrogen bonds in the crystal of 
coordination compound when it was melted [22]. 
However, despite the differences in the opinions 
on the nature of elementary act of thermal 
destruction, we can formulate the principal 
concepts characterising this process.

As it was noted before, in the IR spectra of 
all thiocarbamide complexes we observed a shift 
in the stretching vibration bonds of the C−S and 
C−N bonds to the long-wave and short-wave 
regions respectively, as compared to the position 
of the bands of the uncoordinated molecule of 
thiocarbamide. Such changes in the spectrum were 
due to the redistribution of the electron density 
in the SC(NH2)2 molecule that was related to the 
metal ion through the sulphur atom. The order of 
the C−S bond in a “free” molecule of thiocarbamide 
was 1.5, but in case of coordination to the metal 
ion it decreased to around 1. The order of the 
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C−N bond, on the contrary, increased due to the 
involvement of non-separated electron pairs of 
nitrogen atoms in π-conjugation. Analysis of the IR 
spectroscopic data allowed stating that as a result 
of thermal influence on a thiocarbamide complex, 
such redistribution of the electron density became 
even deeper, which led to the destruction of the 
complex due to the disassociation of the C−S bond 
(Scheme (1)). This scheme showed only the main 
features of the process and did not provide a full 
description of pyrolysis, complicated by a series of 
transformations of the organic residue [23]. 

The pyrolitic break-down of the C−S bonds 
may be preceded by the stages of isomerisation of 
complexes and transformations both occurring in 
the inner sphere and related to the appearance of 
ligands in the inner sphere. The transformations 
in the inner sphere may be associated with the 
changes in the denticity of ligands (for example, 
a decrease in the denticity of ligand SO4

2− in the 
[Cd(thio)2bi-SO4] complex), while the appearance 
of ligands in the inner sphere can be considered as 
the formation of intermediates with the lowered 
coordination number. For instance, during the 
thermal destruction of the [Cd(thio)2I2] compound 
we discovered an intermediate compound 
[Cd(thio)I2] formed as a result of elimination and 
appearance of one molecule of thiocarbamide in 
the inner sphere [24]:

[Cd(thio)2I2] → [Cd(thio)I2] + thio.

This can be explained by the mutual influence 
of the ligands, in particular, by steric difficulties 
caused by the significant covalent radius of iodine 
atoms located in the neighbouring vertices of the 
distorted tetrahedron. 

The conducted studies allowed determining 
the following main features of the synthesis of 
metal sulphides using TCCs (quoted in [2]).

1. The influence of the TCC structure on the 
structural defect of the sulphide, including both 
its impurity and internal disorder caused by the 
existence of a genetic bond between the immediate 
environment of the complexing agent in the TCC 
and the first coordination sphere of the cation 
former in the sulphide lattice. 

2. The dependence of the crystal-chemical 
structure of sulphide phase allowing polymorphism 
or forming several stoichiometrically similar 
independent phases on the symmetry of TCC.

3. The possibility to control the oxidation state 
of metal in a solution and, therefore, the content 
of the corresponding phase in a film based on the 
change in the structure of thiourea coordination 
compounds by replacement or intentional choice 
of acidoligands.

3. CdS – Cu2–xS and CdS – Ag2S systems
The CdS–Cu2–xS system is of interest due to 

the fact that cadmium sulphide is an electronic 
semiconductor, while copper sulphides are hole 
semiconductors, and electrical conductivity of 
polycrystalline CdS and Cu2–xS may differ by ~ 106 
times. Such conditions result in some interesting 
electrical effects observed in thin polycrystalline 
layers that contain semiconductor phases with 
different electrophysical properties.

Under the conditions al lowing joint 
deposition of cadmium and copper sulphides as 
macrohomogeneous layers (Т ≈ 350 °C), the phase 
of the Cu1.76S digenite is deposited that contains 
four-coordinated atoms of copper in tetrahedral 
voids of the thickest packings of S atoms [25].

According to X-ray phase analysis, the 
interaction in mixed layers containing CdS and 
Cu1.76S is reduced to the limited solubility which 
does not exceed 5 mol% both on the part of 
cadmium sulphide or copper sulphide. However, as 
the results of electrophysical measurements show, 
such an interaction is of more complex nature. 
The non-monotonic dependence of electrical 
conductivity of films on the composition with a 
minimum in the region of 5 mol% Cu1.76S (fig. 1) 
indicated the presence of limited solubility on 
the part of CdS, although the extrema position 
should not be directly linked to the position of the 
border of the region of solid solutions. According 
to photoluminescent data [19], substitutional 
solid solutions CdS(Cu) were formed with the 
concentration of copper up to 0.1 at%, and the 
appearance of acceptor centres CuCd

– should result 
in the compensation of the n-conductivity of CdS. 
When doping cadmium sulphide with copper 
additives greater than 0.1 at%, Cu atoms started 
penetrating into interstitial sites, thus forming Cui

+ 
donor centres. Being relatively small donors [27], 
these centres were ionised at normal temperatures:
Cui → Cui

+ + e–,
creating a reverse effect. Based on the suggestion 
about the change of mechanism of solubility of small 
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amounts of copper in CdS, the minimum of electri-
cal conductivity near bulk composition of 5 mol% 
Cu1.76S can be explained by the release of substitu-
tional solid solutions and further penetration when 
crossing the concentration bulk threshold of 5 mol%. 
With such concentration the second phase (p-Cu1.76S) 
was almost compensated, and film properties were 
determined by the main phase of n-CdS.

The described mechanism of behaviour of 
impurities is apparently typical for other sulphides 
that are poorly soluble in cadmium sulphide and 
do not form chemical bonds with it. Based on 
the data of X-ray phase analysis, in the films of 
the CdS–Ag2S system we found solid solutions 
with the region of existence < 1 mol% on the part 
of CdS and ~ 5 mol% on the part of Ag2S. At the 
same time, the minima of electrical conductivity 
accompanying the formation of solid solutions 
were noticeably shifted in relation to those borders 
that were determined by X-ray phase analysis. 
Extreme behaviour of electrical conductivity near 
50-60 mol% Ag2S was specific for heterophase 
films and could be related to an increase in 
the dissipation of carriers at grain boundaries. 
In such cases, the extrema on “composition – 
property” diagrams should not be associated with 
the chemical interaction of the components in 
the thin layer. From the point of view of current 
carrier behaviour, a polycrystalline film is a system 

of randomly placed potential pits and barriers, 
which is markedly expressed in case of mixed films. 
Multiple experimental data showed that the effects 
related to the appearance of such nonperiodic 
potential became noticeable near equimolar (bulk) 
compositions when the microstructure of a film 
was most imperfect.

4. CdS–ZnS system
This system is one of the most important 

on the practical level, thus it attracts the close 
attention of researchers [28–30]. When studying 
the specific features of the interaction in this 
system, it should be taken into account that in case 
of using TCCs [Zn(thio)2Cl2] and [Cd(thio)2Cl2], zinc 
sulphide is deposited in a sphalerite modification, 
while cadmium sulphide is deposited in a 
modification with the wurtzite lattice [2, 11]. Due 
to this circumstance, the continuous solubility 
between hexagonal CdS and cubic ZnS was 
eliminated. Indeed, the analysis of concentration 
dependences of properties (Fig. 2) showed typical 
features of the change of nature of dependence 
with the compositions of about 18 and 80 mol% 
ZnS. Therefore, three “composition – property” 
sections were found on the curves, which indicated 
the formation of limited solid solutions based on 
hexagonal CdS on the one hand and cubic ZnS 
on the other hand. The limited solubility was 
confirmed by the data of X-ray phase analysis (Fig. 
3а), according to which the structure changed from 
wurtzite (CdS) to sphalerite (ZnS) when the total 
amount of zinc sulphide in a film increased.

At the same time, photoluminescence spectra 
of CdS–ZnS films showed a continuous shift of the 
band within the range of 1.4–2.4 eV accompanied by 
a non-monotonic change in its intensity. Maximum 
radiation intensity was observed for the equimolar 
composition 50 mol%. Apart from the “main” 
band shifting according to Fig. 2a, there were also 
radiation bands 520 and 830 nm. They were related 
to the presence of oxygen in sulphides ZnS and 
CdS and were not shifted when the composition 
was changed. The introduction of oxygen during 
the process of deposition of layers was related 
not only to the common influence of an oxidising 
atmosphere where the layer grew, but also to the 
need to compensate for structural distortions [31]. 
This, in its turn, led to the inclusion of a greater 
amount of oxygen for the films approaching an 
equimolar composition. It is notable that the 

Fig. 1. Dependence of specific electric conductivity of 
CdS–Cu1.76S films on the composition on the part of CdS
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Fig. 3. Concentration dependences of the interplanar distances for the solid solutions of the CdS–ZnS system 
deposited from chloride (a) and acetate (b) coordination compounds 1) reflection 111 for a cubic solid solution; 
2) reflection 100 for a hexagonal solid solution; 3) reflection 101 for a hexagonal solid solution [11]

Fig. 2. Concentration dependences of the optical band gap (1), spectral position of the luminescence maximum 
(2), and specific electrical conductivity (3) of the CdS–ZnS films deposited from chloride (a) and acetate (b) 
coordination compounds
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layers obtained at high temperatures (500 °C) and 
containing more than 50–60 % ZnS turned out 
to be X-ray amorphous. We can assume that the 
inclusions of the ZnO phase under the conditions 
of oxygenation of a film contributed to the 
amorphisation. The spectral position of the band 
of intrinsic conductivity changed only according 
to the change in the band gap.

It was possible to deposit a series of CdS–ZnS 
solid solutions in the form of films when using 
coordination compounds, the thermal destruction 
of which resulted in the release of a cubic sphalerite 
modification of cadmium sulphide. An acetate 
complex [Cd(thio)2(ac)2] can be used for that 
purpose [11]. As Fig. 2b shows, the nature of the 
dependence of the band gap on the composition 
changed: the dependence became smooth, without 
typical sharp curves which would be indicative 
of reaching the boundaries of the homogeneity 
region and the decomposition of a solid solution. 
Interplanar distance d111 for these films changed 
continuously and linearly together with the 
composition according to Vegard’s law (Fig. 3b). An 
example of the CdS–ZnS system is important as it 
showed the influence of coordination precursors 
not only on semiconductor properties but also on 
polymorphic modifications of sulphides that can 
exist in several crystalline forms. This way various 
phase states and different solid-phase solubility 

in the deposited layers were realised.

5. CdS – Ga2S3 system
The solubility of cadmium sulphide in Ga2S3, 

discovered from the data on concentration 
dependences of the optical band gap, electric 
conductivity s, and pycnometric density r was 
evaluated as ~ 5 mol% CdS. The most reliable 
data on the range of the area of existence of 
solid solutions on the part of CdS were obtained 
from the concentration dependence of density 
and interplanar distance d (Fig. 4). The nature 
of changes in these parameters near pure CdS 
indicates the limited solubility within 5 mol% 
Ga2S3. The existence of the CdGa2S4 compound 
described in previous studies in the films of 
the CdS–Ga2S3 system cannot be conclusively 
established despite the satisfactory coincidence 
of some characteristics of the films of equimolar 
composition with the characteristics of this 
compound.

6. CdS – In2S3 system
A chemical compound with a spinel structure, 

CdIn2S4, was found in this system [32]. The extrema 
appearing at 50 mol% In2S3 on concentration 
dependences of the band gap and pycnometric 
density of CdS–In2S3 films also confirmed the 
existence of this compound (Fig. 5). The main 

Fig. 4. Density (1) and lattice parameter (2) of the 
CdS–Ga2S3 films

Fig. 5. Concentration dependences of the band gap (1) 
and density (2) of films of the CdS–In2S3 system
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characteristics of the CdIn2S4 compound are 
presented in Table 2.

The range of existence of solid solutions with 
indium sulphide according to the data of X-ray 
phase analysis can reach 45 mol% CdS, while with 
cadmium sulphide it did not exceed 2 mol% In2S3. 
The behaviour of electrical conductivity with a 
sharp minimum near 2.5 mol% In2S3 (Fig. 6) was 
typical, which definitely indicated the formation 
of limited solid solutions.

The spectral position of luminescence bands 
did not depend on the composition of CdS–
In2S3 films (Fig. 7); the centres of radiative 
recombinations typical for CdS, apparently, did not 
change significantly when the bulk composition 
changed. Only a redistribution of intensities 
occurred, which can be associated both with 

the change in the amount of centres and the 
redistribution of recombination flows involving 
these centres [33].

7. CdS–SnS and CdS–SnS2 systems
Redox processes do not occur in the solutions 

of chlorides of tin (II) and (IV) and thiourea, unlike 
salts of copper (II) and iron (III). The preservation 
of the oxidation state of tin allowed obtaining the 
layers of SnS and SnS2 sulphides directly using 
the corresponding chlorides for the synthesis 
of [Sn(thio)2Cl2] and [Sn(thio)4]Cl4 complexes 
in acidic (for the suppression of hydrolysis) 
aqueous solutions. It should be noted that other 
metals (Ga3+, In3+, Cr3+) require the same method 
of oxidation to suppress hydrolysis. However, a 
strongly acidic environment had a negative effect 

Fig. 7. Photoluminescence spectra of films of the 
CdS–In2S3 system: 1 – 0; 2 – 10; 3 – 50; 4 – 90; 5 – 
100 mol% In2S3

Fig. 6. Dependence of specific electric conductivity of 
CdS–In2S3 films on the composition on the part of CdS

Table 2. Some properties of the CdMe2S4 compounds deposited in thin layers from the solutions of 
thiourea coordination compounds

Sulphide Eg, eV Epc, eV Epl, eV s, cm/m r, g/cm3 Identification

CdIn2S4 2.3 2.3 1.53
1.70 3·10–2 4.7 XRD

CdBi2S4 1.4 2.1–1.5 – 3.2·10–1 7.0 XRD

CdCr2S4 2.1 – – 3.6·10–3 4.1 XRD

Designations: Eg is the band gap; Epc is the photoconductivity band; Epl is the photoluminescence band; s is the specific 
electric conductivity; r is the density.
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on the formation of coordination compounds due 
to the S-protonation of the SC(NH2)2 molecule 
competing with the formation of complexes. Thus, 
in order to obtain “cadmium sulphide – tin (II), 
(IV) sulphides” films, the pH of the solutions was 
gradually increased in accordance with the growth 
of the content of tin salts.

The dependence of the band gap on the 
composition for the CdS–SnS films showed 
sudden changes near the compositions of 5 and 
95 mol% SnS. Specific electric conductivity had 
the extrema at the same points. Such behaviour 
of properties may indicate the formation of 
limited solid solutions. Indeed, XRD showed the 
existence of solid solutions near CdS and SnS 
with homogeneity regions no less than 5 mol%. 
Photoconductive films can be obtained up to 
the composition of 70 mol% of tin sulphide. The 
maximum of photosensitivity significantly shifted 
to the long-wave region from the value of 515 nm 
typical for intrinsic photoconductivity of pure CdS 
(Eg = 2.4 eV).

The films of the CdS–SnS2 system are of 
interest as they contain wide-band semiconductors 
with similar band gap values (Eg(SnS2) = 2.2 eV) 
that are photosensitive in the visible region of 
the spectrum. Despite the heterophasic nature 
of the mixed films, it was possible to obtain the 
samples with a continuously shifting absorption 
edge due to the superposition of the spectra of 
individual phases (Fig. 8). The sharp dependence 
of the edge position on the composition near pure 
components indicated their solubility. This was 
also confirmed by the structure of the absorption 
spectra that looked like hna ~ (hn – Eg)

1/2 for the 
compositions in the region of 0–10 mol% SnS2 
and a ~ (hn – Eg)

3/2 in the region of 95–100 mol% 
SnS2. The first one was characterised by cadmium 
sulphide (direct permitted transition), the second 
one was characterised by tin sulphide (indirect 
permitted transition G → L).

The concentration dependence of the 
photosensitivity maximum point Epc correlated 
with the dependence of the band gap in the 
regions of solubility of sulphides (Fig. 8). The 
additions of tin (IV), similar to other heterovalent 
impurities (Bi), resulted in a short-wave shift of 
the photosensitivity band of cadmium sulphide. 
The change in Epc in the region of the equimolar 
composition may be indicative of a wide 
homogeneity region of the intermediate phase of 

the berthollide type, although X-ray phase analysis 
did not show any certain presence of chemical 
compounds in the CdS–SnS2 films. This issue 
requires further investigation.

8. CdS–Bi2S3 system
The analysis of the data of X-ray diffraction 

allowed establishing the existence of a CdBi2S4 
compound [34] in the films of the CdS–Bi2S3 
system. The properties of the compound are 
presented in Table 2. It is assumed that cadmium 
sulphide dissolves in bismuth sulphide through the 
penetration of cadmium atoms into the interstitial 
space of the Bi2S3 structure. At the same time, on 
the part of cadmium sulphide, the most probable 
mechanism is the replacement of cadmium nodes 
with the atoms of bismuth. The areas of existence 
of solid solutions according to the results of 
X-ray phase analysis and indirect methods were 
determined by the values of 1 mol% Bi2S3 on the 
part of CdS and 5 mol% CdS on the part of Bi2S3.

The formation of the only compound in the 
CdS–Bi2S3 system was confirmed by the existence 
of maxima on concentration dependences of the 
properties at coordinates corresponding to the 
CdBi2S4 composition (Fig. 9). In this case, the 
extreme behaviour of electric conductivity is 

Fig. 8. Dependences of the observed optical band gap 
(1) and spectral position of the photosensitivity max-
imum (2) of CdS–SnS2 films on the composition
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informative when it comes to the identification of 
a chemical compound, as it is “duplicated” by the 
specific features of other properties and the data 
of X-ray phase analysis.

The monotonic dependence of the optical 
band gap can be associated with the fact that the 
position of the edge of the fundamental absorption 
was determined by the most narrow-bandgap 
semiconductor, especially if there was a great 
difference between the band gaps. It can be said 
that the most narrow-bandgap material “masked” 
the optical properties of the film on the whole. 
Remarkably, it did not occur, for instance, in case 
of CdS–In2S3 films as both sulphides composing 
the film had very close values of bandgap.

The photosensitivity of the CdS–Bi2S3 layers 
with equimolar composition was considerably 
different from the photosensitivity of films of other 
alloys. In this case, the spectral distribution of 
photosensitivity was characterised by an extended 
gap (Fig. 10) that, apparently, had a complex 
structure and consisted of several unresolved 
bands belonging to the CdBi2S4 compound.

9. CdS–Cr2S3 system
Solid-phase interactions in the thin films of 

the CdS–Cr2S3 system are similar to the studied 

interactions in CdS–Bi2S3 films [35]. This primarily 
applies to the existence of a compound with the 
CdCr2S4 composition (Table. 2). We should also take 
into account similar behaviour of the dependences 
of film properties on the composition that 
include experimental points for the composition 
corresponding to the compound (Fig. 11). A non-
specific concentration dependence of the optical 
band gap can be explained by the fact that the 
narrow-bandgap chromium sulphide ensured the 
main absorption by a heterophasic film.

It appeared that the introduction of chromium 
sulphide created the centres of non-radiative 
recombination that were rather effective and 
significantly reduced the lifetime of nonequilibrium 
carriers. Indeed, when the content of Cr2S3 
increased, we observed a very sudden drop in 
the intensity of the near IR luminescence of CdS, 
on the one hand, and significant reduction of a 
photoresponse, on the other hand. The influence of 
oxygen that was included in the structure of the film 
and eliminates the distortion of the crystal lattices 
had an effect on the shift of the photosensitivity 
maximum to the short-wave region. This effect was 
evidently related to the increase of ionicity of the 
bond during the interaction of solid components 
of a film with oxygen. Nevertheless, in addition to 

Fig. 10. Photoconductivity spectra of films of the 
CdS–Bi2S3 system: 1 – 0; 2 – 40; 3 – 50; 4 – 100 mol% 
Bi2S3

Fig. 9. Concentration dependences of the specific 
electric conductivity (1) and density (2) of films of the 
CdS–Bi2S system
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the described reduction of intensity, we can also 
note a shift of the luminescence band in near IR 
region that indicates the solubility of chromium 
sulphide in cadmium sulphide.

10. CdS–FeS2 system
As it was noted before, partial reduction of Fe3+ 

to the oxidation state of Fe2+ occurred in solutions 
of iron (III) salts in the presence of thiourea. This 
process led to the deposition of iron sulphides 
FeS and FeS2 depending on the composition 
of the initial solution and the temperature of 
the substrate. The conditions were found (the 
temperature of the substrate 300 °С, 4x and more 
excess of thiourea in relation to the ferrous salt 
(FeCl3)) for the release of a phase of pyrite FeS2 
that is rather perfect in structure and its optical 
and electric properties.

There was no significant solubility in the 
CdS–FeS2 system neither on the part of CdS or 
on the part of FeS2. The luminescence intensity 
typical for cadmium sulphide decreased sharply 
as soon as small amounts of iron were added. 
Unlike the additions of Cr3+, there was no shift in 
the bands in the luminescence spectra.

The concentration dependence of specific 
electric conductivity of films with an expressed 

maximum at the ratio of the components 
CdS:FeS2 = 1:2 apparently cannot clearly indicate 
the presence of the compound due to the reasons 
mentioned above (CdS–Ag2S system). The results 
of the X-ray phase analysis allowed stating with 
greater certainty that no compounds were formed 
in the CdS–FeS2 system. Therefore, the CdS–FeS2 
system is an example of almost total lack of 
interaction between the components.

11. Conclusion
The possibility to obtain solid solutions and 

chemical compounds of sulphides in the process of 
deposition considerably enriches the ASP method. 
The studied systems showed almost all types of 
interactions, and the formation of compounds 
with cadmium sulphide was typical for sulphides of 
Me2S3 metals of groups III, V, and VI. The formation 
of solid solutions with CdS was established almost 
in all systems, although mutual solubility was low 
for sulphides of metals of groups I (Ag) and VIII 
(Fe). The greatest range of the area solid solutions 
was observed in the CdS–In2S3 system where the 
solubility of cadmium sulphide in In2S3 reached 
the value of 45 mol%.

Therefore, it was possible to vary the properties 
of films using specific features of solid solution 
interactions of sulphides. Photoluminescence of 
the layers based on CdS allowed observing the ways 
of controlling a certain property (Table 3). There 
are possibilities for the activation of luminescence 
and shift of the bands as well as for the change of 
intensities of the bands without changing their 
spectral position.

When interpreting the mechanism of formation 
of solid solutions and compounds of sulphides, 
it should be taken into account that multicore 
thiourea complexes with dissimilar cores were not 
found in the solutions with various complexing 
agents. This indicates an independent existence 
of complexes in the solution, although we cannot 
make assumptions about their independent 
thermal decomposition within the use of ASP 
method. The conditions of the deposition of films 
did not involve a direct solid-phase interaction 
of the released sulphides with the formation of 
solid solutions and chemical compounds. The 
lowest threshold of deposition temperatures was 
determined by the temperature of decomposition 
of the most thermally stable TCC and did not 
exceed 250 °С. Diffusion coefficients in solids 

Fig. 11. Concentration dependences of the specific 
electric conductivity (1) and density (2) of films of the 
CdS–Cr2 system
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were low at such temperatures. If metal sulphides 
were released independently during the thermal 
destruction of complexes, solid-phase interactions 
of most sulphides could not be realised. Therefore, 
the interaction occurred at the moment of 
thermal destruction of complex compounds right 
on the substrate due to the emerging valence 
opportunities of their structural fragments.
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1. Introduction
In 1981, Yakov Ugai was awarded with the 

USSR National Prize in Science and Technology 
for a series of studies in the area of chemical 
thermodynamics of semiconductors. This event 
honoured the contributions of the Voronezh 
school of inorganic chemists founded by him in the 
development of a new direction, semiconductor 
chemistry [1]. It was at Voronezh State University 
that Ya. A. Ugai established the country’s first 
department of semiconductor chemistry and 
works aimed at the search for new materials and 
the study of their properties were conducted. 
Unique experimental units created by the 
department staff allowed exploring the nature of 
phase equilibria in complex systems with volatile 
components (phosphorus, arsenic, and sulphur) 
and to construct phase diagrams for such systems. 
Until now, some of these data are still unique and 
are quoted in international handbooks [2, 3]. The 
contribution of Yakov A. Ugai identified research 
areas in the field of physics and chemistry for 
obtaining solid-phase materials.

2. Phase equilibria in systems based 
on elements of groups IV and V 
in  the periodic system

The research into АIVВV compounds hold an 
important place among the studies dedicated 
to the nature of phase equilibria in binary 
systems with volatile components carried out 
under the leadership of Ya. A. Ugai. Unlike the 
commonly known classes of АIIIВV, АIIВVI, and 
АIВVII compounds, these compounds belong to 
the class of so called abnormally constructed 
phases. They are formed by elements located in 
adjacent groups of the periodic system, which 
are largely similar in their physical and chemical 
nature. Owing to the special nature of the cation-
cation and anion-anion bonds in silicon and 
germanium phosphides and arsenides (as well 
as in indium and gallium monochalcogenides, 
which will be discussed in the second part of 
the article), they have highly specific properties. 
Silicon and germanium pnictogenides are 
semiconductors and have interesting optical 
and electrical properties [4,5]. However, there 
was clearly insufficient interest in this group of 
compounds due to the difficulty in synthesising 
high-quality crystals and a lack of information 

about phase diagrams which largely determine 
the set of production methods.

Owing to many years of research by the closest 
disciple and colleague of Ya. A. Ugai, Evgeny G. 
Goncharov, and other staff, this interesting class 
of compounds was finally characterised. They 
studied the properties of silicon and germanium 
phosphides and arsenides and constructed phase 
diagrams of the respective systems. It was shown 
that Si – As and Ge – As systems are characterised 
by two intermediate phases with the AB and AB2 
composition. Additionally, germanium arsenides 
and silicon monoarsenide melt congruently, and 
SiAs2 decomposes by a peritectic reaction [6–9]. 
It was revealed that the Si – Р system has two 
intermediate phases of phosphide and silicon 
diphosphide which melt congruently [10, 11], 
while the germanium-phosphorus system is 
characterised by a single intermediate phase of 
GeP which decomposes by a peritectic reaction 
[12–14]. It should be noted that such studies were 
made possible owing to a variety of techniques 
developed by the authors. They include using 
steel counter pressure chambers for the synthesis 
of samples, graphitisation of quartz ampoules, 
the introduction of an indifferent solvent and a 
number of other methods that distinguished the 
Voronezh school.

For the neighbouring elements in the periodic 
system the electronegativity values are close 
enough, and this factor does not play a major 
role. In this case, the peculiarities of component 
interactions are largely determined by the size 
factor. Hence the higher stability of silicon 
phosphides, the congruent nature of melting of 
silicon and germanium phosphides and arsenides, 
and the appearance of decomposing phases in 
Si – As, Ge – P systems. This is also reflected in 
the nature of the formation of defects in these 
phases, which is characterised by the dominant 
role of antistructural defects (e.g., Ge¢As and As·Ge 
in the Ge - As system) [15–19]. The study of the 
processes leading to the formation of defects 
enabled the electrophysical properties of these 
materials to be explained [20, 21]. These studies 
led to the development of a platform for obtaining 
high-quality crystals with reproducible properties.

The studies of АIVВV compounds were 
continued with the research of systems involving 
another element of the fourth group, tin. The 
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data on phase equilibria in these systems are 
actually based on a few studies, mostly relating 
to compositions rich in tin. The data on vapour 
pressure of volatile components in these systems 
are extremely scarce and controversial. On the 
other hand, in recent years, there have been a 
large number of publications dedicated to tin 
phosphides used as negative electrode materials 
for lithium-ion batteries and for the creation of 
thermoelectric materials [22–33].

Three intermediate phases were detected in 
the Sn – P system: Sn4P3 decomposes at 823 K 
into two liquids of different compositions with 
a content of phosphorus of 22.5 and 47.0 mol%; 
Sn3P4 phase melts without decomposition at 
833 K, and SnP3 also decomposes by a synthetic 
schema. However, no specific experimental data 
have been provided [2]. It should be noted that 
the reference information on the phase equilibria 
in the Sn-P system is mainly based on one study 
[34]. In their research, the authors used visual 
polythermal method, which cannot fully evaluate 
the complex physical and chemical nature of the 
phases. Sn4P3, Sn3P4, SnP3 phases have a similar 
crystal structure with the R3m space group 
similar to the structure of elements in the arsenic 
subgroup. This fact, together with the high 
reactivity and volatility of phosphorus, challenges 
the production of tin phosphides: due to similar 
atom coordination, a transition from one phase 
to another is possible even under slight changes 
in the conditions of synthesis. It was repeatedly 
mentioned that it was difficult to form the Sn3P4 
phase. Despite the variation of the synthesis 
conditions, the resulting sample often contained 
Sn4P3 impurities. They only managed to produce 
the Sn3P4 compound as a result of the prolonged 
low-temperature annealing of stoichiometric 
amounts of tin and phosphorus.

The study of the Sn – P system by X-ray 
diffraction, differential thermal analysis, SEM, 
and EPXMA showed that within the concentration 
range of 43–70 mol% of P there is only one 
invariant equilibrium with the participation of 
the higher phosphide of L2 ↔ Sn4P3 + SnP3 [35–38]. 
The temperature of the eutectic horizontal was 
determined to be 824 K. As a result of prolonged 
annealing of alloys at temperatures below 673 K, 
the alloys with the content of phosphorus of 
43–57 mol% were heterophasic mixtures of the 

Sn4P3 and Sn3P4 phosphides and Sn3P4 and SnP3 
were the samples with the greatest content of 
phosphorus. On the contrary, if the Sn3P4 phase 
was initially recorded in the samples, the high-
temperature annealing at a temperature of 773 
K led to its decomposition into the adjacent 
phases of Sn4P3 and SnP3. In particular, the Sn3P4 
sample, produced as a result of two-temperature 
synthesis, decomposed completely under such 
heat treatment. Thus, a conclusion was made 
about the peritectoid decomposition of the Sn3P4 
phosphide. The use of high-temperature in situ 
spectrophotometry of saturated phosphorus 
vapour over alloys of the Sn – P system allowed 
estimating the concentration of this component 
in the vapour and calculating the pressure 
value. For the first time, the P-T-x diagram was 
constructed (Fig. 1) [39–41].

Fig. 1. P-T-x diagram of the Sn–P: (a) P-T; (b) Т‑х pro-
jection 
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Silicon and germanium phosphides and 
arsenides were used as solid phase diffusants 
upon the doping of elemental semiconductors. 
These compounds are of great practical value for 
two reasons: their anisotropic electrophysical 
characteristics resulting from the low-symmetry 
structure; and their layered crystal structure 
which allows for the intercalation of ions and 
molecules into the interlayer space. However, 
despite the obtained physical and chemical 
information about the АIVВV compounds, their 
application as semiconductor materials did not 
become widespread.

The discovery of graphene provoked a 
considerable interest in 2D semiconductor 
materials [42–46]. From this point of view, using 
the АIVВV compounds characterised by a layered 
structure with weak van der Waals bonds between 
the layers, is promising. The presence of volatile 
components makes it challenging to synthesise 
such compounds, which is why [42] attempted 
to obtain 2D samples of silicon phosphide in the 
presence of bismuth or tin. In the latter case, Sn-
doped materials with peculiar semiconductor 
properties were obtained. However, the lack of 
information about the phase equilibria in the 
АIV–ВV–Bi and АIV–ВV–Sn ternary systems makes 
further research in this area rather problematic.

Phase diagrams were built for the Bi –GeAs2 
and Bi–GeAs polythermal cross sections of the 
Ge – As – Bi system [47]. It was established that in 
the ternary system there was a L ↔ GeAs + Bi + Ge 
eutectic and a L + GeAs2 ↔ GeAs + Bi peritectic 
four-phase transformations which occurred at a 
temperature of 542 and 548 K, respectively. It was 
shown that the four-phase processes in the ternary 
system occurred in the areas of concentrations 
with a high content of bismuth. Therefore, 
bismuth may be used as an indifferent solvent. 
However, due to the flat shape of the liquidus 
surface, a great amount of its additions is required 
to reduce the temperature of the alloy synthesis.

The nature of the phase diagram of the Sn – As – 
Ge system is more complex [48–52]. Fig. 2 shows 
a topological equilibrium diagram that illustrates 
phase transformations and successive (with 
decreasing temperature) crystallisation processes 
in the Ge–As–Sn system. The polythermal cross 
sections SnAs –  GeAs and SnAs –  GeAs2 can 
perform phase subsolidus demarcation of the state 

diagram of the Sn – As – Ge system. However, they 
are not quasibinary. There are also non-variant 
peritectic equilibria L + GeAs2 ↔ GeAs + SnAs 
(838 К) and L + As ↔ SnAs + GeAs2 (843 К) in the 
system. Comparing the form of the polythermal 
cross sections of Sn–GeAs [49] and Bi–GeAs [47], 
it can be concluded that even small additions of tin 
significantly soften the conditions for obtaining 
germanium arsenide, however, the possibility of a 
Sn4As3 auxiliary phase makes tin a less attractive 
solvent as compared to bismuth, which acts as an 
indifferent solvent over the entire concentration 
range.

The same type of bonds, similar crystal-
chemical structure, and favourable “size” factor 
determine a possibility to form a continuous series 
of solid solutions between АIVВV compounds. In 
[53, 54], it was shown that the formation of solid 
solutions with cation substitution is extremely 
difficult. The formation of solid solutions between 
silicon and germanium phosphides and arsenides, 
in contrast, can be performed quite easily [55, 56]. 
A feature of the directed synthesis of ternary solid 
solutions is the need to simultaneously control the 
composition by two parameters: such properties as 
bandgap, the lattice constant, etc. can be varied by 
altering the molarity of the solid solution; and the 
deviation from stoichiometry allows controlling 
the type and the concentration of the carriers. 
Therefore, there is a need in a comprehensive 
study of phase diagrams of the AIV-As-P ternary 
systems which would include the analysis of defect 
formation processes in ternary solid solutions. This 
involves examining the nature of the interaction 
between the elements of group V.

P-T-x diagrams for the Sb – As and As –  P 
systems were constructed with the help of a 
combination of differential thermal analysis 
and the static manometric method [57–62]. 
Due to very high values of saturated vapour 
pressure, it is extremely difficult to measure 
it directly along the three-phase equilibrium 
line. In [60], this problem was solved as follows. 
Lead was introduced into the system. It acted 
as an indifferent solvent which reduced the 
phase transition temperature. The authors 
measured the vapour pressure in liquidus points 
for sections with different quantities of lead 
and then extrapolated these values so that the 
content of lead was zero in the alloy with different 
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ratios of arsenic and phosphorus. This allowed 
establishing the coordinates of the three-phase 
equilibrium line in the P–As system. According 
to these data, the system has an intermediate 
berthollide phase which melts with a peritectic 
reaction. However, the nature of this phase was 
not discussed and there was no information about 
the parameters of the crystal lattice. To support 
this version the authors of [60–62] provided data 
of a thermographic study, according to which 
T-x diagram has two horizontals corresponding 
to invariant processes of the g-phase formation 
from the arsenic-based melt and solid solution 
of L + b ↔ g and phosphorus-based a-solid 
solutions: L + g ↔ a. This was also indicated 
by the results of tensimetric studies according 
to which groups of P-T-curves that coincide 
within the experimental error tolerance can be 
distinguished. P-x isotherms constructed at 773, 
823, and 873 K confirmed the presence of two 
heterophase areas in the Р – Аs system.

There is another version regarding the nature 
of the phase equilibria, according to which the 
P – As system has limited solid solutions based 
on the components, however, the specific feature 
of the experiment was that alloys were prepared 
in the presence of metallic mercury [63, 64]. This 
contributed to the transition of phosphorus into 
its orthorhombic modification (black phosphorus). 
In fact, the experiment described phase relations 
under completely different conditions.

Recently, a huge interest in layered structures, 
and the orthorhombic modification of phosphorus 
in particular, has provided new results in the 
study of pnictogens and systems formed by them 
[65–68]. For example, [69] described an attempt to 
obtain orthorhombic modifications of phosphorus 
and arsenic under conditions close to normal. It 
showed the mutual influence of arsenic and 
phosphorus on the possibility to form different 
allotropes. On the one hand, arsenic promotes the 
crystallisation of amorphous red phosphorus. On 
the other hand, it promotes the formation of the 
orthorhombic modification even in the absence of 
catalysts of the process (e.g. mercury or PbI2). The 
sample with the As0.7P0.3 composition was prepared 
by heating the amorphous red phosphorus and 
grey (rhombohedral) arsenic. Tensimetric studies 
showed that at 723 K phosphorus crystallises to 
its violet modification (Hittorf’s phosphorus). 

Both phases are metastable, since their pressures 
are higher than the pressure of black phosphorus 
vapour. At 773 K, the pressure drops and an 
orthorhombic modification is formed, i.e. solid 
solution of arsenic and phosphorus. Using the 
results of the X-ray diffraction analysis of the 
samples of the P – As system, we established 
that at concentrations of 55–85 mol% of As there 
is a heterophasic mixture of a solid solution 
of phosphorus in a-As and a phase with an 
orthorhombic crystal lattice with the parameters 
of а = 3.48, b = 4.42, с = 10.81 А. Therefore, the 
phase with a structure identical to that of black 
phosphorus is formed in the P –  As system 
without the addition of catalysts or the use of 
high pressure. The nature of the phase relations 
in the P – As system requires further research.

The analysis based on the experimental 
studies of a number of polythermal cross sections 
of phase diagrams of the Ge – As – P, Si – As – P 
ternary systems [70-75] showed that in case of 
anionic substitution solid solutions are formed 
without any notable difficulties. Solid solutions 
are formed in the GeAs – GeP system over the 
entire range of concentrations, whereas in the 
Si – As – P ternary system there is a peritectic 
mixture of silicon phosphide and arsenide-
based solid solutions and the heterogeneous 
region extends from 45 to 60 mol% of SiP at 
1300 K. To obtain crystals of solid solutions 
homogeneous along the length of the ingot in 
the Ge – As – P system, it was proposed to use the 
method of two-temperature synthesis followed 
by directed crystallisation of the melt and to use 
As – P melts as a source of volatile components. 
Using alloys which are a heterophasic mixture 
of the intermediate g-As1–xPx (x = 0.3 ÷ 0.4) and 
a phosphorus or arsenic-based solid solution 
allows growing homogeneous crystals of solid 
solutions under the conditions of controlled 
vapour pressure of the two volatile components. 
The composition of the resulting GeAs1–xPx 
solid solutions can be varied by changing the 
temperature of the source zone [70].

The investigation of phase equilibria in the 
Sn – As – Р system is challenging, not only due to 
difficulties of working with volatile components, 
phosphorus and arsenic, but also to a large 
number of intermediate phases. In such complex 
systems, triangulation is normally conducted 
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and it is divided into simpler individual systems, 
but in this case it is not possible because of the 
wide regions of solid solutions, based both on 
individual components and on intermediate 
phases. In this case, we can talk about phase 
subsolidus demarcation.

The study of the Sn – As – Р systems in the 
regions of high tin concentrations established 
a continuous series of solid solutions between 
arsenide and phosphide with the composition of 
Sn4В3 (a-solid solutions) [76].

X-ray diffraction analysis of the alloys whose 
compositions belong to the polythermal cross 
sections of SnAs–Sn0.43P0.57, Sn4As3–Sn0.43P0.57, 
and SnAs–Sn0.5P0.5 revealed that in addition to 
the a-phase the samples have solid solutions 
based on tin monoarsenide and tin phosphide 
SnP3 [77, 78]. The formation of solid solutions 
based on tin monoarsenide (b-solid solutions) 
is indicated by a shift of the characteristic lines 
of the SnAs spectra toward greater angles. What 
is more, the shift increases with an increase in 
the molar fraction of phosphorus. In contrast, 
the alloys of the investigated polythermal cross 
sections with a content of phosphorus of more 
than 70 mol% for the SnP3 reflexes demonstrate 
a natural increase in the interplanar spaces which 
indicates the replacement of phosphorus atoms 

with arsenic atoms whose radius is greater. Solid 
solutions based on SnP3 tin phosphide (g-solid 
solutions) are formed [79].

The study of the SnAs–SnP3 polythermal 
cross section in the Sn–As–P ternary system 
by X-ray diffraction analysis revealed that the 
region of solid phase solubility based on tin 
monoarsenide extends up to 30 mol% of SnP3 [80]. 
The analysis of the obtained data in combination 
with the results of the study of alloys with lower 
tin contents allowed establishing the presence of 
four-phase equilibria of the peritectic type with 
the participation of the melt and solid solutions 
based on tin monoarsenide, tin phosphide SnP3, 
and the As0.6–0.7P0.4–0.3 intermediate phase. It was 
found that in the region of the Sn – As – P phase 
diagram with the tin content below 50 mol% in 
addition to four-phase equilibria L ↔ a + b + g 
(818 К) at a temperature of 824 K there is an 
invariant equilibrium of the peritectic type with 
the participation of solid solutions based on 
tin monoarsenide, tin phosphide SnP3, and the 
intermediate d-phase As1–xPx: L + d ↔ b + g (Fig. 3).

We would like to draw attention to the fact 
that a deep understanding of the processes 
occurring in multicomponent systems is 
impossible without the development of methods 
of phase diagrams construction and determining 

Fig. 3. Scheme of phase equilibria in the Sn–As– P system
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regions of condensed phases. Tensimetric (and 
in particular, manometric) methods which study 
the dependence of pressure on temperature or 
composition of condensed phases equilibrium 
with vapour are considered to be the most direct 
and appropriate methods to solve such tasks.

It should be noted that P T x diagrams of the 
Ge – As, Si – As, Ge – P, and Si – As binary systems 
and the AIV – BV – СV ternary systems were defined 
with the help of manometric tensimetry, i.e. using 
a quartz null-manometer with a flat membrane [6 
– 18]. These studies were greatly facilitated due to 
the absolutely incongruent nature of silicon and 
germanium phosphides and arsenides evaporation 
(sublimation), wherein only phosphorus or arsenic 
transit to the vapour phase mainly in the form 
four-atom molecules. Definite vapour composition 
allowed the composition of the equilibrium 
condensed matter to be reliably and easily 
determined at known values of temperature (T), 
pressure (P), the volume of the reaction chamber 
(V), and the initial amounts of components used 
to prepare the sample of silicon or germanium 
phosphides or arsenides (n°AIV), (n°BV).

The results of tensimetric experiments allowed 
not only defining a set of intermediate phases in 
the AIV– BV systems but also establishing unusual 
variation of homogeneity ranges of germanium 
and silicon diarsenides with temperature changes 
[18]. The authors [18] associated this feature with 
autointercalation of SiAs2 and GeAs2 by arsenic 
at premelting temperatures. In the transfer to 
the AIV – BV – СV ternary systems it was still 
possible to calculate the composition of vapour 
and solid phases despite a more complex vapour 
composition due to the formation of mixed 
molecules of PxAs4-x in the vapour.

The next stage was to validate the identified 
peculiarities of silicon and germanium phosphides 
and arsenides using the compounds of AIIIBVI, 
indium and gallium monochalcogenides. These 
compounds are AIVBV isoelectronic phases. They 
are similar to them in the structure and nature of 
chemical bonds. Also, similar to AIVBV compounds, 
the practical application of AIIIBVI compounds 
is experiencing a surge of interest. Basically, 
this interest is related directly to graphite-
like quasi-2D-structure of indium and gallium 
monochalcogenides [81-84]. Of no less interest 
is the application of sesquichalcogenides (of type 

Ga2S3), structures with a great concentration of 
stoichiometric vacancies in the cation sublattice 
(up to 1/3 of the number of nodes) [85]. However, 
the phase diagrams of the AIII – BVI systems need 
to be detailed. The study of these systems is 
complicated by low values of vapour pressure 
over indium and gallium chalcogenides and the 
complex composition of the vapour, which makes 
it impossible to use classical manometric methods.

For this reason, the auxiliary component 
method (AC) was developed for systems 
with unsuitable (generally very small for the 
experiment) values of vapour pressure. It should 
be noted that the possibilities regarding the 
application of this method are quite wide and are 
not limited to the AIIIBVI compounds for which it 
was originally designed.

3. A new method for studying phase 
diagrams and phase equilibria: 
the auxiliary component method

The idea of the method is to bypass equilibrium 
(1) between the X component, which was a part of 
the XnYm condensed phase, and its vapour

¢¢ ¢¨
ÆX X   (1)

and to create a suitable for the study equilibrium 
with an auxiliary component additionally intro-
duced into the system. For example,

¢¢ + ¨
ÆX qZ XZq ,   (2)

where Z is the auxiliary component, and at least 
one of the Z and XZq substances has to be volatile 
and form a vapour. In equations (1), (2) and here-
inafter, the symbol “′′” corresponds to the com-
ponent in the condensed state, and the symbol 
“′” corresponds to the component in the state of 
vapour.

The principles of this approach have been used 
in the past. There are several works in the literature, 
where a number of oxide or sulphide systems was 
studied with the help of hydrogen or carbon (X = O 
or S, Z = H2 or С<graphite>, volatile forms of XZq – H2O, 
H2S or CS2). However, there has been no systematic 
research in this area and the possibilities of the AC 
method have not been thoroughly studied.

First of all, let us analyse various possibilities 
of the auxiliary component method. The results 
of this analysis can be used for the selection of 
the optimal strategy to solve research objectives 
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and directed synthesis of new inorganic materials 
with a set composition, and, consequently, with 
set properties.

3.1. The role of the auxiliary component (AC) 
vapour in tasks aimed at the study of phase 
diagrams. The KP

# value and its informative 
value. The indicating function of the AC

Our analysis only considered the situation 
when the auxiliary component was only present 
in vapour and condensed phases belonged to a 
binary system. Obviously, when Z substance is 
made to contact the XnYm condensed phase, the 
number of components in the system will increase 
by one. However, approaching the complete 
insolubility of the Z component in the studied 
condensed phases, a subsystem can be singled 
out which only contains studied phases with the 
original components. Relative to this subsystem, 
its remaining part with the auxiliary component 
will play the role of an external body. The latter, 
in addition to other properties, is an indicator of 
the state of the studied phases. In particular, the 
indicator vapour phase allows “reading” condensed 
phase information about chemical potentials of 
their constituent components. For example, when 
investigating low-volatile inorganic sulphides by 
means of hydrogen, there is the equilibrium

¢¢ ¢ ¢¨
Æ

S  + H H S
2 2

,  (3)

for which the necessary equilibrium conditions 

¢¢ + ¢ - ¢ =m m m
S H H S2 2

0 ,  (4)

give
¢¢ = +m
S
RT K FPln

# ,  (5)

where in (4) and (5), ¢¢mS  are chemical potentials of 
bound sulphur in sulphide, ¢m

H
2

 and ¢m
H S

2

 are chem-
ical potentials of hydrogen and hydrogen sulphide 
in the vapour, KP

# is the value, which is often called 
the constant of heterogeneous equilibrium, and 
the element F, which only depends on the tempera-
ture, represents the difference between standard 
chemical potentials of molecular forms of gas:

F = ¢ - ¢m m
H S H2 2

 

.  (7)

The KP
# value connects the partial pressures 

of gases as

K
p
pP

# = H S

H

2

2

,  (6)

Since KP
#, according to (5), depends both on 

temperature and composition and slightly on 
pressure, it would be more correct to call it pseudo-
constant of heterogeneous equilibrium. We will 
show below that KP

# is a convenient experimental 
value. Equation (5) is also valid for a more general 
case of (2), naturally the respective components in 
the above expression need to be replaced.

3.2. The possibility to obtain and study such 
conditions of condensed phases in which these 
phases cannot coexist with their own vapours. 
The contractive function of the AC

It is important to note that in contrast to the 
equilibrium “condensed phase - its own saturated 
vapour”, the equilibria with the participation of 
an auxiliary component will involve such states 
of condensed phases in which these phases do 
not coexist with their own vapours.

By “their own vapours” we understand such 
vapours that are present in heterogeneous 
equilibria without the participation of an auxiliary 
component.

For example, carbon placed in a closed and 
initially evacuated system with free volume will 
give way to the equilibrium “graphite – carbon 
vapour” (it is obvious that the last phase at 
temperatures below 2000 °C will be extremely 
sparse). However, diamond can never act as 
a condensed phase in such equilibrium since 
in the phase diagram of a single-component 
system diamond at any temperatures does not 
coexists with the vapour in the subcritical region. 
However, a gas consisting of carbon oxides may 
well coexist with diamond in the equilibrium at 
sufficiently high pressures

C CO CO
diamond + ¢ ¢¨

Æ
2

2   (8)

In this case, vapour with an auxiliary 
component plays an important role and acts both 
as the indicator phase and the contractive medium.

For such problems, as far as it is actually known 
by the authors of this work, the auxiliary compo-
nent method has not been used yet. It should also 
be noted that almost all instrumental methods of 
investigation of solids are directly (classical ten-
simetric methods) or indirectly (electrophysi-
cal methods) associated with the investigation of 
phases in the region of their coexistence with their 
own vapour. On the contrary, for the study of solids 
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in the regions where the coexistence with saturated 
vapour is not possible, there is a very limited num-
ber of methods. What is more, most of them are not 
very accurate (for example, the method of thermal 
electromotive force). Therefore, the considered ap-
proach may be useful, for example, for solid-state 
chemistry or high-pressure materials science.

If the dependence of the chemical potential of 
the condensed phase on the pressure is substantial, 
the correct construction of T-x - sections including 
a detailed description of the homogeneity ranges, 
is only possible with the help of the auxiliary 
component method. This statement is even true 
for such cases when the phase allows for the 
possibility of direct tensimetric measurements. 
The demand for such studies will be apparent if it 
is necessary, for example, to compare the range of 
homogeneity of a phase at very different pressures 
(for example, 1 and 10 000 atm).

3.3. The construction of phase diagrams of binary 
systems using an AC. Retrieving thermodynamic 
information. The amplifying function of the AC

Another area of application of the auxilia-
ry component is ideologically opposite to the ap-

proach described above. It is based on the thesis 
that chemical potentials of the condensed phase 
components are typically not very sensitive to 
pressure changes if they do not exceed hundreds 
or thousands of atmospheres. Then, the state of 
the condensed phase equilibrium with the vapour 
of the auxiliary component can be considered the 
same as in the equilibrium with its own saturat-
ed vapour. Applying this to equation (5) it can be 
expected that the temperature dependence of the 
KP

# value for various compositions of condensed 
phases should be very close to the classical p-T dia-
gram. For example, [86, 87] present the results of a 
null-manometer study of the phase diagram of the 
Ga – S and Ga – Se systems using the equilibrium 

2Ga +GaHal GaHal   (Hal = Cl, I)¢¢ ¢ ¢¨
Æ

3
3 , (9)

K p
pP

# = GaHal

GaHal3

3

.

In Fig.1, in the temperature dependence 
of the KP

# value (Ga(liq)  –  V, GaSe  –  LGa  –  V, 
GaSe – Ga2Se3 – V equilibrium) lines similar to 
lines of the monovariant equilibrium for the 
p-T diagrams are clearly visible. As expected, 
the position of these lines does not depend on 

Fig. 4. The temperature dependence of the KP
# value for heterogeneous equilibria of different natures: I – equi-

librium line: Ga(l) – GaSe(s) – VGaI + GaI3; II – the GaSe(s)  VGaI + GaI3 equilibrium region; III – the GaSe (s) – Ga2Se3 (s) – VGaI + GaI3 
equilibrium region; IV, V, VI – a schematic representation of the regions: IV – GaSe(s)  LGaSe-based – V GaI + GaI3; V – 
LGa-based  LGaSe-based  V GaI + GaI3; VI – Ga2Se3(s)  L – V GaI + GaI3; 1 – 7 – experimental curves in the area of equilibrium II
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the bulk composition of the GaSe alloy, on the 
weight of the sample, and the total pressure P 
(P ≈ pGaI + pGaI3; vapour unsaturated in relation 
to gallium iodides, pressure range: from 0.1 to 
0.7 MPa). In [86, 87], it was also shown that the 
homogeneity range of the GaSe phase sharply 
expands and shifts toward selenium in a narrow 
temperature range (from ~0.2 mol % at 1100 K 
to 0.8 mol% at 1180 K). It also has a retrograde 
solidus for selenium.

Since the chemical potential of the condensed 
phase component is associated with the (pseudo)
constant of the heterogeneous equilibrium KP

#, 
the analysis of the latter value as a function 
of the thermodynamic variables gives a lot of 
information not only about boundaries but 
also about the behaviour of the phase within 
its homogeneity range. For example, [88-
90] described the results of the study of the 
In –  S system with the help of hydrogen. The 
dependence of the KP

# value (see equilibrium 3) 
on the sulphur concentration for the In3–xS4 
phase at T = const (Fig. 5) shows that the In3-xS4 
homogeneity range has a tendency to break up 
into separate phases with similar stoichiometry.

3.4. Calculation of partial pressures  
and p-T diagram

The approach associated with the appro-
ximation regarding the negligible impact of 
pressure on the chemical potential of the 
condensed phase components can be applied 
to calculate p-T diagrams of the original 
system under study. As a consequence of this 
approximation the introduction of the AC does 
not shift heterogeneous equilibria associated 
with self-sublimation of the components of 
the studied phase. In other words, the partial 
pressures of their own vapours in systems with 
an AC and without this component should 
not differ if the two systems are in the same 
conditions. Furthermore, the partial pressures 
may be calculated for known values of (pseudo)
constant of the heterogeneous equilibrium KP

#. 

The details of such calculations are described in 
depth in [87, 88].

It should be noted that the determination of 
the partial pressure values allows comparing data 
obtained using different auxiliary components or 
comparing data of experiments with an AC with 

the results of direct study (for example, mass 
spectrometry). Thus, in the above-mentioned 
work [87], practically identical results for the 
pressure of gallium vapour over gallium selenides 
were obtained using iodine and chlorine (in the 
form of GaI3 and GaCl3) as auxiliary components. 
It should also be noted that the calculated 
pressures may be so small that they cannot 
even be determined by mass spectrometry. For 
example, the partial pressure of gallium vapours 
for the GaSe – Ga2Se3 – V equilibrium calculated at 
a temperature of 700 K is 1.7·1010 Pa [87]. In such 
cases, we can say that the auxiliary component 
plays the role of an amplifier of the signal sent 
to the external device by a very small value of 
the partial pressure of a low-volatile component.

3.5. Possibility to calculate thermodynamic 
quantities

In the case of independent experimental 
determination (up to a certain constant) of 
chemical potential of the second component (μY) 
of the XmYn phase, the value KP

# allows finding 
the molar Gibbs energy of the formation of this 
phase (∆fG). If it is impossible to experimentally 
determine the potential of the second component, 
the value of the Gibbs energy may be determined 
by the Gibbs–Duhem equation. Further, the ∆fG 

Fig. 5. Isotherms of the KP
# dependencies of the sul-

phur content in the In3-xS4 phase. The KP
# value refers 

to the S″ +H2′ = H2S′ equilibrium where S″ refers to the 
sulphur chemically bound in condensed phases of the 
In – S system
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data will allow calculating other molar properties: 
entropy, enthalpy, volume, heat capacity, etc.

3.6. Using the auxiliary component for fine tune 
regulation of the composition (nonstoichiometry) 
of inorganic solid bodies of variable composition

The AC method can be used not only for 
research purposes, but to solve problems 
relating to the regulation of the composition 
(nonstoichiometry) of inorganic compounds. 
For such cases, the discussed method is close to 
classical chemical (gas) transport reactions (CTRs). 
It is different from traditional CTRs in the fact 
that in this case the original sample is not exposed 
to oversublimation: due to the strict selectivity of 
the reaction of type (2), only a change in the ratio 
of components occurs in the sample.

The main idea of the method is that depending 
on conditions the selective chemical gas transport 
reaction can occur in the forward direction 
(extraction of the component from the sample) 
or in the reverse direction (saturation of the 
sample with a transported component [91-95]. The 
regulation of the content is carried out in a closed 
system (ampoule) where the sample and the batch 
are placed. The latter serves as a source or a getter 
of the transported component. The vapour in the 
ampoule consists of vapours of different forms of 
the transport component which provide for the 
selective transport. According to the findings in 
[91, 94, 95], the direction of the selective chemical 
gas transport reaction (SSCTR) should only be 
regulated by the temperatures of the sample (T1) 
and the batch (T2) and the composition of the 
batch (x1). The evolution of the formulations of 
the sample and the batch is completed when the 
system reaches the steady state where there is no 
mass transfer. It can be said that the composition 
of the sample “adjusts” to the variables: T2, T1, and 
x1. The following condition can be the empirical 
criterion to achieve the steady state:

KP
#(1) = KP

#(2),  (10)
where 

KP
#(1) = f(T1, x1); KP

#(2) = f(T2, x2) ([91, 94]).  (11)

Both for problems relating to the research of 
phase diagrams and equilibria and for the practical 
regulation of the composition the right choice 
of the auxiliary components is only possible if it 
meets a number of requirements [86, 87, 91, 94, 95]:

1. Comparable amounts of Z and Xzqq 
molecular forms in the vapour in equilibrium (2).

2. The absence of binary or ternary compounds 
between the transport component Z and the 
second (non-transported) component Y of the 
sample and the batch (the condition of the third 
component indifference in relation to the second 
component).

3. Almost complete insolubility of the Z 
component in the studied or adjusted XmYn phase.

4. Preservation of the non-volatility of the 
condensed XmYn sample under the experimental 
conditions.

The SSCTR method can be especially useful 
when the material with the required structure is 
relatively easy to synthesise, however, it is difficult 
to precisely control its composition (e.g. due to low 
volatility). Thus, in [91-98], we demonstrated the 
possibility of fine tuning the nonstoichiometric 
composition and properties of gallium, indium, 
and copper selenides and sulphides.

It should be noted that it is not always 
possible to separate the “applied” and “research” 
possibilities of the auxiliary component method. 
For example, it was shown in [93, 95] that the 
selenium-enriched part of the homogeneity 
range of the gallium monoselenide (GaSe) has 
two phases: g-modification of GaSe at high 
temperatures (> 1000 K) and e-GaSe at low 
temperatures. The composition of the phase 
within the homogeneity range was set by 
the SSCTR method. Apparently, constrained 
kinetics and the difficulties in regulating the 
GaSe composition by traditional methods did 
not allow detecting the enantiotropic transition 
eGaSe ↔ gGaSe earlier. Therefore, the T-x- chart of 
the Ga  Se system should have two phases closely 
spaced by their composition and separated by a 
narrow heterogeneous region (which is supported 
by the independent thermal analysis data [99]).

The adjustment of the composition of 
intermediate phases conducted for the sake of 
studying the phase diagram was also carried out in 
the In – S system. This adjustment was performed 
using a modified (considering the specific nature 
of equilibria in the In – Cl system) SSCTR method 
[96]. As a result, it was possible to show in [88, 90, 
96] that the In3–xS4 cubic phase (with a structural 
type of defect reversed spinel) has a wide range of 
homogeneity (from ~58.0 to~59.9 mol% of S) that 
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changes little with temperature. As has already 
been noted above, the behaviour of the chemical 
potential of indium in the homogeneity range 
indicates a tendency to break the homogeneity 
range into individual phases. The attempts to 
obtain compositions with a greater content of 
sulphur at temperatures below 415 °C led to a phase 
change with symmetry decreased to tetragonal and 
the formation of the a-In2S3 independent phase 
which almost exactly corresponded to the related 
stoichiometry. The data relating to the phase 
equilibria in the In – S system were verified by 
independent methods without using an AC [100].

In recent papers [101, 102], we were able to 
develop a method of chemical transport reactions 
to regulate the composition of the binary phases 
and to apply it to obtain single crystals of ferric 
sulphides with a controlled phase and non-
stoichiometric composition. The novelty of the 
developed and applied technique was that a 
liquid phase based on iron dihalogenide melts 
was used as a carrier medium for the transported 
component (iron). Apart from the nature of the 
transport agent (melt) and the temperature, the 
composition of ferric sulphides was adjusted by 
the pressure of sulphur vapour. It should be noted 
that the substance transfer through the liquid 
phase in reactions similar in chemistry to gas 
transfer is very rare in experimental chemistry.

In our opinion, it is also promising to use the 
auxiliary component to create catalytic materials. 
It is known that highly disordered metals with high 
chemical and catalytic activity are often called 
skeleton metals (Ni, Cu, Ag, etc.). To produce them, 
first a metallide is normally synthesised which is 
formed by a d-metal remaining thereafter in the 
“skeleton” and by the second chemically active 
component (Al, Si, etc.). The latter is then removed 
by leaching. However, this method is unsuitable 
in some cases: primarily for reactions that must 
occur under anhydrous conditions.

[103, 104] considered a “dry” method to create 
activated metals based on the SSCTR method. The 
main idea of the method is to remove the active 
component from the metallide into the gas phase. 
For example:

Al″ <from the alloy> + AlI3′ = 3AlI′ (12)
or
Ga″<from the alloy> + GaI3′ = 3GaI′. (13)

Metallides in the Cu–Ge, Ni–Ga, Cu–Ga 
systems were used to show the selective removal 
of the active component. Gallium or germanium 
were removed from alloys by means of transport 
reactions with the participation of germanium 
and gallium iodides and chlorides. To create a 
catalyst, the active component was removed 
in the obviously nonequilibrium conditions: in 
the vapour flow of the transport agent. Further, 
[104] compared the catalytic activities of nickel 
materials produced by a conventional method 
(Al leaching from the NiGa4 phase by the KOH 
solution) and substances produced by using the 
SSCTR method. Reactions of the reduction of 
nitrobenzene to aniline by means of hydrazine and 
conversion of benzyl alcohol vapours to toluene 
(benzene) and benzaldehyde were used as test 
reactions. For the latter conversion the content of 
decomposition products was studied depending 
on the process conditions (temperature, vapour 
flow rate) and the conditions of the catalyst’s 
preparation. [104] also showed the possibility 
to increase the catalytic activity of nickel by 
introducing a transport agent directly into the 
reaction mixture that had been passed through a 
metallide. NH4Cl and n-C4H9Cl were used as such 
activator agents. [105] showed the possibility of 
activating the surface of the nickel-containing 
material, which involved, on the contrary, a 
partial removal of nickel atoms from the near-
surface region by a selective reaction with the 
formation of nickel carbonyl:

Ni″ <from the alloy> + CO′ = [Ni(CO)4]′ (14)

Most recently, the development of the 
auxiliary component method has been based 
on the spectrophotometric experimental 
resources. Scanning the vapour absorption 
spectra with the participation of the AC allows 
independently determining the concentrations 
(partial pressures) of various AC forms in the 
vapour (for example, GaI and GaI3) instead of the 
total vapour pressure in classical manometric 
methods. To calculate the KP

# value, which is 
a key value for the measurements, the partial 
pressure data are necessary. An important 
feature of the newly developed experimental 
capabilities is an in-situ study of the spectra, 
i.e. the study of the vapour that is in contact 
with a condensed phase should be conducted 
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directly under experimental conditions: at high 
temperatures (up to 900 °C) and pressures other 
than the atmospheric pressure (up to 3·105 Pa). 
The considered spectrophotometric method 
with the application of an AC was used to verify 
homogeneous and heterogeneous equilibria in 
the Ga –  I [106], In –  Cl [107] systems and to 
specify the phase diagram of the Ga – S system in 
the high-temperature region (> 800 °C) [108-110].

4. Conclusion
It should be noted that this review does not 

aim to cover all the areas in which the research 
has been conducted and the results have been 
achieved by that section of the scientific school 
of Ya A. Ugai which has been developing methods 
for the research and synthesis of semiconductor 
materials with expressed bulk properties. Beyond 
the scope of this paper are the results of the 
study of the AIIIBV binary and ternary diamond-
like phases, new methods of thermal analysis 
(chromatographic analysis) and manometric 
methods (laser null-manometry), and a number 
of other achievements. The main focus of this 
article, as can be seen from the text, is on:

– the investigation of P-T-x diagrams of the 
AIV

 – B
V, AIV

 – B
V

 – С
V, and the AIII

 – B
VI systems 

with emphasis on the study of the relationship 
between pressure (P) and other thermodynamic 
variables (T, x);

– the development of methods for the 
research and synthesis of intermediate phases 
with variable compositions (properties) in these 
systems.

Let us summarise the achievements in this 
area.

1. Using a set of complementary methods (the 
null-manometric method with two-way vacuuming 
of the membrane chamber, the differential thermal 
method with controlled vapour pressure, the 
extrapolation method with the introduction of 
an indifferent solvent, and standard methods of 
physico-chemical analysis), P-T-x diagrams of the 
АIV – ВV systems were constructed; the positions 
of regions of intermediate phases were defined, 
and their types of melting and corresponding 
coordinates (P, T, x) were determined. In particular, 
these methods in combination with structural 
studies were used to show that the monoarsenide 
(GeAs) and diarsenide (GeAs2) in the Ge – As 

system are independent intermediate phases with 
similar but different structures.

Semiconductor silicon and germanium 
phosphides and arsenides are characterised by a 
pronounced layered structure, the atoms within 
a layer are bound by strong covalent bonds, 
however, between the layers there are weak van 
der Waals forces. Favourable size factor affects the 
antistructure disordering in these phases, which 
has a decisive influence on the defect formation 
mechanism. Thus, the dominant defects are 
ionised antistructural defects of the А¢В and В•

А 
type. The study of micro- P-T-x diagrams of the 
corresponding systems served as the foundation 
for the development of modes of obtaining 
crystals with reproducible properties.

In systems with the participation of tin (Sn - 
BV) the phases with stoichiometry close to Sn4B3 
are stable. In addition, there are two more stable 
phases in the tin - phosphorus system, Sn3P4 and 
SnP3. A similar crystal structure with the R3m 
space group similar to the structure of elements 
in the arsenic subgroup was revealed for all binary 
compounds. What is more, disparity of bonds is 
another characteristic feature of the structure. 
Such a layered crystalline structure allows for 
the intercalation of ions and molecules into the 
interlayer space.

The study of the temperature dependence of 
the saturated vapour pressure by means of optical-
tensimetric methods in combination with the 
results of differential thermal analysis allowed 
constructing the P-T-x diagram of the Sn – P system. 
The coordinates of four-phase equilibria points: of 
the synthetic (SSn4P3 + V + L1 + L2) and eutectic 
(L + V + Sn4P3 + SnP3) types were determined. It 
was shown that the Sn3P4 intermediate phase is 
only formed as a result of prolonged annealing 
of samples at a temperature below 673 K. The 
annealing of the Sn3P4 sample obtained by the 
two-temperature method at a temperature of 753–
773 K leads to its complete decomposition into the 
adjacent phases, Sn4P3 and SnP3. The detection of 
the L ↔ Sn4P3 + SnP3 eutectic equilibrium (T ≈ 824 
K) in the Sn – P binary system suggests a significant 
difference of the obtained T-x diagram from the 
data available in the literature.

2. Compounds of the AIVBV class are 
characterised by a similarity in the nearest atom 
coordination in compounds to their coordination 
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in simple substances. Thus, the structural 
motif of the anion former has a great impact 
on the crystal-chemical structure of phases. 
As a consequence, solid solutions are quite 
easily formed in ternary systems based on AIVBV 
compounds with anionic substitution, while in 
the case of cation substitution, even prolonged 
homogenising annealing does not result in a 
noticeable region of solid phase solubility. Solid 
solutions are formed quite easily in Ge – As – P 
and Si – As – PGe systems, however, due to the 
different crystal-chemical structures of silicon 
phosphide and arsenide, the latter system has a 
heterogeneous region corresponding to the joint 
presence of the component-based solid solutions.

The Sn–As–P ternary system has a continuous 
series of solid solutions between tin phosphide 
and arsenide with the composition of Sn4В3 
(a-solid solution). The T-x diagram of the Sn4P3–
Sn4As3 polythermal cross section was constructed. 
The peritectic melting of tin arsenide and the 
decomposition of Sn4P3 by a synthetic schema 
resulted in three-phase regions in the diagram 
(Sn4P3 + SnAs + L) and (Sn4P3 + L1 + L2). The 
examination of a number of polythermal cross 
sections of the Sn–As–P system showed the 
existence of extended regions of solid phase 
solubility based on tin monoarsenide b-solid 
solutions) and the SnP3 phase (g -solid solutions).

Available data on phase diagrams make it easy 
to outline methods for growing single crystals of 
intermediate phases of solid solutions with set 
compositions and, therefore, with set properties 
in the AIV – BV and AIV – BV – СV systems.

3. Physico-chemical foundations for a new 
manometric method to determine P T x diagrams 
of binary systems by using an auxiliary component 
(AC) were developed. The requirements for the 
AC and heterophase equilibria were formulated. 
The thermodynamic analysis of a number of 
systems established that the tensimetric study 
of equilibria with the participation of an AC can 
be used: a) to construct phase diagrams of binary 
systems; b) to scan homogeneity ranges; c) to 
calculate chemical potentials of the components; 
d) to determine integral thermodynamic 
properties. The validity of these conclusions 
was confirmed by experimental manometric 
research and the construction of phase diagrams 
of the Ga –  Se, Ga –  S, In –  S binary systems. 

T-x and pi-T μGa-T-diagrams of these systems 
were determined. Integral thermodynamic 
characteristics of gallium monochalcogenides, 
GaS and GaSe, were calculated. 

4. New types of diagrams (KP
# – T, KP

# – T – x) were 
proposed and determined for the Ga-Se-I and Ga-
S-I systems which provide a basis for determining 
the conditions of the nonstoichiometry regulation 
by means of selective CTRs and are used to specify 
the boundaries of the homogeneity ranges of 
the binary phases. The homogeneity ranges 
of gallium monoselenide and monosulphide 
were determined. It was found that the data are 
consistent when different components (Cl, I) in 
different phase relations are used in the systems 
(the method of “the AC only in vapour” and “the 
method of gas solubility”).

5. Tensimetric experiments without the 
participation of the AC were used to study 
phase diagrams and homogeneity ranges of the 
intermediate phases in the Si    As and Ge    As 
systems. Phase diagrams of silicon and germanium 
arsenides were compared with previously 
constructed diagrams of gallium and indium 
monochalcogenides based on the similarity of 
structures and the nature of chemical bonds in 
these groups of compounds. It was revealed that 
the following important peculiarity is common 
for the homogeneity ranges of these compounds: 
narrow over the entire range of temperatures 
homogeneity ranges of this compounds have 
sharp (up to a few percent) extensions in areas 
close to the maximum temperatures of phase 
melting. Such an extension in case of GaSe leads to 
the formation of a retrograde solidus in a narrow 
temperature range (~ 60 K). For germanium 
diarsenides such expansion of the homogeneity 
range (up to 1.8 mol% of As) occurs in an even 
smaller temperature range. A hypothesis was 
made according to which the peculiarities of 
homogeneity ranges of the considered layered 
phases similar in terms of structure are related to 
the formation of interlayer interstitial defects (i.e. 
autointercalation) at premelting temperatures.

6. A new method for nonstoichiometry 
regulation was developed and applied using non-
destructive selective chemical transport reactions 
(i.e. with the participation of the AC). The method 
is based on the introduction or removal of one of 
the sample components by means of a selective 
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chemical transport reaction conducted in the 
iso- or non-isothermal conditions. It was shown 
theoretically and experimentally that the direction 
of selective mass transfer, the introduction or 
removal of a component from the sample, is only 
determined by three parameters: temperatures (T2, 
T1) which the sample and the batch are exposed to 
(a donor or a getter of the component chemically 
transferred through the gas), and the batch 
composition (x1). Transport stops when stationary 
states are achieved. What is more, the composition 
of the regulated sample (x2) is determined by the 
same three parameters (T2, T1, x1).

7. The method of selective chemical transport 
reactions was used to develop and apply a new 
method of directed synthesis of materials with 
the high reactivity based on the intermetallides of 
the GaNi system. It was shown that it is possible 
to increase the efficiency of the catalytic activity 
of such disturbed metals by introducing directly 
into the reaction process activator additives 
(n-C4H9Cl, NH4Cl) which remove the residues of 
the activating component (Ga) from the material.

8. The new method of spectrophotometric stud-
ies based on the AC (hydrogen) equilibria quench-
ing with indium sulphides was used to study the 
phase diagram of the InS system. It was proved that 
between the In3-xS4 and In2S3′ phases (low-tempera-
ture modification) there is a narrow heterogeneous 
range which is limited from above by the tempera-
ture of the peritectic decomposition of the In2S3′ 
phase (415 °C). The In3-xS4 homogeneity range ex-
tends from about ~58.0 mol% of S to ~59.9 mol% 
and is not particularly dependent on temperature 
(at T ≤ 725 ºС). A tendency to the decomposition of 
solid solutions based on the In3xS4 phase with ex-
tended homogeneity with a spinel structure was 
shown. Temperature dependences of sulphur va-
pour pressure (S2) were determined in the equilib-
ria of different nature with the participation of con-
densed indium sulphides. It was established that 
there is a good correlation between the results of 
spectrophotometric studies within the developed 
methodology and the mass spectrometric data. 

9. As a result of applying the new in situ 
spectrophotometric method which involved using 
gallium iodides as an AC, and as a result of high-
temperature X-ray studies, it was established that 
at temperatures below 825 °C the Ga − S system 
does not have intermediate solid phases but GaS 

and Ga2S3. In contrast, the high-temperature 
portion of the diagram of the Ga – S system is 
complex and comprises of two more phases with 
stoichiometries from 59 to 60 mol%.

We would like to conclude the review by 
mentioning the contributions of a number of 
employees involved in this collective work. An 
enormous contribution was made by the closest 
colleague of Ya. A. Ugai, Evgeny G. Goncharov. 
It is difficult to overestimate the importance of 
the contribution of the prematurely deceased A. 
E. Popov, whose works largely determined the 
achievements of the employees that surrounded 
him in the late 1980s - early 1990s. We would like 
to mention the works by the employees of the 
Faculty of Chemistry of Voronezh State University, 
T. P. Sushkova, A. V. Kosyakov, A. V. Naumov, 
E.  Yu. Proskurina, and D. N. Turchen. Without 
the contributions of these professionals it would 
have been impossible to get the results presented 
herein. However, it has to be mentioned that all of 
these specialists worked in the direction laid by 
the founder of the scientific school, Ya. A. Ugai.
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Semiconductor devices of quantum electronics based on InP/GaInAsP heterostructures require the creation of non-defective 
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structures is the growth defects associated with the process of dissociation of indium phosphide on the surface during their 
growth. The aim of the work was the investigation of the process and mechanism of destruction (dissociation) of the surface 
of indium phosphide substrates in the range of growth temperatures of structures, as well as the study of methods and 
techniques that allow minimize the process of dissociation of surface of indium phosphide.
The work provides studies of the growth processes of InP/GaInAsP heterostructures, from the liquid phase, taking into 
account the degradation processes of the growth surface and the mechanisms for the formation of dissociation defects. 
The schemes of the dissociation process of the InP on the surface of the substrate and the formation of the defective surface 
of the substrate were analysed. At the same time, technological methods allowing to minimize the dissociation of the 
surface compound during the process of liquid-phase epitaxy were shown. The original design of a graphite cassette allowing 
to minimize the dissociation of the indium phosphide substrate in the process of liquid-phase epitaxy was proposed. 
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1. Introduction
The process of liquid-phase epitaxial growth 

is a heterogeneous process occurring at the 
liquid-solid interface. The analysis of the 
conditions of contact between the substrate 
and the nonequilibrium liquid or gas phase 
[1–3] indicates the complexity of the contact 
phenomena occurring at the interface. In this 
regard, the preparation of indium phosphide 
substrates for epitaxial growth can be of decisive 
importance for the growth of structures [4, 5] 
required for manufacturing of devices of quantum 
electronics. InGaAsP solid solutions are widely 
used for the production of devices for quantum 
electronics, laser diodes, superluminescent 
radiation sources, and photodetectors [6-10]. 
The main area of application of these devices 
is systems for transmitting optical signals 
through quartz fiber [11, 12], fiber-optic sensors 
for environmental monitoring [12, 13], optical 
coherence tomography [14, 15], navigation and 
instrumentation systems [16, 17]. The creation 
of such devices requires the production of 
high-quality epitaxial layers of InP/GaInAsP 
heterostructures on indium phosphide substrates, 
which, in turn, makes it necessary to pay special 
attention to the quality of the growth surface 
of the substrates before epitaxial growth. Such 
structures are mainly grown as isoperiodic on InP. 
Particular attention should be paid to the state 
of the initial InP substrate before and during the 
liquid-phase epitaxy process in the temperature 
range of 675–600 °C. Due to the fact that indium 
phosphide contains a highly volatile phosphorus 

component in its composition, epitaxial growth 
leads to dissociation of the substrate with the 
appearance of characteristic defects in the form 
of faceted depressions with indium drops (Fig. 1). 
In the course of epitaxial growth, these defects 
grow into the epitaxial structure, which leads to 
the low quality of the manufactured devices. 

The aim of this study was the investigation 
of the process and mechanism of destruction 
(dissociation) of the surface of indium phosphide 
substrates in the temperature range of growth of 
structures, as well as the study of methods and 
techniques allowing to minimize the process of 
dissociation of the surface of indium phosphide. 

2. Experimental 
Microscopic studies prove the existence of 

the effect of solution-melt dissolution (SMD) 
of the indium phosphide substrate during the 
growth of InP and InGaAsP epitaxial layers by 
liquid-phase epitaxy (LPE). The SMD effect can 
manifest itself in the form of depressions with 
In droplets or grooves with In droplets on the 
surface of both InP substrates and on layers grown 
in the InP/InGaAsP system. Subsequently, this 
effect negatively affects the production of layers 
in InP/InGaAsP heterostructures. The process of 
creating semiconductor chips for laser diodes, 
photodiodes and light-emitting diodes includes 
the operations required for the application of 
dielectric masking coatings. Dielectric coatings 
are used in the manufacture of strip-line laser 
diodes [18]. It is known [19] that the intensification 
of phosphate formation on the InP surface leads 
to the formation of nanosized dielectric films, the 
resistivity of which reaches 1010 Ohm· cm, which 
sharply reduces the leakage currents through the 
insulating film and leads to an increase in the 
quantum efficiency of laser diode radiation and 
a decrease in dark currents in photodiodes based 
on InP/GaInAsP heterostructures.

In this regard, it becomes obvious that 
the surface quality of the grown InP/GaInAsP 
epitaxial heterostructures becomes decisive in 
the design of chips for devices.

The formation of a multilayer heterostructure 
in the InP/InGaAsP system by LPE method starts 
with an increase in the temperature inside the 
quartz reactor to 675 °C in an atmosphere of H2. The 
substrate is located in a graphite cassette (Fig. 2) Fig. 1. Dissociation of the indium phosphide on the 

surface of the plate 
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in a substrate holder. The rise in temperature in 
the range of 600-675 °C occurs in 10 minutes. 
Then, for 30 minutes, exposure at 675 °C and the 
onset of a isothermal mode are performed. Then, 
for 20 minutes, cooling by 10-15 degrees to the 
onset of growth, which is a temperature of 660 °C. 
The substrate is kept at an elevated temperature 
for ~1 hour in an atmosphere of dry H2 with a dew 
point of –80 °C. 

The InP compound has a crystal structure of 
the sphalerite type, in the lattice of which, due to 
the alternation of two types of atoms, there is no 
inversion symmetry. This leads to the fact that in 
crystals with the <111> directions axes are polar, 
which in turn leads to a difference between the A 
(111) and B (111) planes. The {111} crystallographic 
plane consists of two geometric planes, each of 
which contains atoms of only one type, as a result 
of which atoms of either 3 or 5 groups emerge on 
the outer surface of the crystallographic planes. 
Atoms of group 5 (surface B) use only three of the 
available five valence electrons for the formation 
of bonds with the lattice and thus have two 

electrons capable of interacting with particles of 
the outer phase. Group 3 atoms of surface A use 
all three valence electrons for the formation of 
bonds with the lattice. In this regard, B surfaces are 
more reactive than A surfaces, which leads to the 
dissociation of indium phosphide during epitaxial 
growth processes. 

The dissociation process is shown in Fig. 3. 
In the course of experimental work on the 
growth of heterostructures, we discovered that 
the formation and movement of an indium drop 
occurs in a certain direction. In this case, the 
depression or groove is faceted by the {111} A 
and {111} B planes simultaneously. In practice, 
after high-temperature exposure, the substrate 
is covered with a micro-profile in the form of 
etching pits resulting from the dissociation of 
indium phosphide. The effect of the formation of 
a depression or groove at an elevated temperature 
as a result of the loss of phosphorus by the 
surface and the release of a drop of indium will 
be called the solution-melt dissolution “SMD” 
effect. The “SMD” effect is shown schematically 
in Fig. 4. Studies carried out in [20] showed that 
the {001} A and {111} B planes will grow at a 
rate of 0.2  μm/°C and 0.4 μm/°C, respectively, 
and the {111} A plane will grow only at a rate of 
0.1 μm/°C. Thus, planes {111} A will prevent the 
overgrowing of depressions and grooves and facet 
them along the entire thickness of the grown 
layer. In this case, from one depression or one 
groove, two depressions located symmetrically 
against each other, will be formed (Fig. 5). This 
is shown schematically in Fig. 6.

Fig. 4. Scheme of the dissociation of InP on the surface 
of the substrate

Fig. 3. Indium drops on the surface of InP substrate

Fig. 2. Graphite cassette for growing layers on InP/
InGaAsP on InP substrates
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In order to eliminate the “SMD” effect, a 
number of technological methods were proposed: 

– a decrease in the growth temperature of 
growing epitaxial heterostructures in the InP/
InGaAsP system from 675 to 610 °C without 
affecting the structural properties of epitaxial 
layers and the electrophysical parameters of 
future devices; 

– optimization of current consumption of H2 
from 10 l/h to 2-4 l/h; 

– optimization of the design of the graphite 
container, which makes possible the provision 
of an additional quasi-closed volume for the 
creation of partial pressure of phosphorus during 
the growth of the InP/GaInAsP heterostructure; 

– rapid cooling of the growth system with a 
growth cassette.

It is known [21] that indium phosphide has 
significant solubility in the tin melt. In this regard, 
a special solution-melt of indium phosphide in 
tin was prepared, placed in a quasi-closed volume 
of the growth cassette (Fig. 7) and it served as 
a source of the partial pressure of phosphorus 
during epitaxial growth. In addition, immediately 
before the start of the growth process, the indium 
phosphide substrate was etched with a 50% 
diluted In-InP melt solution, which allowed the 
etching of 3 to 5 μm from the damaged indium 
phosphide layer. 

After the end of the growth process, in order 
to reduce the dissociation of the grown epitaxial 
layers, the graphite cassette was abruptly cooled 
at a cooling rate of 20–30 degrees per minute 
by shifting the heating furnace. The proposed 
technological process allowed to obtain mirror-

smooth layers with a density of growth defects 
not more than 5·102 cm–2. 

3. Conclusion 
The solution-melt dissolution (SMD) effect is 

present throughout the growth process by liquid-
phase epitaxy in the InP/InGaAsP system on InP 
substrates. This effect is extremely undesirable 
and caused by the polarity of the {111} A and {111} 
B planes, which is clearly manifested during the 
growth of InP buffer layers. The family of planes 
{001} and {111} B aligns the depressions and 
grooves, and the family of planes {111} A with 
planes {001} and {111} B facets them. As a result of 
the joining of the {111} planes in the depression, 
they are cut faceted from both sides by the {111} 
A planes to the height of the buffer layer. One 
depression produces two smaller symmetrical 
depressions. As a result, these depressions 
permeate the entire grown structure. This leads to 

Fig. 5. Growing of InP buffer layer on the surface of 
the substrate, with dissociation traces 

Fig. 6. Scheme of the formation of depressions in the 
process of growing the InP buffer layer 

Fig. 7. Graphite cassette with quasi-closed volumes: 
1 – solution-melt InP; 2 – solution-melt InGaAsP; 
3 – reservoirs for increasing the partial pressure of 
phosphorus
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structural defects in the epitaxial layers and short 
circuits of p-n transitions. Such heterostructures 
lead to a high rate of rejection in the manufacture 
of semiconductor devices and non-reproducibility 
of electrophysical parameters over the area of the 
epitaxial plate. 
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Abstract 
The research analyses the controversies surrounding the technique for the formation of a CaO-Al2O3 binary system and 
the nature of melting of compounds in it, i.e. whether the 12:7 compound is technically possible and whether the 1:1 and 
1:2 compounds are congruently or incongruently melting compounds. It also discusses whether in the CaO-MgO-Al2O3 
ternary system the following compounds can be formed: a 3:1:1 compound alone or, in addition to it, two more compounds 
of 1:2:8 and 2:2:14. A 3D model of the T-x-y diagram was created for the most common version, with six binary and three 
ternary compounds. Its high-temperature portion (above 1300°C) consisted of 234 surfaces and 85 phase regions. Ternary 
compounds were formed as a result of three peritectic reactions. Besides them, six quasi-peritectic and three eutectic 
invariant reactions occurred in the system with the participation of the melt. The principle of construction for a three-
dimensional model involved a gradual transition from a phase reaction scheme (which is transformed into a scheme of 
uni- and invariant states) presented in a tabulated and then in a graphical form (a template of ruled surfaces and isothermal 
planes corresponding to invariant reactions) to a T-x-y diagram prototype (graphic images of all liquidus, solidus, and solvus 
surfaces). The design was concluded with the transformation of the prototype into a 3D model of the real system after the 
input of the base points coordinates (concentrations and temperatures) and the adjustment of curvatures of lines and 
surfaces. The finished model provides a wide range of possibilities for the visualisation of the phase diagram, including the 
construction of any arbitrarily assigned isothermal sections and isopleths. The 3D model was designed with the help of the 
author’s software PD Designer (Phase Diagram Designer). To assess the quality of the 3D model, two versions of an isothermal 
section at 1840 °C were compared: model section and a fragment of an experimental section near Al2O3.
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1. Introduction 
The information about phase transformations 

in the CaO-MgO-Al2O3 system, including the 
subsolidus area, is important for the study 
of petrological objects, since this system is 
a component of the СаО-MgO-Al2O3-SiO2 
quaternary system which, in its turn, serves as 
the foundation for the description of deep-seated 
rock minerals [1–2]. In addition, the prediction 
and the study of the properties of magnesium 
aluminate spinel-based cements and technical 
ceramics are of great importance [3].

Therefore , works  dedicated  to  the 
experimental study of the СаО-MgO-Al2O3 
system, thermodynamic calculations, and 
simulations of its T-x-y diagram are of great 
interest. However, while two of its constituent 
binary systems, CaO-MgO and MgO-Al2O3, have 
been interpreted unambiguously, there are many 
controversies in the literature surrounding the 
third binary system of CaO-Al2O3, as well as the 
ternary system formed by them. As a result, the 
understanding of the geometric structure of the 
T-x-y diagram, at least with regard to its liquidus 
surfaces, has been challenged due to many 
possible interpretations of certain fragments of 
the diagram.

A spatial (three-dimensional (3D)) computer 
model of the phase diagram, based at least on one 
of the most common versions (which can be used 
to present other simpler versions) can be helpful 
for the formal description of the T-x-y diagram.

Before constructing the 3D model, it was 
necessary to redesignate the initial and formed 
components in the compound system. This is a 
requirement of the PD Designer software, which 
was used to construct 3D models of the T-x-y 
phase diagrams [4-6].

Thus, the CaO-MgO-Al2O3 system was 
redesignated as A-B-C.

The binary CaO-MgO (А-В) system is a simple 
eutectic one [7–9].

According to [10, 11], in the MgO-Al2O3 (В-С) 
binary system a 1:1 or MgO·Al2O3 congruently 
melting compound (designated as R6 in the 
3D model) is formed which splits it into an 
eutectic MgO-MgO·Al2O3 (B-R6) and peritectic 
MgO·Al2O3-Al2O3 (R6-C) subsystems. What is 
more, minimums are recorded on the liquidus and 
solidus lines in the peritectic subsystem.

The structure of the CaO-Al2O3 (А-С) 
system has been debated a lot, the differences 
relate to the quantity and the nature of the 
formed compounds and the type of binary 
dots. For example, [7], with reference to [12], 
presents a version of the T-x diagram where five 
compounds are formed: the 3СaO·Al2O3 (R1) 
and CaO·6Al2O3A (R5) incongruently melting 
compounds and 12CaO·7Al2O3 (R2), CaO·Al2O3 
(R3), and CaO·2Al2O3A (R4) congruently melting 
compounds. Therefore, the system is divided 
into two eutectic systems: 12CaO·7Al2O3-
CaO·Al2O3 (R2-R3), CaO·Al2O3-CaO·2Al2O3 
(R3-R4), and two eutectic-peritectic systems: 
CaO-12CaO· 7Al 2O 3 (A-R2), CaO· 2Al 2 O 3 -Al 2O 3 
(R4-C) which are accompanied by the formation 
of the incongruently melting 3CaO·Al2O3 (R1) and 
CaO·6Al2O3 (R5) compounds, respectively. This 
most complex version of the structure of the CaO-
Al2O3 (A-C) T-x diagram was used to construct a 
3D computer model of the T-x diagram.

However, according to [13], the 12CaO·7Al2O3 
(R2) compound is actually a Ca12Al14O32(OH)2 
hydrate and therefore it cannot be found in the 
CaO-Al2O3 system. As a result, instead of five 
compounds there are four compounds (without 
12CaO·7Al2O3) in the system. What is more, the 
nature of melting of CaO·Al2O3 (R3), CaO·2Al2O3 
(R4) is also considered to be incongruent, similar 
to the 3СaO·Al2O3 (R1) and CaO·6Al2O3 (R5) 
compounds. In this case, these four compounds 
are formed as a result of peritectic reactions. 
Moreover, 3CaO3·Al2O3 (R1) and CaO·Al2O3 
(R3) interact as a result of an eutectic reaction. 
The same version of the T-x diagram structure 
was generated as a result of thermodynamic 
calculations [14, 15], and was confirmed by the 
latest experimental research [16].

Based on the published data analysis, [8, 
9, 17–19] claimed that the versions of the 
CaO-Al2O3 structure dependent on humidity 
and the concentration of oxygen in the 
furnace atmosphere. Depending on this, the 
5CaO·3Al2O3 stoichiometry can be attributed 
to the 12CaO·7Al2O3 compound. According to 
this version of the phase diagram structure, 
only one compound, 12CaO·7Al2O3 (R2), melts 
congruently, while the remaining four, 3СaO·Al2O3 
(R1), CaO·Al2O3 (R3), CaO·2Al2O3 (R4), and 
CaO·6Al2O3 (R5), melt incongruently as a result 
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of four peritectic reactions. The 12CaO·7Al2O3 
(R2) compound interacts with the 3CaO·Al2O3 
(R1) and CaO·Al2O3 (R3) as a result of two 
eutectic reactions. More recent thermodynamic 
calculations regarding the CaO-Al2O3 system 
[20] confirm this version of the phase diagram 
structure. Additionally, the authors emphasised 
that earlier thermodynamic calculations [15] 
did not consider the 12CaO·7Al2O3 phase since 
it is not strictly anhydrous. In a conventional air 
humidity and within a temperature range of 950-
1350°C, the 12CaO·7Al2O3 absorbs a small amount 
of water (no more than 1.3 wt%) [20]. 

In cement systems, the 12CaO·7Al2O3 
compound was regarded as an aluminate phase, 
in other words, it was considered to be anhydrous 
and was included in the diagrams [18, 19]. The 
12CaO·7Al2O3 compound has been found in the 
form of a natural mineral and has been called 
meionite [21]. It is of practical importance for the 
production of dense ceramics [22].

As for the СаO-MgO-Al2O3 ternary system, 
earlier works [23] did not record the formation 
of ternary compounds. [24] discussed the 
formation of three ternary compounds: 
3CaO·MgO·Al2O3 (R7), CaO·2MgO·8Al2O3 (R8), and 
2CaO·2MgO·14Al2O3 (R9). The thermodynamic 
calculations [10] did not consider the C12A7 binary 
compound. What is more, the configuration of the 
internal field of liquidus that corresponds to the 
3CaO·MgO·Al2O3 (R7) compound is characterised 
by the fact that its boundaries are formed by 
four invariant points, whereas in [24] this field 
is triangular in shape.

Therefore, the aim of this work was to 
construct a 3D computer model of the СаО-MgO-
Al2O3 T-x-y diagram, including all its surfaces: 
liquidus, solidus, solvus, ruled surfaces, and the 
horizontal plane corresponding to the invariant 
transformations in the ternary system up to a 
temperature of 1300 оC.

2. Modelling 
The computer 3D model of the СаO-MgO-Al2O3 

(A-B-C) T-x-y diagram was constructed using the 
data from [24] considering the formation of six 
binary compounds: 3СaO·Al2O3 (R1), CaO·6Al2O3 
(R5) (incongruently melting), 12CaO·7Al2O3 (R2), 
CaO·Al2O3 (R3), CaO·2Al2O3 (R4), MgO·Al2O3 (R6) 
(congruently melting), and ternary compounds: 

3CaO·MgO·Al2O3 (R7), CaO·2MgO·8Al2O3 (R8), 
2CaO·2MgO·14Al2O3 (R9) (Fig. 1). 

For a better display and understanding of the 
geometric structure of the T-x-y diagram, first 
its prototype was constructed in which the base 
points were spaced for a better visualisation, 
however, their temperature coordinates were set 
according to the temperature range (Fig. 1c).

As can be seen from the prototype, the ternary 
system involved three peritectic reactions leading 
to the formation of ternary compounds:
P1: L+B+R3→R7, P2: L+R6+R9→R8,  
P3: L+R5+R6→R9
six quasi-peritectic:
Q1: L+A→B+R1, Q2: L+R6→B+R3,  
Q3: L+R4→R3+R6, Q4: L+R5→R4+R9,  
Q5: L+R9→R4+R8, Q6: L+C→R5+R6
and four eutectic:

E1: L→B+R1+R2, E2: L→B+R2+R7,  
E3: L→R2+R3+R7, E4: L→R4+R6+R8

invariant reactions. Since the 3D model was de-
signed in a limited temperature range, above 
1300 оС, it did not reflect the processes that oc-
curred in the subsolidus.

The prototype can be used to claim that the 
T-x-y diagram consists of 12 liquidus surfaces 
corresponding to the beginning of crystallisation 
of the three initial components, 9 compounds 
(I = A, B, C, R1-R9), and 12 solidus surfaces 
conjugated with them between which the L+I two-
phase regions are found. Each of the 13 complex 
planes corresponding to the invariant reactions 
(three peritectic reactions (P), six quasi-peritectic 
reactions (Q), and four eutectic reactions (E)) 
are divided into four simplexes. All 24 invariant 
liquidus lines (Fig. 1d), together with the 48 
solidus lines associated with them pair wisely, 
function as 72 directing curves for the ruled 
surfaces which form the boundaries for 24 L+I+J 
three-phase regions. Accordingly, in this high 
temperature portion of the diagram 24 I+J two-
phase regions and 24 conjugated solvus surfaces 
should be expected. The boundaries for each of 
these 13 three-phase regions I+J+K without the 
liquid are represented by three ruled surfaces, the 
total number of which is 39.

Therefore, the T-x-y diagram is formed by 234 
surfaces and 85 phase regions (Fig. 1a).
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Fig. 1. 3D model of the CaO-MgO-Al2O3 (A-B-C) T-x-y diagram (a) and an enlarged fragment near Al2O3 (b), x-y 
projections of the liquidus surfaces: of the prototype (c), of the real system (d), and its enlarged fragment (e)
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3. Results and discussion
The 3D computer model was constructed by 

assembling the above-mentioned surfaces and 
phase regions. First, a prototype was formed (Fig. 
1b.), i.e. 13 horizontal (isothermal) planes were 
constructed using the PD Designer: 3 peritectic 
(P) triangles, 6 quasi-peritectic (Q) quadrangles, 
4 triangles which included points E. Then, 
directing lines were brought to them and ruled 
surfaces were formed. Thus boundaries for 24 
three-phase regions with the melt and 13 solid 
phase regions were set. The resulting frame was 
completed with unruled liquidus, solidus, and 
solvus surfaces.

Next, the prototype was transformed into a 3D 
model of the phase diagram of the real system. 
To achieve this, the base points were given real 
values of concentrations and temperatures and 
the curvatures of lines and surfaces were adjusted 
(Fig. 1d).

As a result, a spatial computer model of the 
T-x-y diagram was obtained which has a wide 
range of visualisation possibilities: the model 
can be rotated, viewed from arbitrary angles, split 
into pieces (separate groups of phase regions), 
arbitrary set sections can also be obtained.

The quality of the resulting model can be 
assessed by comparing the model sections (Fig. 
2a) with the experimental sections (Fig. 2b). The 
observed isothermal section at 1840 оС is 10 оС 
lower than the invariant point of the highest 
temperature Q6 (1850 oC) and higher than point P3 
(1830 oC) (Fig. 1a), that is why the crossing traces 
of the Al2O3 phase regions and the melt are not 
displayed. [24] considered a fragment of the section 
adjacent to the Al2O3 angle, which displayed the 
section lines limiting the L+R5, L+R6, L+R5+R6, 
R5, C+R5, R5+R6, C+R5+R6 phase regions (Fig. 2b). 
The model section was fully calculated and the 
fragment adjacent to Al2O3 was marked (Fig. 2a). 
Since it was assumed during the construction of the 
model that the R5 binary compound has a constant 
composition, the phase regions corresponding to 
R5 and C+R5 coincided with the edge of the prism, 
whereas for the spinel R6, on the contrary, a limited 
solubility was taken into account. Nevertheless, 
the section topology corresponded to the section 
presented in [24] (Fig. 2b).

4. Conclusions 
A three-dimensional computer model of the 

CaO-MgO-Al2O3 T-x-y diagram was constructed. 

Fig. 2. Isothermal section at 1840оС: 3D models (a), experimentally studied fragment near Al2O3 [24] (b) (in 
[24] the CaO·6Al2O3 (R5) compound has a region of limited solubility, and the MgO·Al2O3 (R6) compound has 
a region of permanent composition, in 3D models this is vice versa)
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It was shown that its high-temperature 
fragment (above 1300 оС) in the most complex 
version, i.e. as a result of the formation of six 
binary: 3СaO·Al2O3, CaO·6Al2O3 (incongruently 
melting), 12CaO·7Al2O3, CaO·Al2O3, CaO·2Al2O3, 
MgO·Al2O3 (congruently melting) and three 
ternary 3CaO·MgO·Al2O3, CaO·2MgO·8Al2O3, 
2CaO·2MgO·14Al2O3 compounds, it consists of 
234 surfaces and 85 phase regions. To assess 
the quality of the model its sections were 
compared with the sections constructed using 
the experimental data.
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Synthesis of bulk crystals and thin films of the ferromagnetic MnSb
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Abstract 
High-temperature ferromagnets are widely used on a practical level. Based on them, magnetic memory for computers and 
various types of magnetic field sensors are created. Therefore, bulk ingots and thin-film samples of ferromagnet manganese 
antimonide (MnSb) with a high Curie point are of great interest, both from the practical and fundamental sides. Manganese 
antimonide films are obtained in hybrid structures using molecular-beam epitaxy. The thickness of the films does not 
exceed tens of nanometers. Despite their high sensitivity to magnetic fields, their small thickness prevents them from being 
used as magnetic field sensors. The aim of this work was to synthesise thick bulk ingots of manganese antimonide crystals 
and films with a thickness of ~ 400 nm on sitall and silicon substrates.
MnSb crystals were synthesised using the vacuum-ampoule method and identified using XRD, DTA, and microstructural 
analysis. The results of studies of bulk samples indicated the presence of an insignificant amount of antimony in addition 
to the MnSb phase. According to the DTA thermogram of the MnSb alloy, a small endothermic effect was observed at 572 °C, 
which corresponds to the melting of the eutectic on the part of antimony in the Mn-Sb system. Such composition, according 
to previous studies, guaranteed the production of manganese antimonide with the maximum Curie temperature. A study 
of the magnetic properties showed that the synthesised MnSb crystals were a soft ferromagnet with the Curie point ~ 587 K. 
Thin MnSb films were obtained by an original method using separate sequential deposition in a high vacuum of the Mn 
and Sb metals with their subsequent annealing. To optimise the process of obtaining films with stoichiometric composition, 
the dependences of the thickness of metal films on the parameters of the deposition process were calculated.
The temperature range of annealing at which the metals interact with the formation of ferromagnetic MnSb films was 
established, the films were identified, and their electrical and magnetic properties were measured. 
Keywords: High-temperature soft ferromagnets, XRD, DTA, Thin films, Microstructure analysis, Manganese antimonide 
(MnSb)
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1. Introduction
According to the phase diagram, manganese 

antimonide has a wide range of homogeneity 
and forms two polymorphic modifications, a 
hexagonal and a tetragonal one [1–5]. The first 
modification is a soft ferromagnet with the high 
Curie temperature (TC). The Curie temperature of 
manganese antimonide changes significantly in 
the range of homogeneity from 300 to 587 K and 
depends on the content of manganese in a crystal 
lattice (P63/mmc) from 55 to 50 at% Mn [6–7]. 
The compositions of 50 at% Mn and Sb have the 
highest Curie point [8,9]. As for the melting point 
of MnSb, which is ~ 840 °C, there is no decisive 
answer as to whether MnSb melts peritectically 
or not [10–12]. 

Different areas of application of manganese 
antimonide were studied, both as bulk crystals 
and thin films [13, 14]. Manganese antimonide 
in the form of bulk crystals is considered to 
be a promising material for creating high-
temperature microrefrigerators based on the 
magnetocaloric effect [15, 16]. MnSb films 
obtained on semiconductor substrates of the 
AIIIBV group are considered to be promising 
materials for spintronics devices. Thus, it was of 
interest to synthesise bulk crystals and obtain 
thin films of manganese antimonide.

Molecular-beam epitaxy is a traditional way 
to obtain thin MnSb films [17, 18]. However, this 
method is complex and it does not allow obtaining 
films that are thicker than 20 nm. Due to the 
low concentration of manganese antimonide, 
the films have low magnetic field sensitivity. It 
was of interest to synthesise films with greater 
thickness using vacuum thermal sputtering [19–
22]. However, the use of this method was limited 
due to the incongruent nature of the evaporation 
of manganese antimonide. To solve this problem, 
the separate sequential production of Mn and 
Sb films of a certain thickness was used with 
further thermal annealing, which ensured their 
stoichiometric composition. The aim of this work 
was to synthesise thick bulk ingots of manganese 
antimonide crystals and films with a thickness of 
~ 400 nm on sitall and silicon substrates.

2. Experimental
Bulk single crystals were synthesised from 

high-purity elements. We used antimony 

N5 and manganese N3. Mn was subjected to 
resublimation in a high vacuum for additional 
purification. The crystals were obtained using 
the vacuum-ampoule method at a temperature 
5 °C lower than the melting point of MnSb. To 
obtain samples with the maximum Curie point, 
a small excess of antimony was introduced to 
the stoichiometric composition of antimony. To 
protect the walls of the quartz ampoule from 
exposure to manganese, they were graphitised.

We used quartz ampoules with the thickness 
of the walls from 1.5 to 2 mm. The ampoules 
were purified using the solution of aqua regia, 
washed with distilled water, and dried. Mn 
and Sb were placed in the ampoules that were 
then pumped out to 10-1 Pa and unsoldered. We 
synthesised MnSb in the furnace at a temperature 
of 835 °C with a heating rate of 60 deg/hour. The 
temperature was controlled and regulated with an 
accuracy of ± 1 °C using a Termodat-16Е3. For the 
purpose of homogenisation, the melt was kept at 
a temperature of 835 °C for at least 25 hours with 
further cooling in the switched-off furnace. As a 
result, thick ingots were obtained and identified 
using XRD, DTA, microstructural analysis, and 
other methods.

XRD was conducted in the Kurnakov Institute 
of General and Inorganic Chemistry of the Russian 
Academy of Sciences, using a Bruker D8 Advance 
powder diffractometer. The obtained diffraction 
patterns confirmed the formation of MnSb phase 
of the space group P63/mmc, corresponding 
to the composition 50 at% Mn (Fig.  1). The 
X-ray patterns also showed reflections of an 
insignificant amount of Sb.

The synthesised samples were examined 
using DTA on the equipment with the software 
for heating and cooling processes. Fig. 2 shows a 
thermogram of the heating and cooling of a bulk 
sample of MnSb. Two thermal effects were noted 
on the thermogram. The high-temperature effect 
was related to the melting of MnSb, while the low-
temperature effect was due to the melting of the 
eutectic of MnSb + Sb.

According to the thermogram, endothermic 
effects were observed: the first one at 572 °C 
was related to the melting of the eutectic (MnSb 
+ Sb), the second one at 792 °C was due to the 
melting of MnSb, which corresponds to the 
XRD data on the presence of a small excess of 
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Fig. 1. Diffraction pattern of the synthesised MnSb sample

Fig. 2. Thermogram of the heating and cooling of MnSb

antimony in the samples. The examination of 
temperature dependences of the magnetisation 
(Fig. 3) showed that the synthesised samples were 
soft ferromagnets with the Curie point of 587 K, 
which corresponds well with the previous studies. 
The study of changes in the magnetisation 
due to the value of the magnetic field showed 
that coercive force was Hc = 5.9 Oe (Fig. 4). The 
magnetisation value in the magnetic saturation 
field was Ms = 84 emu/g with the value of residual 
magnetisation being 0.9 emu/g.

Manganese antimonide films were synthesised 
using sequential separate vacuum-thermal 
deposition of Mn and Sb films on sitall and silicon 
substrates with their further thermal annealing. 
To optimise obtaining the stoichiometric 
composition of MnSb films, we calculated the flux 
density and the rate of condensation of vapours 
of Mn and Sb metals. The calculations were made 
under conditions of molecular evaporation using 
the Langmuir equation [23]. Based on the results 
of temperature dependences of the evaporation 
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Fig. 3. Temperature dependences of the magnetisation of MnSb samples

Fig. 4. Dependence of the magnetisation of bulk samples on the value of the magnetic field at T = 300 K

rates of antimony and manganese in the range 
of 900–1700 K, the distance from the evaporator 
to the substrate varied from 3 to 15 cm. The 
calculation results are presented in Figs. 5, 6.

The metals were evaporated in vacuum 
(5·10–4  Pa) on a substrate made of single-
crystal silicon. We used high-purity metals Mn 
(5N) and Sb (5N). Conical resistive heaters, pre-
annealed in a high vacuum, were used as the 
source of evaporation. We chose the temperature 
of the evaporator and the distance between 

the evaporator and the substrate based on the 
calculated densities of fluxes and the rate of 
evaporation. The time of evaporation was chosen 
so that the thickness of the films was ~ 200 nm. 

The samples of metals for the synthesis of 
manganese antimonide with a stoichiometric 
composition contained 0.020 g of manganese 
and 0.032 g of antimony respectively. The films 
were deposited using a vacuum universal post 
(VUP-5). The sputtering was conducted with a 
~ 10-4 Pa vacuum. Conical resistive heaters were 
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Fig. 5. Dependence of the condensation flux density on the evaporator-substrate distance

Fig. 6. Temperature dependence of the rate of condensation of Mn and Sb on the substrate 2q

used as the evaporator. The distance between the 
evaporator and the substrate was at least 10 cm. 
The size of the substrates was 10х5x0.5 mm. The 
composition of the films was studied using XRD 
and scanning electron microscopy (SEM). Fig. 7a 
shows a diffraction pattern of the Sb film on a 
sitall substrate where only reflections related to 
antimony and sitall were observed. Fig. 7b shows 
the diffraction pattern of the Sb film on silicon 
substrates.

Manganese films were sputtered on antimony 
films. The MnSb films were synthesised by 
thermal annealing in vacuumed ampoules placed 
in the isothermic section of an electrical furnace. 

According to XRD data (Fig. 8) and microstructural 
analysis (Fig. 9), phase synthesis of MnSb started 
at a temperature of 380 °C. 

The optimal temperature of synthesis was ~ 
400 ± 20 °C with an annealing time of 2 hours. A 
further increase of the temperature resulted in 
the disruption of the mechanical strength and 
detachment of the films from the substrate. Fig. 
10 shows the temperature dependence of the 
resistivity within the temperature range of 100 
– 300 K, according to which the films had metal 
conductivity. It should also be noted that the 
resistivity of the annealed films was 3-4 times 
higher as compared to the unannealed ones. This 
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also proves the interaction between manganese 
and antimony metals with the formation of a 
manganese antimonide film (MnSb).

4. Conclusion
Using the vacuum-ampoule method, we 

synthesised thick bulk samples of manganese 
antimonide, which are soft ferromagnets with 
Tc = 587 K. The high chemical activity of 
nanostructured Mn and Sb metal films allows 
synthesising the MnSb compound at low 
temperatures by annealing in a high vacuum. 

We found optimal conditions for the synthesis 
of MnSb from Mn and Sb films.
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Fig. 7. X-ray diffraction patterns of Sb films on substrates made of sitall (a) and single-crystal silicon (b)

a
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Fig. 10. Temperature dependence of the resistivity of films with a temperature range of 100-300 K: 1 – annealed 
MnSb film on sitall; 2 – Mn + Sb, unannealed on sitall; 3 – unannealed Mn + Sb on silicon

Fig. 8. Diffraction patterns of Mn + Sb films after annealing at T = 400 ° C

Fig. 9. Microstructure of a film with Mn and Sb layers, before annealing (а), after annealing at 400 °C (b)

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 387–395

M. Jaloliddinzoda et al. Synthesis of bulk crystals and thin films of the ferromagnetic MnSb



394

References 
1. Ugai Ya. A. Obshchaya i neorganicheskaya khimiya 

[General and inorganic chemistry]. Moscow: Vysshaya 
shkola Publ., 5th ed.; 2007. 526 p. 

2. Kainzbauer P., Richter K.W., Ipser H. Experimental 
investigation of the binary Mn-Sb phase diagram. 
Journal of Phase Equilibria and Diffusion. 2016;37(4): 
459–468. https://doi.org/10.1007/s11669-016-0470-2

3. Halla H., Nowotny H., X-ray Investigation in the 
system manganese-antimony. Zeitschrift für 
Physikalische Chemie. 1936;34: 141–144. https://doi.
org/10.1515/zpch-1936-3409

4. Binary alloy phase diagrams. Okamoto H., 
Schlesinger M. E.; Mueller E. M. (eds.). ASM 
International, vol. 3: 2016. p. 2598. https://doi.
org/10.31399/asm.hb.v03.9781627081634

5. Yamashita T., Takizawa H., Sasaki T., Uheda K., 
Endo T. Mn3Sb: A new L12-type intermetallic 
compound synthesized under high-pressure. Journal 
of Alloys and Compounds. 2016;348(1-2): 220–223. 
https://doi.org/10.1016/S0925-8388(02)00834-4

6. Marenkin S. F., Kochura A. V., Izotov A. D., 
Vasil’ev M. G. Manganese pnictides MnP, MnAs, and 
MnSb are ferromagnetic semimetals: preparation, 
structure, and properties. Russian Journal of Inorganic 
Chemistry. 2018;63(14): 1753–1763. https://doi.
org/10.1134/S0036023618140036

7. Han G. C., Ong C. K., Liew T. Y. F. Magnetic and 
magneto-optical properties of MnSb films on various 
substrates. Journal of Magnetism and Magnetic 
Materials. 1999;192(2): 233–237. https://doi.
org/10.1016/S0304-8853(98)00545-9 

8. Teramoto I., Van Run A. M. J. G. The existence 
region and the magnetic and electrical properties of 
MnSb. Journal of Physics and Chemistry of Solids. 
1968;29: 347–352. https://doi.org/10.1016/0022-
3697(68)90080-2

9. Chen T., Stitius W., Allen J. W., Steward G. R. 
Magnetic and electric properties of MnSb. AIP 
Conference Proceedings. 1976;29: 532–535. https://doi.
org/10.1063/1.30431

10. Lyakisheva N. P. Diagrammy sostoyaniya 
dvoinykh metallicheskikh system [State diagrams of 
binary metal systems]: Handbook: vol. 3. Moscow: 
Mashinostroenie Publ.; 2001. 872 p. 

11. Grazhdankina N. P. , Medvedeva I. V. , 
Pasheev A. V., Bersenev Yu. S. Magnetic properties of 
alloys MnSb and Mn1.11Sb after subjection to high 
pressures and temperatures. Journal of Experimental 
and Theoretical Physics. 1981;54(3): 564–567. Available 
at: http://www.jetp.ac.ru/cgi-bin/dn/e_054_03_0564.
pdf 

12. Zhang H., Kushvaha S.S., Chen S., Gao X., Wang 
S. Synthesis and magnetic properties of MnSb 

nanoparticles on Si-based substrates. Applied Physics 
Let ters .  2007;90(20) :  202503. https: / /doi .
org/10.1063/1.2737908

13. Marenkin S. F., Izotov A. D., Fedorchenko I. V., 
Novotortsev V. M. Manufacture of magnetic granular 
structures in semiconductor-ferromagnet systems. 
Russian Journal of Inorganic Chemistry. 2015;60(3): 
295–300. https://doi.org/10.1134/S0036023615030146

14. Dmitriev A. I., Talantsev A. D., Koplak O. V., 
Morgunov R. B. Magnetic fluctuations sorted by 
magnetic field in MnSb clusters embedded in GaMnSb 
thin films. Journal of Applied Physics. 2016;119(7): 
073905. https://doi.org/10.1063/1.4942005

15. Hanna T., Yoshida D., Munekata H. Preparation 
characterization of MnSb–GaAs spin LED. Journal of 
Crystal Growth. 2011;323(1):  383–386. https://doi.
org/10.1016/j.jcrysgro.2010.11.146

16. Moya X., Kar-Narayan S., Mathur N. Caloric 
materials near ferroic phase transitions. Journal of 
Nature Materials. 2014;13(5):  439–450. https://doi.
org/10.1038/nmat3951 

17. Burrows C., Dobbie A., Myronov M., Hase T., 
Wilkins S.,Walker M. Heteroepitaxial growth of 
ferromagnetic MnSb(0001) films on Ge/Si(111) virtual 
substrates. Crystal Growth Design. 2013;13(11): 4923-
4929. https://doi.org/10.1021/cg4011136

18. Mousley P. J., Burrows C. W., Ashwin M. J., 
Takahasi M., Sasaki T., Bell G. R. In situ X-ray 
diffraction of GaAs/MnSb/Ga(In)As heterostructures. 
Physica Status Solidi. 2017;254(2):  1600503. https://
doi.org/10.1002/pssb.201600503 

19. Matsui T., Ando E., Morii K., Nakayama Y. 
Development of (001) texture of MnSb in thin films 
prepared by interdiffusion of Mn/Sb multilayers. 
Materials Science and Engineering. 1994; B(27): 109–
115. https://doi.org/10.1016/0921-5107(94)90131-7

20. Dai R., Chen N., Zhang X. W., Peng C. Net-like 
ferromagnetic MnSb film deposited on porous silicon 
substrates. Journal of Crystal Growth. 2007;299(1): 142–
145. https://doi.org/10.1016/j.jcrysgro.2006.11.132

21. Kushvaha S. S., Zhang H. L., Yan Z, Wee A. T. S., 
Wang X. Growth of self-assembled Mn, Sb and MnSb 
nanostructures on highly oriented pyrolytic graphite. 
Thin Solid Films. 2012;520(23): 69096915. https://doi.
org/10.1016/j.tsf.2012.07.099

22. Marenkin S. F., Ril A. I., Rabinovich O., 
Fedorchenko I., Didenko S. MnSb ferromagentic films 
synthesized by vacuum thermal evaporation. Journal 
of Physics: Conference Series. 2020;1451: 012022. 
https://doi.org/10.1088/1742-6596/1451/1/012022 

23. Nesmeyanov A. N. Davlenie para khimicheskikh 
elementov [Vapor pressure of chemical elements] 
Moscow: AN SSSR Publ.; 1961. 396 p. 

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 387–395

M. Jaloliddinzoda et al. Synthesis of bulk crystals and thin films of the ferromagnetic MnSb



395

Information about the authors
Muhammadyusuf Jaloliddinzoda, PhD student, 

Department of Electronic materials technology, 
National University of Science and Technology 
“MISIS”, Moscow, Russian Federation; e-mail: 
muhammad.9095@mail.ru. ORCID iD: https://orcid.
org/0000-0002-5187-5136.

Sergey F. Marenkin, DSc in Chemistry, Professor, 
Chief Researcher of the Laboratory of Semiconductor 
and Dielectric Materials, Kurnakov Institute of General 
and Inorganic Chemistry of the Russian Academy of 
S c i e n c e s ,  M o s c o w,  R u s s i a n  F e d e r a t i o n ; 
email: marenkin@rambler.ru. ORCID iD: https://orcid.
org/0000-0003-2577-6481.

Alexey I. Ril’, Junior Researcher at the Laboratory 
of Semiconductor and Dielectric Materials, Kurnakov 
Institute of General and Inorganic Chemistry of the 
Russian Academy of Sciences, Moscow, Russian 
Federation; e-mail: ril_alexey@mail.ru. ORCID iD: 
https://orcid.org/0000-0002-7745-2529. 

Mikhail G. Vasil’ev, DSc in Technical Sciences, 
Professor, Head of the Laboratory of Semiconductor 
and Dielectric Materials, Kurnakov Institute of General 
and Inorganic Chemistry of the Russian Academy of 
Sciences, Moscow, Russian Federation; e-mail: 
mgvas@igic.ras.ru. ORCID iD: https://orcid.org/0000-
0002-4279-1707.

Alexander  D. Izotov , DSc in  Chemistr y, 
Corresponding Member of Russian Academy of 
Sciences, Chief Researcher at the Laboratory of 
Semiconductor and Dielectric Materials, Kurnakov 
Institute of General and Inorganic Chemistry of the 
Russian Academy of Sciences, Moscow, Russian 
Federation; e-mail: izotov@igic.ras.ru. ORCID iD: 
https://orcid.org/0000-0002-4639-3415. 

Denis E. Korkin, Technologist at the Laboratory of 
Semiconductor and Dielectric Materials, Kurnakov 
Institute of General and Inorganic Chemistry of the 
Russian Academy of Sciences, Moscow, Russian 
Federation; e-mail: disa5566@yandex.ru. ORCID iD: 
https://orcid.org/0000-0001-6838-3974. 

Received 8 June 2021; Approved after reviewing 17 
June 2021; Accepted for publication 15 August 2021; 
Published online 25 September 2021.

Translated by Marina Strepetova
Edited and proofread by Simon Cox

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 387–395

M. Jaloliddinzoda et al. Synthesis of bulk crystals and thin films of the ferromagnetic MnSb



396

ISSN 1606-867Х (Print)
 ISSN 2687-0711 (Online)

Condensed Matter and Interphases
Kondensirovannye Sredy i Mezhfaznye Granitsy

https://journals.vsu.ru/kcmf/

Original articles
Research article
https://doi.org/10.17308/kcmf.2021.23/3531

TSF-MOCVD – a novel technique for chemical vapour deposition 
on oxide thin films and layered heterostructures
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Abstract 
A new principle for supplying volatile precursors to MOCVD gas-phase chemical deposition systems is proposed, based on 
a two-stage evaporation of an organic solution of precursors from a soaked cotton thread, which passes sequentially through 
the zones of evaporation of the solvent and precursors. The technological capabilities of TSF-MOCVD (Thread-Solution 
Feed MOCVD) are demonstrated based on examples of obtaining thin epitaxial films of СеО2, h-LuFeO3 and thin-film 
heterostructures β-Fe2O3/h-LuFeO3. The results of studying the obtained films by X-ray diffraction, energy dispersive X-ray 
analysis, and high- and low-resolution transmission microscopy are presented. Using the TSF module, one can finely vary 
the crystallisation conditions, obtaining coatings of the required degree of crystallinity, as evidenced by the obtained 
dependences of the integral width of the h-LuFeO3 reflection on the film growth rate. Based on the TEM and XRD data, it 
was concluded that β-Fe2O3 grows epitaxially over the h-LuFeO3 layer. Thus, using TSF-MOCVD, one can flexibly change 
the composition of layered heterostructures and obtain highly crystalline epitaxial films with a clear interface in a continuous 
deposition process. 
Keywords: Thread-solution feed, TSF, MOCVD, Epitaxy, Thin films, Heterostructures
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1. Introduction 
Thin-film technologies underlie the 

development of many scientific and technical 
fields, and their continuous improvement gives 
rise to new possibilities for creating modern 
materials and thin-film devices with a precisely 
specified architecture and physical properties. 
Along with high-vacuum physical methods 
for producing thin films, chemical vapour 
deposition (CVD) is widely used. [1–3]. Thus, 
the MOC-hydride epitaxy method has taken a 
leading position in the production of planar 
semiconductor structures AIIIBV, AIIBVI and 
solid solutions based on them [4], and metal-
organic precursor vapour deposition (MOCVD) 
is successfully used to obtain a wide range of 
oxide coatings, as well as in the development 
of functional materials for oxide electronics [5]. 
The MOCVD method started to be intensively 
developed at the end of the 80s of the last century 
due to the need to obtain thin HTSC films [6]. Over 
the years, this method has been demonstrated 
to be extremely flexible in producing films of 
a wide variety of compositions and purposes, 
as well as the ability to deposit coatings with 
high uniformity and over large areas. [7]. Both 
highly-crystalline epitaxial functional layers 
and heterostructures with clear interfaces 
with a thickness of several nanometres [8], and 
polycrystalline coatings with a thickness of tens 
of microns can be obtained using MOCVD [9]. 

In the deposition of multicomponent films, 
along with the traditional approach, which 
consists in the evaporation/sublimation of the 
precursor of each component from an individual 
source heated to the required temperature [7], a 
more convenient single source is used successfully 
[10, 11]. In this case, the mixture of precursors is 
sharply heated to a temperature providing the 
simultaneous transition of all precursors into 
a vapour, including the least volatile of them. 
This approach can be implemented in two ways, 
which differ in the aggregate states of the mixture 
of precursors: either an aerosol of an organic 
solution of a mixture of precursors [10, 11], or a 
fine mechanical mixture of solid precursors are 
used [12, 13]. Both schemes have advantages and 
disadvantages. For example, liquid-phase MOCVD 
systems are technically simpler than solid state 
systems and provide a continuous and smoother 

feed of precursors into the reactor. However, 
it is important to understand that the total 
concentration of precursor solutions is usually 
in the order of 10–1 M, from which it follows that 
the vapour in the reactor is formed mainly by the 
organic solvent. The solvent vapour, as well as 
the vapour of the precursors, undergoes pyrolysis 
and oxidation near the substrate heated to a high 
temperature, which increases the concentration 
of residual carbon in the films, reduces and makes 
the partial pressure of oxygen in the deposition 
zone undefined [14]. It is clear that this method 
is of little use for the reproducible production 
of films of easily reducible oxides, oxides with 
a narrow region of oxygen homogeneity, and 
other films with functional properties sensitive 
to residual carbon. 

MOCVD systems, in which the reactor is fed 
by the flash evaporation of micro-portions of a 
mixture of solid precursors, are free from these 
fundamental disadvantages. [12, 15], however, 
instead of them, there are problems with the 
uniformity of vapour supply to the reactor and 
the limited amount of precursor substances 
loaded into the feeder of the setup for a single 
experiment. The disadvantages of this approach 
in the implementation of the MOCVD process 
also include the technical complexity of setups, 
especially those designed specifically for the 
production of thin-film heterostructures. [16, 17].

This article highlights a new principle 
of supplying liquid precursors to chemical 
vapour deposition systems, which combines 
the advantages of known liquid-phase and solid 
state power supply systems and is devoid of their 
disadvantages [18]. Moreover, it allows obtaining 
thin-film structures consisting of layers of 
different chemical compositions within a single 
deposition run, as well as thin films with a vertical 
composition gradient.

2. Experimental 
All samples were obtained using MOCVD 

setup with TSF module for precursor feed and 
a vertical hot-walled reactor. The scheme of 
MOCVD setup with TSF module, in which the new 
principle was applied, is shown in Fig. 1. During its 
operation, the following stages were carried out: 
a cotton thread (11) passed through a solution 
of precursors in a low-boiling solvent (6), which 
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evaporated in the solvent distilling zone (9). After 
distilling off the solvent, the thread, covered with 
small crystals of precursors, continued to move 
towards the hot zone (10), where the precursors 
were sublimated, and the resulting vapours 
were transferred to the reactor (2) by heated 
argon flow. Directly at the inlet to the heated 
quartz reactor, oxygen was introduced into the 
gas mixture of argon with precursor vapours 
in a predetermined proportion. In the reactor 
zone, the precursor vapours decomposed in the 
substrate zone, which led to the formation of a 
thin oxide film. Throughout the entire deposition, 
the substrate holder (3) was rotated constantly for 
a more uniform heating and a more symmetrical 
arrangement of the substrates with respect to 
the gas flow directed along the normal to their 
surface.

During the entire deposition process, the 
reservoir with the precursor solution was 
outside the vacuum system and was accessible 
to the experimenter, therefore, by replacement 
of the solution in the reservoir (6), one could 
optionally change the chemical composition of 
the deposited oxide layers by gradual addition of 
additional precursors. It allowed to control the 
structure of the interface, making the transition 
between phases either abrupt or smooth, 
depending on the task. The proposed scheme 
also allowed the extremely fine variation of the 
film growth rate, which is an important condition 
for crystallisation. It can be changed by altering 
either the concentration of precursors in the 

solution, or the speed of drawing the thread, or 
the absorption capacity of the thread.

The described setup was used to synthesize 
the following objects:

a) epitaxial CeO2 thin films on R-sapphire, 
b) epitaxial hexagonal LuFeO3 (h-LuFeO3) 

thin films on the (111) and (100) surfaces of YSZ 
single-crystal,

c) thin-film heterostructures with an 
architecture of b-Fe2O3(100)//h-LuFeO3 (001)//
YSZ(100) and b-Fe2O3 (111)//h-LuFeO3 (001)//
YSZ(111).

Metal-organic volatile complexes of 
Ce(thd) 4, Lu(thd) 3 and Fe(thd) 3 ( thd = 
2,2,6,6-tetramethylheptanedionate 3,5) dissolved 
in toluene were used as precursors. In all cases, 
a temperature of 190 °C was set in the hot zone 
of the TSF module (10) for sublimation of the 
precursors. CeO2 thin films were deposited at 
temperatures of 850 and 900 °C in the reactor. The 
total pressure in the reactor was 10 mbar and the 
partial pressure of oxygen in the reactor was 2, 3, 
4, 5, 6, and 8 mbar. The depositions were carried 
out on single-crystalline r-sapphire with a surface 
orientation (10–12), which before deposition 
were annealed at a temperature of 900 °C for 
30 min for the purification of the surface from 
the residues of adsorbed organic contaminants.

The molar ratio of precursors (Lu:Fe) in 
a toluene solution varied from 1 to 2 for the 
production of h-LuFeO3 single-phase thin films 
of the required stoichiometry. It has been found 
that the optimal Lu:Fe ratio in the solution is 2. 

Fig. 1. The scheme of MOCVD setup with TSF module, 1 – reactor furnace, 2 – quartz reactor, 3 – substrate 
holder, 4 – vacuum container for the receiving reel, 5 – receiving reel, 6 – precursor reservoir, 7 – nitrogen trap, 
8 – feeding reel, 9 – cold zone of the TSF module, 10 – hot zone of the TSF module, 11 – cotton thread
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h-LuFeO3 thin films were obtained at a reactor 
temperature of 900 °C, a total pressure in the 
reactor of 10 mbar and the oxygen partial pressure 
in the reactor of 1 mbar. The deposition was 
carried out on single-crystalline YSZ [ZrO2(Y2O3)] 
substrates with the (111) and (100) orientations 
of the growth surface. Before deposition, these 
substrates were annealed in air at a temperature 
of 1100 °C for 24 h, while the defects in the 
structure of the surface layer, damaged by the 
polishing of the substrates by the manufacturer, 
were eliminated.

Deposition of b-Fe2O3 layers on the h-LuFeO3 
buffer layers was carried out at a temperature in 
the reactor of 900 °C, the total pressure in the 
reactor of 10 mbar, and the partial pressure of 
oxygen in the reactor of 0.1 mbar. 

The epitaxial growth of all films and layers was 
confirmed by X-ray diffraction (2q-w scanning) 
using a Rigaku Miniflex diffractometer with 
a copper anode (lKa = 1.54046 Å), a power of 
600 W, and a beta filter. The cationic composition 
of h-LuFeO3 films was determined by energy 
dispersive X-ray analysis using a Carl Ziess Leo 
SUPRA 50 VP scanning electron microscope 
with an X-ray system (Oxford Instruments INCA 
Energy+).

Cross sections of b-Fe2O3/h-LuFeO3/YSZ 
thin-film heterostructures were prepared for 
transmission electron microscopy using a 
focused ion beam (FIB) on a Helios Nanolab 660 
scanning electron microscope (ThermoFisher 
Scientific, USA) equipped with an Omniprobe 
micromanipulator (Omniprobe, USA). The cut 
lamellae were examined using a Titan 80-300 
TEM/STEM device (FEI, USA) equipped with a 
CS corrector at an accelerating voltage of 300 kV. 
The microscope is equipped with an EDX Si 
(Li) spectrometer (EDAX, USA), a high angular 
annular dark-field detector (HAADF) (Fischione, 
USA), and a Gatan Image Filter (GIF) (Gatan, USA).

3. Results and discussion 
3.1. СеО2 thin films 

Epitaxial CeO2 thin films are a very popular 
material  with multiple applications; in 
particular, they are used as a buffer layer in 
the deposition of HTS films. CeO2 can grow in 
two different orientations on R-sapphire: in 
one of them, the crystallographic axis [100] 

is directed along the normal to the substrate 
plane, and in the other, the [111] axis is oriented 
in this direction. The [100] orientation is 
thermodynamically more favourable, since the 
R-plane of the sapphire has a rectangular motif, 
which promotes the growth of the cubic CeO2 
face. The growth in the [111] direction is due 
to kinetic reasons: as is known, this direction 
is the direction of the rapid growth of crystals 
with a fluorite structure. Our goal was to achieve 
the growth of films in which the fraction of 
(100)-oriented crystallites is maximal. The key 
condition for success in this case is fast surface 
diffusion, which promotes the crystallisation 
of the thermodynamically favourable (100) 
orientation. For acceleration of the surface 
diffusion, two ways were used: the first was an 
increase in the deposition temperature, and the 
second was the heterovalent doping of CeO2 
films with yttrium oxide. In the second case, 
diffusion is activated due to the appearance of 
oxygen vacancies in the growing film. 

The texture coefficient (T) of the (100) 
orientation, calculated by equation (1), which 
allows estimating its share among all other 
orientations, taking into account the structural 
data was used as a quantitative characteristic of 
the quality of the obtained films.
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For the calculation, we used the intensities 
of the (100) and (111) reflections in the obtained 
films I hklexp( )  determined by profile analysis of 
the corresponding reflections, as well as their 
reference intensities taken from the powder 
diffractogram stored in the crystallographic data 
base. Thus, the closer the texture coefficient is 
to 1, the more grains in the film are oriented with 
the (100) plane parallel to the substrate plane, 
and the more perfect is the film.

It can be seen, that the character of the texture 
coefficient dependence upon the oxygen partial 
pressure changes dramatically with an increase in 
temperature: at 850 °C the trend was downward 
(black line in Fig. 2a), while at 900 °C (black line 
in Fig. 2b) it changed to an upward trend.
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This fact can be explained as follows: at 850 °C, 
an increase in p(O2) increased the deposition rate 
making the surface diffusion flow insufficient, 
which led to the formation of a larger proportion 
of grains with the (111) orientation. The rate of 
surface diffusion exponentially depends on the 
temperature and at a temperature of 900 °C it 
already becomes sufficient for the equilibrium 
crystallisation of the film from the substance 
approaching the substrate surface. However, at 
this temperature, the system approaches pO2-T 
conditions for the dissociation of CeO2, and phase 
stabilization of this oxide requires an increase in 
pO2. Dissociation occurs with the formation of an 
equilibrium Се7О12 [19] phase which crystallises 
in the rhombohedral space group R3,c unit cell 
parameter a = 6.785 (1) Å and angle a = 99.42 (1) 
[20]. The emergence of the secondary phase nuclei 
limits the epitaxial growth of the main СеО2 
phase in the equilibrium (100) orientation, as a 
result of which the (111) orientation and other 
polycrystalline orientations develop. This should 
be prevented by increasing the pO2 in the reactor.

As we noted above, the second method for 
activating of surface diffusion to facilitate the 
achievement of the thermodynamic equilibrium 
is the heterovalent doping of cerium oxide with 
yttrium oxide, which leads to the formation of 
oxygen vacancies in the films:

1
2

3
2

1
22

Y O Y O2 3( CeO ) Ce O OÆ
¥= ¢ + + V  ,

the concentration of which is many orders of 
magnitude higher than the equilibrium concen-
tration of thermal vacancies, which, in turn, 
leads to a sharp increase of the surface diffusion 
flow. As a consequence, the dependence of the 
texture coefficient (red line in Figs. 2a and 2b), 
both on the partial pressure of oxygen and on 
temperature, disappears, since under any depo-
sition conditions implemented in this study, 
the system has sufficient diffusion mobility to 
reach the most energetically favourable (ther-
modynamically stable) variant of film growth. 
This result confirms the conclusions of the 
study [21].

3.2. h-LuFeO3 thin films
Thin films of h-LuFeO3 were more complex 

object obtained using the proposed precursor 
feed method. It should be noted that under the 
conditions of conventional solid state synthesis, 
LuFeO3 crystallises with orthorhombically 
distorted perovskite structure [22]. Formation 
of the hexagonal ferrite LuFeO3, which is 
isostructural to the hexagonal manganite LuMnO3, 
becomes possible due to epitaxial stabilization on 
a structurally coherent substrate [23]. The low 
energy of the film – substrate interface leads to 
a decrease in the free energy of the system and 
the stabilization of phases structurally coherent 
to the substrate and unstable in the autonomous 
state [24]. In this study, YSZ(111) and YSZ(100) 
were used as such substrates.

Fig. 2. Dependence of the texture orientation coefficient (100) of СеО2 on p(O2) and the content of the doping 
component (yttrium oxide) at the deposition temperature a) 850 °С and b) 900 °С
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For demonstration of the possibility of 
controlling the crystallisation conditions using 
the new precursor feed system, a series of 
depositions were carried out, varying the film 
growth speed by changing the thread passing 
speed. The X-ray diffraction results (Figs. 3a 
and 3b) showed that in all cases the films are 
h-LuFeO3.

As can be seen from the dynamics of changes 
in the integral width of (002) reflection of the 
h-LuFeO3 (Fig. 4), the crystallinity of the films 
decreased with an increase in the growth rate, 
which is quite a logical observation. In this case, 
a decrease in crystallinity can be associated 
not only with an insufficiently active surface 
diffusion flux, but also with a deviation of the 
system from the required stoichiometry Lu: Fe 
= 1: 1, leading to the formation of secondary 
phases enriched in iron and interfering the 
epitaxial growth of h-LuFeO3. Their reflections 
can not be seen on the presented XRD patterns 
probably due to absence of the clearly defined 
growth direction.

An interesting feature is that the integral 
width of the h-LuFeO3 reflection formed on the 
YSZ(100) surface in all cases was higher than that 
of h-LuFeO3 on the YSZ(111) surface. The reason 
for this may be that the stabilizing effect of the 
(100) surface on h-LuFeO3 is lower than that 
for the (111) surface due to the lower structural 
correspondence of the YSZ(100) surface to 
the hexagonal crystal structure of the forming 
film(25).

3.3. Thin‑film heterostructures  
h-LuFeO3+b-Fe2O3

The possibility of the deposition of 
layers of various chemical compositions was 
demonstrated on the example of obtaining thin-
film heterostructures h-LuFeO3 with iron oxide 
on single-crystalline substrates YSZ(111) and 
YSZ(100). It can be seen from the diffraction 
patterns (Fig. 5) that the iron oxide layer growing 
on top the h-LuFeO3 surface is an unusual cubic 
modification b-Fe2O3. It should be noted that 
this phase is unstable under the implemented 
synthesis conditions. There is information in the 
literature on its transition to a-Fe2O3 already at 
650 ºC [26], while in this study, the deposition 
temperature of the iron oxide layer was 900 ºC. 
The absence of phases other than b-Fe2O3 and the 
presence of only one family of reflections of this 
phase indicated the strong epitaxial stabilization 
of b-Fe2O3 by the h-LuFeO3 sublayer. It should be 
noted that epitaxial stabilization also changes 
the equilibrium characteristic phase relations 
between Fe2O3 and LuFeO3: it is well known that 
in mixtures of powders of this and similar systems 

Fig. 3. Diffraction patterns of h-LuFeO3 films obtained 
at different deposition rates on (a) YSZ (111) and (b) 
YSZ (100) substrates

Fig. 4. Dependence of the integral width of the 
h-LuFeO3 (002) reflection on the deposition rate
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(REE = Nd–Yb), Fe2O3, and RFeO3 REE oxides 
react with each other forming garnet phases [27]. 
However, thanks to the epitaxial contact of thin 
films of these substances, the chemical reaction 
was suppressed. Similar changes in phase 
relations as a result of epitaxial stabilization 
have been described for other oxide systems as 
well [24]. 

Also, the difference in the orientation of 
the epitaxially growing b-Fe2O3 film on YSZ 
surfaces with different indices should be noted: 
in the heterostructure deposited on the YSZ(111) 
substrate, the oriented growth of the b-Fe2O3 
phase was observed in the [111] direction  
perpendicular to the plane of the substrate, 
while in the heterostructure on the YSZ(100) 
substrate it was observed in the [100] direction 
perpendicular to the plane of the substrate. 
The results of local electron diffraction and 
transmission microscopy of the cross section 
of the obtained heterostructures confirmed the 
phase composition and orientation of the layers, 
which were determined based on the results of 
X-ray diffraction. Microphotographs of b-Fe2O3/
h-LuFeO3/YSZ heterostructure cross-sections 
(Fig. 6 a, c)  indicate a higher uniformity and less 
surface roughness of the h-LuFeO3 layer grown 
on YSZ(111) substrate compare to one deposited 
on YSZ(100). This observation can be explained 
by the previously described in-plane variant 
growth of h-LuFeO3 on YSZ(100), which results 
in the formation of a films with microstructure 
fragmented into nanoscale domains [25]. The 

closer examination of images of heterostructure 
b-Fe2O3(001)//h-LuFeO3(001)//YSZ(100) revealed 
that h-LuFeO3 had not formed located uniformly 
in one direction: its (001) planes were aligned 
parallel to both (001) and (111) planes of the YSZ 
substrate. The former growth variant is observed 
near the substrate surface and continues up to 
film thickness of roughly 25 nm where the growth 
direction is switched to the later variant. The 
presence of the side orientation of h-LuFeO3 in 
the YSZ(100) heterostructure is very interesting 
and can be a factor explaining the difference in 
the  growth direction of the b-Fe2O3 on different 
substrates. Thus, in the heterostructure on 
YSZ(111) substrate the stabilizing surface for 
b-Fe2O3 is h-LuFeO3 with its (001) plane parallel 
to the substrate plane while in case of YSZ(100) 
substrate b-Fe2O3 is stabilized on h-LuFeO3 with 
its (001) plane  inclined by 54.7o relative to 
the substrate plane (54.7 is the angle between 
<111> and <100> directions in the cubic cell). 
This substantiation of the b-Fe2O3 growth is also 
reinforced by the fact that the angle between 
the crystallographic directions of b-Fe2O3 in 
heterostructures on different substrates (<111> 
on YSZ(111) and <100> on YSZ(100)) is also 54.7°.

Grains of b-Fe2O3 with clearly visible grain 
boundaries are clearly seen on microphotographs 
of heterostructures deposited on both substrates, 
which indicates Volmer–Weber type (island) 
growth. The growth of iron oxide layer with a 
thickness of about 5 nm on the surface of the 
b-Fe2O3 in the heterostructure on the YSZ(111) 
substrate should be noted (Fig.  6b). According 
to the Fourier spectrum, this nanolayer can 
be described by a cubic syngony with a lattice 
parameter of 8.4 Å, which can correspond to the 
Fe3O4 phase with a lattice parameter of 8.396 nm 
(ICDD PDF-2 database). Its appearance in this 
heterostructure and, on the contrary, its absence 
in the heterostructure on the YSZ(100) substrate 
(Fig.6c, d) can be explained by the fact that, in the 
former case, the critical thickness of the b-Fe2O3 
film is exceeded, above which the energy lowering 
of b-Fe2O3 (111)//h-LuFeO3 (001) epitaxial 
contact turns out to be insufficient to stabilize 
this metastable modification of iron oxide. At 
the same time, in the heterostructure on the 
YSZ(100) substrate, b-Fe2O3 grows in a different 
orientation relative to h-LuFeO3, which obviously 

Fig. 5. Diffraction patterns of thin-film b-Fe2O3/
h-LuFeO3 heterostructures on YSZ (111) and YSZ (100) 
substrates. Reflexes of substrates are marked with *
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leads to an increase in the critical thickness of 
this epitaxially stabilized layer. This interesting 
aspect, the dependence of the critical thickness 
on the orientetion of epitaxially stabilized phase, 
will be clarified by further calculations of the 
interface energies using the algorithm described 
by us in [25].

4. Conclusions
Thus, we have implemented a new version 

of the MOCVD with an original method for 
supplying volatile precursors to the reactor, 
called TSD-MOCVD, which combines the 
advantages of liquid-phase and solid-state 
single-source MOCVD variants. The deposition 

occurs at a low total pressure in the reactor, the 
precursor solution is available to the operator 
throughout the experiment, which allows one 
to change the composition of the solution and/
or its concentration, make a cyclic change, 
and to add new components to it. The new 
method was used for the deposition of СеО2 
films, the possibility of a smooth change in the 
deposition rate, its effect, as well as the effect of 
heterovalent doping on the texture of the films 
are shown. The great preparative capabilities of 
the proposed method for the growth of epitaxial 
heterostructures with a clear interface were 
based on the examples of b-Fe2O3(111)//h-
LuFeO3(001)//YSZ(111) and b-Fe2O3(001)//h-

Fig. 6. Results of cross-section TEM of heterostructures (a, b) b-Fe2O3 (111)//h-LuFeO3 (001)//YSZ (111) and 
(c, d) b-Fe2O3 (001)//h-LuFeO3 (001)//YSZ (100)
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LuFeO3(001)//YSZ(100). The possibility of the 
epitaxy of metastable b-Fe2O3 polymorph on 
the surface of hexagonal lutetium ferrite was 
revealed for the first time The existence of both 
phases is explained within the framework of the 
phenomenon of epitaxial stabilization. Such 
film composites will be further investigated for 
possible multiferroic properties. 
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100, and 80 ppm.
By chemically stimulated thermal oxidation, we obtained thin films with semiconductor properties on the InP surface. It 
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1. Introduction
Currently, the creation of chemical sensors 

that can detect hazardous, toxic, and harmful 
gases is a topic of interest. Thus, it is necessary to 
develop new methods for creating gas-sensitive 
elements with a simple design, low cost, and high 
sensitivity and selectivity [1, 2]. 

The traditional way to increase the selectivity 
of the material is the search for the optimal 
microstructure of the material, dopants, and 
analysis temperature for each gas [3]. Numerous 
studies on improving the sensory parameters of 
materials are aimed at optimising the electronic 
properties or adsorption capacity of the material 
[4]. The main oxides for gas sensors are SnO2 and 
In2O3 [5–11]. V2O5 [12], Ga2O3, and perovskite 
structures with various impurities [13–15] 
are also often used. The surface is modified in 
different ways: by preparing thin films of the 
In2O3 nanocolumn structure [16], by a porous 
microstructure in multilayer sensor structures 
SnO2–CuO [17], through its doping, etc.

The aim of this study was to create thin films 
on the InP surface under the influence of an oxide 
chemostimulator + inert component (PbO + Y2O3, 
respectively) compositions, to determine their 
gas-sensitive properties and their dependence 
on the composition.

2. Experimental
Thin films on an InP surface were created by 

thermal oxidation under the influence of different 
compositions of PbO + Y2O3. The composition 
changed from one pure component to another 
with increments of 20 mol%. The samples were 
oxidised in a horizontal quartz reactor placed in 
an MTP-2M-50-500 resistance heating furnace 
at a temperature of 550 °С (± 1 °С). The oxygen 
flow rate was 30 l/h. Thermal oxidation of the 
samples was carried out for 60 minutes by 
postoxidation with a periodisation of 10 minutes. 
Such a temperature-time regime ensured the thin 
films formed on the InP surface had a thickness 
of 100–120 nm. Such values are required for 
the further study of their electrophysical 
characteristics (specific surface resistance). 
Indium phosphide plates (FIEO, orientation (100) 
with a concentration of major charge carriers 
of at least 5·1016 cm–3 at 300 K and intrinsic 
n-type conductivity) were used as substrates. 

The mechanism of the formation of thin films in 
the processes of chemically stimulated thermal 
oxidation is considered in more detail in [18, 19].

The thickness of the resulting oxide films was 
determined using a LEF-754 laser ellipsometer 
(±2 nm). The elemental and chemical composition 
of the films was studied using a JEOL-6510LV unit 
with a Bruker energy dispersive microanalysis 
system and a Vertex 70 IR Fourier spectrometer, 
respectively. The specific surface resistance of the 
obtained thin films was measured by the Van der 
Pauw method using a TsIUS-4 system. The specific 
surface resistance of the oxide film samples was 
measured in air, as well as in the presence of the 
test gas (ammonia) at concentrations of 120, 100, 
and 80 ppm. When measuring the resistance, the 
air humidity was 55 %. The measurements were 
carried out in a steady-state system. The value of 
the sensory signal S was determined as the ratio 
of the resistance of the samples in air (Ra) to the 
resistance of the samples in the presence of NH3 
in the atmosphere (Rtg):

S = Ra / Rtg  (1)

3. Results and discussion
In order to determine the inertness of the 

oxides towards each other, the phase composition 
of the powders of the mixture after heat treatment 
was determined by the method of X-ray diffraction 
analysis (XRD). The heat treatment parameters 
corresponded to the regime of thermal oxidation 
of indium phosphide. An example of a diffraction 
pattern is shown in Fig.  1. The interplanar 
distances obtained as a result of the data analysis 
were compared with the reference values [20] 
of the interplanar distances of yttrium and lead 
oxides, as well as with the distances of possible 
mixed compounds of these oxides. 

The absence of mixed phases of the oxides, as 
well as phases other than Y2O3 for yttrium oxide, 
indicates its inertness both to the second oxide 
of the composition (PbO) and to its own redox 
transformations. PbO, on the contrary, exhibits 
redox transformations at the experimental 
temperature (550 °C). Since the process takes 
place in a flow of oxygen, it is accompanied by the 
partial formation of mixed oxides Pb2O3 and Pb3O4.

The elemental composition of thin films 
grown on the InP surface was studied by local 
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electron probe microanalysis (EPMA). The 
obtained results are demonstrated in Table 1.

As follows from the obtained data, the main 
component of the film is indium. Its content is 
almost 2 times higher than the content of the 
second component of the substrate, phosphorus. 
Such a low phosphorus content in the resulting 
thin film on the InP surface is obviously due to 
its partial evaporation in the pentoxide form, 
which had also been observed in earlier studies 
[18, 21]. Moreover, for both of these elements, we 
can see practically no dependence on the various 
compositions of the oxides, under the influence 
of which the film on the semiconductor surface 
was formed. At the same time, the content of 
lead, which is another component of the film, 
shows a clear dependence on the composition. 
This dependence is considered in more detail 
below and shown in Fig. 2. Another component 
of the oxide composition, yttrium oxide, was 
not detected in the film at all. This confirms its 

inertness not only to the second oxide of the 
composition, but also to the process of thermal 
oxidation of InP in general. At the same time the 
total content of three elements is not 100 at%, 
which indicates that there is another component 
in the system. Since the film growth process takes 
place in a flow of oxygen, it is logical to assume 
that this is the missing component. Since the 
presence and amount of oxygen cannot be directly 
determined by EPMA, its content was calculated 
as the value lacking from 100 at%. The calculation 
showed significant oxygen content in the film 
(about 50 at%). Therefore, all other components 
of the film are in an oxidised state.

Using the data obtained by EPMA, we plotted 
a graph of the dependence of the lead content in 
the film on the composition (Fig. 2.)

As follows from Fig. 2, the dependence of 
the lead content in the film is almost linear. 
Such a dependence of the content of the film 
on the composition, under the influence of 

Fig. 1. Diffraction pattern of the (Y2O3)0,6+(PbO)0,4 composition after annealing at 550 °C for 10 min

Table 1. Elemental composition of thin films on the InP surface

Composition of the 
composition

Elemental composition of the films

In, at% P, at% Pb, at% O, at%

(PbO)0,2(Y2O3)0,8 32.42 17.54 0.33 49.71

(PbO)0.4(Y2O3)0.6 34.54 16.87 0.88 47.71

(PbO)0.6(Y2O3)0.4 30.88 17.33 1.31 50.48

(PbO)0.8(Y2O3)0.2 31.66 17.55 1.61 49.15
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which it was formed, makes it possible, using 
an inert component, to obtain oxide layers with 
the desired content of chemostimulator. It can 
help control various properties of the layers, 
including their electrophysical properties. The 
obtained result is similar to that achieved earlier 
[22] and confirms the versatility of using an inert 
component for the precise doping of thin films 
with an alloying component.

To confirm the presence of oxygen in the 
films on the InP surface, as well as the oxidation 
of the detected elements, the obtained samples 
were studied by IR spectroscopy. The results are 
presented in Table 2.

We can distinguish several characteristic 
absorption lines in the spectra of the samples. 
According to the literature data [23], frequencies 
of 565, 541, and 980 cm–1 correspond to the 
formation of In2O3 and InPO4. Similar data were 
obtained during the intrinsic oxidation of indium 
phosphide. However, the spectra also contain 
absorption bands characteristic of the used oxide 
chemostimulator and the film obtained under the 
influence of the composition with the maximum 
PbO content, the compound with lead phosphate 
(538 cm–1). It is necessary to note the absorption 
bands in the range of 430–440 and 620–630 cm–1, 
associated with the background of the InP 
substrate. Thus, infrared spectroscopy was used 
to confirm the incorporation of lead oxide into the 
film growing on the InP surface and its interaction 
with the substrate components. Based on the 
EPMA data it also confirmed the conclusion that 
there was oxygen in the film on the InP surface 
and that all its other components were oxidised. 

This allowed us to expect that the obtained films 
would have semiconductor properties.

Fig. 3 shows the temperature dependence 
(within the range of 20–400 °С) of the resistance 
in air of the samples prepared under the influence 
of the PbO + Y2O3 compositions. The dependences 
demonstrate a clear correlation between the 
composition of the oxide chemostimulator + inert 
component and the resistance of the oxide film 
on the InP surface obtained under its influence. 
The resistance increases with an increase in the 
PbO content in the films. The more PbO there is 
in the composition, the more PbO there is in the 
film. It results in a high oxide film thickness and, 
most likely, ensures the formation of films with 
high resistance parameters. In this case, the films 
themselves are semiconductors, as evidenced by 
the nature of the temperature dependence of the 
resistance.

Fig. 1. Diffraction pattern of the (Y2O3)0,6+(PbO)0,4 composition after annealing at 550 °C for 10 

min 

Fig. 2. Dependence of the chemostimulator content in the film on its molar fraction in the 

composition 

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 0,2 0,4 0,6

Pb content
in the film. at.%

0,8 1 
mole fraction of PbO

Fig. 2. Dependence of the chemostimulator content 
in the film on its molar fraction in the composition

Fig. 3. Specific surface resistance of the samples in air

Table 2. The IR spectroscopic data for the films 
on the InP surface obtained under the influence of 
PbO+Y2O3 compositions

Composition Absorption band, 
cm–1 Compound

(PbO)0.2(Y2O3)0.8

430, 440, 630 InP

565, 750 In2O3

1025, 1242 In(PO3)3

720 PbO

(PbO)0.8(Y2O3)0.2

430, 440, 620 InP

500, 541, 980, 1080 InPO4

565. 750 In2O3

720 PbO

538 Pb(PO3)2
R

, k
O

hm
/□
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The gas to be detected in this study was 
ammonia. We carried out three series of 
experiments with different concentrations 
of ammonia: 120, 100, and 80 ppm. A typical 
temperature dependence of the resistance is 
shown in Fig. 4 for the lowest concentration 
studied.

The obtained surface resistance data were 
used to calculate the sensory signal according 
to equation (1). The results are shown in Fig. 5. 
All dependencies have a pronounced extreme 
character. The extremum corresponding to 
the maximum sensory signal of the obtained 
films, for all concentrations, corresponds to the 
same temperature, 225 °C. With an increase in 
concentration, the magnitude of the sensory 
signal increases slightly, but regularly. It is clearly 
demonstrated in Fig. 6 as an isothermal section 
at 225 °C. 

In this range of gas concentrations, there is 
a linear dependency. In general, the operating 
range of the sensor is a logarithmic function. 
However, in our case it is a straight-line increasing 
dependence, which indicates that the operating 
range of the films is wider than the studied 
interval. 

In addition to the dependence of the sensory 
signal of the film on the concentration of the 
detected gas, Fig. 5 shows its dependence on the 
synthesis conditions, namely, on the composition, 
which influenced the synthesis of this film. This 
dependence is shown more clearly in Fig.  7. 

Fig. 4. Specific surface resistance of the samples mea-
sured in the presence of ammonia in the atmosphere 
with a concentration of 80 ppm

Fig. 5. Temperature dependence of the sensory signal 
of oxide films on the InP surface in the presence of 
ammonia in the atmosphere with a concentration of: 
a) 80 ppm; b) 100 ppm; c) 120 ppm 

R
, k

O
hm

/□

a)

b)

c)
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We chose a concentration of 120 ppm and a 
temperature of 225 °C, at which the magnitude 
of the sensory signal is maximum. 

If we examine Figures 2 and 7 jointly, we can 
conclude that the use of oxide compositions, one of 
which is an inert component, as chemostimulators 
of the InP thermal oxidation process, makes it 
possible to obtain films with the desired content 
of the alloying component (in this case it was 
lead). This allows controlling the magnitude of 
the sensory signal formed on the surface of a thin 
film semiconductor.

4. Conclusions
Thin films were synthesized on the InP surface 

under the action of PbO + Y2O3 composites. 
The formed films predominantly consist of 
lead-containing substrate components in an 
oxidised state. Using the Van der Pauw method, 
we determined that the thin films were gas-
sensitive and detected the presence of ammonia 
in the atmosphere. We revealed the possibility 
of precision doping of a thin film growing on the 
InP surface with a chemostimulator. It makes it 
possible to obtain films with a desired value of 
sensory signal.
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1. Introduction
The production of spintronic devices requi-

res materials that have both magnetic and 
semiconductor properties and are technologically 
compatible with common semiconductor devices. 
Recently, a large number of studies have focused 
on the search for new magnetic semiconductors 
in the form of solid solutions of manganese 
in III–V  compounds, i.e. dilute magnetic 
semiconductors (DMS) [1].

All these studies employed the latest 
technologies, including molecular-beam epitaxy 
(MBE), laser irradiation, ion implantation, etc. 
Nevertheless, they did not manage to overcome 
the low solubility limit of manganese, because, 
according to the results of the studies, at room 
temperature and above ferromagnetism of AIIIBV 
is explained by the formation of microinclusions 
based on Mn-V magnetic compounds [2–16]. 

At the same time, cluster magnetic semicon-
ductors have certain advantages over dilute 
magnetic semiconductors. These materials are 
of practical importance since its is possible to 
control their magnetic properties by modifying 
the composition, the size, and the concentration 
of the forming magnetic microinclusions without 
using expensive technologies.

It is important to perform a comprehensive 
study of the effect of rapid melt crystallisation 
on the composition, structure, and properties 
of Mn-doped gallium antimonide. The article 
presents the results of the study of the structure 
and chemical composition of grain boundaries in 
GaSb<Mn> obtained by melt quenching. 

2. Experimental
In order to obtain bulk samples of GaSb+2% 

Mn we used the following initial components: 
hole-conducting monocrystalline gallium 
antimonide and pure Mn (99.99%). The samples 
were prepared by melting the mixture in a vacuum 
quartz ampoule at Т = 1200 K, incubating the 
melt at this temperature for 24 hours, and the 
following vertical quenching of the melt in a 
mixture of water and ice. 

The samples were identified using X-ray 
phase analysis (XRD), performed using a BRUKER 
D8 ADVANCE diffractometer (CuKa-radiation) 
at the Centre for Collective Use of Physical 
Research Methods of the Kurnakov Institute of 

General and Inorganic Chemistry of the Russian 
Academy of Sciences (CCU IGIC RAS). The angle 
range 2q was from 10º to 80º with the scanning 
step ∆2q = 0.014º. The XRD patterns were then 
analysed using the ICDD PDF-2 database.

The section surface was studied by means of 
scanning electron microscopy (SEM). Micrographs 
and chemical compositions of certain phases on 
the microstructure level were obtained at CCU 
IGIC RAS using a Carl Zeiss Nvision40 scanning 
electron microscope with an Oxford Instruments 
X-Max microprobe analyser.  

The magnetic properties of the GaSb(2 % Mn) 
samples were studied at Т = 4 K and Т = 300 K in a 
magnetic field of up to Н = 50 kOe using a PPMS-9 
(Quantum Design) automated measurement 
system. When measuring the DC magnetization 
the absolute sensitivity was ±2.5·10–5 g/cm3.

3. Results and discussion
In [16], we suggested that dislocations in 

semiconductors doped with magnetic impurities 
can be used as extensive linear magnetic circuits 
aligned in the same crystallographic direction. The 
concept of impurity-dislocation magnetism was 
inspired by the studies of the Cottrell atmosphere 
formation [17] and spheroid formation [18] 
performed by means of 3D imaging of impurity 
segregation near dislocations inside a crystal. 

It was demonstrated that the impurity 
segregation in dislocations by means of atom 
diffusion inside the crystal is as intensive as the 
impurity segregation by means of decorating 
the dislocations on the surface. Therefore, we 
conducted a series of experiments, where III–V 
semiconductor compounds were doped with a 
d-element – manganese. 

Namely, we analysed the samples of the 
semiconductor compound GaSb doped with 2 
at% Mn. 

Identically aligned dislocations were 
generated by quenching the melt at different 
coefficients of linear thermal expansion for GaSb 
(a ≈ 6.7·10–6 K-1 [19]) and quartz (a ≈ 0.5·10–6 K–1 
[20]), with heat being removed radially from 
the cylindrical part of the melt-containing 
ampoule during the vertical quenching (Fig. 1a). 
Judging by the temperature dependence of the 
magnetization, the samples were ferromagnets 
with a Curie temperature ТС = ~560 K (Fig. 1b). 
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Fig. 2a demonstrates a diffraction pattern of 
the synthesised GaSb<Mn> powder. Besides the 
peaks of polycrystalline GaSb, it shows peaks 
of the ferromagnetic compound Mn1.1Sb whose 
Curie temperature complies with the magnetic 
properties of the sample (Fig. 1b). 

In order to further study the structural properties 
of the material, we produced a metallographic thin 
section of its ingot, whose diffraction pattern is 
given in Fig. 2b. It shows that the metallographic 
thin section of GaSb<Mn> is a texture, and 
therefore consists of blocks separated by low-angle 
grain boundaries formed by dislocations. 

The (111) texture axis indicates that the 
dislocations controlling the grain formation 

are 60 degree edge dislocations with the (111) 
slip plane and the dislocation line <110>, which 
contradicts the generally accepted view that the 
structure of the sphalerite is formed by Lomer 
dislocations with (110) slip planes. 

In order to see whether Lomer dislocations 
participate in the formation of the texture 
we synthesised a sample of a different III–V 
compound (InSb) by means of melt quenching. 
The diffraction pattern of the InSb powder is 
given in Fig. 2c. It demonstrated InSb peaks with 
the crystal structure of sphalerite type, identical 
to GaSb. However, the diffraction pattern of the 
crystallographic thin section of InSb corresponds 
to the texture with simple slip planes of type (110), 

                                                    a                                                                    b
Fig. 1. Diagram of an ampoule with the melt placed vertically during quenching (a) and the temperature de-
pendence of the specific magnetization of the sample of GaSb + 2 % Mn (b)

Fig. 2. X-ray diffraction patterns of (a) powder and (b) metallographic thin section of GaSb doped with Mn; 
powder (c) and metallographic thin section (d) of undoped InSb
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which agrees well with the existing concepts. 
Thus, in our study, we determined that the 

introduction of impurities during the melt 
quenching affects the orientation of the resulting 
ingots of III-V semiconductor compounds. To 
explain this phenomenon, let’s consider the 
formation of a Lomer sessile dislocation. 

Fig. 3a shows a simple 60 degree edge 
dislocation most common for a crystal structure 
of sphalerite type. Such dislocations are 
characterised by a (111) slip plane of the 
dislocation line along the crystallographic 
direction <110>; the family of the direction in 
the structure of the sphalerite is shown in Fig. 3b. 

According to [21, 22], the formation of the 
Lomer sessile dislocation is a complex process 
including the following states of the material:

1 – formation of 60 degree edge dislocations 
in intersecting crystallographic planes;

2 – splitting of the edge dislocations into 30 
and 90 degree dislocations, connected by a layer 
of stacking faults with two stacking faults moving 
towards each other until they meet at the planes 
intersection (Fig. 3b);

3 – formation of the Lomer sessile dislocation 
(Fig. 3c).

The possibility of all the stages taking place 
is quite high in pure semiconductors with a 
sphalerite structure. However, when an impurity 
is added to the crystal, the regions of hydrostatic 
compression and expansion around the extra 
half-plane of the edge dislocation begin to 
play a significant role. In Fig. 3a the region of 
hydrostatic compression is shaded. The impurity 
atoms intensively diffuse towards the regions of 
arising stresses, segregate around the extra half-
plane, pin the dislocations to the crystal lattice 
of the material, and immobilise them. 

Fig. 3. Edge dislocation and Lomer sessile dislocation: a – initial 60 degree dislocation of GaSb with a shaded 
region of hydrostatic compression and a [110] dislocation line; b – the family of [110] directions in the sphaler-
ite structure;  c – a diagram of the formation of the Lomer sessile dislocation
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If the diffusion rate is higher than the rate of 
formation of sessile dislocations, the latter do not 
appear. This is what happens when GaSb is doped 
with manganese. Of the two ways to hinder the 
dislocation motion, segregation of the impurity is 
the main one, and therefore the third stage of the 
formation of sessile dislocations does not occur. 

Fig. 4a demonstrates a scheme and Fig. 4b 
shows the result of scanning electron microscopy 
of split dislocations of the surface of GaSb doped 
with Mn. 

A split dislocation has the form of a stacking 
fault ribbon bounded by partial dislocations. The 
stretching of the stacking fault aims to pull the 
partial dislocations together, while pressing the 
microimpurities located between them (Fig. 4b), 
and limit their size. 

The stacking fault ribbon is a two-dimensional 
crystal interlayer with incorrect alterations of the 
atomic close-packed layers of the FCC lattice 
and the formation of a thin interlayer of the 

hexagonal close-packed (HCP) structure. The 
split dislocation may consist of three, four, or 
more partial dislocations, and therefore of two, 
three, or more stacking fault ribbons, and come 
in the form of alternating regions of FCC and 
HCP lattices. 

To determine the chemical composition of 
grain boundaries in GaSb<Mn>, we studied the 
chemical composition of the microinclusions on 
the dislocations controlling the grain formation 
by means of electron probe microanalysis. Since 
the region of X-ray excitation by an electronic 
probe is about 1 μm, we studied the inclusions of 
1 μm size separated and surrounded by a relatively 
smooth surface of the semiconductor (Fig. 5a). We 
estimated the accuracy of identification to be ±2 
at%. 

The parameters of the chemical composition 
of the microinclusions were placed on the 
composition line of the state diagram Mn–Sb [23] 
(Fig. 5b). Then we performed phase identification 

a                                                                           b
Fig. 4. Scheme (a) and SEM images (b) of split dislocations on the surface of GaSb doped with manganese

a                                                                           b
Fig. 5. Dislocation outcrops on the surface of GaSb doped with Mn (a) and their compositions on the lines of 
magnetic transformations of the Mn-Sb phase diagram (b) 
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of the microinclusions and determined the type of 
magnetism and the Curie temperature for each of 
them. Fig. 5b shows that, although the chemical 
compositions of the microinclusions differ, their 
average composition is close to Mn1.1Sb. The 
difference in the compositions is caused by the 
difference in the cooling rate during directional 
crystallisation of the melt from the surface to 
the centre of the ingot (in Fig. 1a the process is 
indicated by the gradual change in the contrast 
of the melt). 

The temperature dependence of zero field 
cooled (ZFC) and field cooled (FC) magnetization 
of the GaSb<Mn> texture was the same at the 
cooling Т ≈ 300 K. This means that at temperatures 
above room temperature the ferromagnetic state 
is transformed into a superparamagnetic state, 
and Т ≈ 300 K is the blocking temperature for the 
ferromagnetic state of the texture. 

Using the Bean–Livingston method [24] 
we can determine the dependency between 

the constant of the magnetic crystallographic 
anisotropy, the blocking temperature and the 
size of single-domain microinclusions in the 
diamagnetic matrix of GaSb. 

Assuming that magnetic clusters are spherical, 
the maximum radius of the blocked effective 
clusters is about 180–200 nm. 

Thus, the calculated maximum effective size 
of the blocked clusters r ≈ 200 nm is close to the 
micron size of magnetic inclusions in dislocations 
(Fig. 4b). 

The study of the magnetic properties 
demonstrated that at the temperature Т = 300 K, 
sample GaSb<Mn> is still a ferromagnet with 
the coercive force of a soft magnetic material 
Нс ≈ 10 Oe (Fig. 6). 

The dislocation lines doped with magnetic 
impurities in a diamagnetic semiconductor 
matrix are artificially induced easy axes of 
magnetization. The magnetic moments of single-
domain particles can be located along <110> or 

Fig. 6. Field dependences of the magnetization of the crystal and powder of GaSb doped with Mn. Inserts: No.1: 
the hysteresis loop region of the crystal, No.2: the hysteresis loop region of the powder
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<–1–10> directions depending on the direction 
of the external magnetic field +Н or –Н. (Fig. 3b). 

The characteristic feature of superpara-
magnetism is the merging of the demagnetization 
and magnetization curves, which means that 
hysteresis disappears. In this regard, it is 
interesting to compare the demagnetization 
and magnetization curves of the texture and 
its powder in the vicinity of a zero magnetic 
field. While the texture still has ferromagnetic 
properties (insert No.1, Fig. 6), in the case of its 
powder (insert No.2, Fig. 6) demagnetization 
and magnetization curves change places in the 
regions of magnetic tension Н = ±0.15 kOe. 
With the magnetic tension being from –0.15 to 
+0.15 kOe, both curves merge (taking into account 
the measurement error) and form a region of 
superparamagnetic state. 

4. Conclusions
As a result of our study we obtained samples 

of a semiconductor compound GaSb+2 at% Mn. 
XRD analysis demonstrated that the main 

source of ferromagnetism in the obtained samples 
is the Mn1.1Sb phase with the Curie temperature 
ТС = ~560 K. The study also demonstrated the 
fundamental importance of the heat removal 
mode during the process of melt crystallisation 
and explained the formation of the <111> texture 
in GaSb that has a sphalerite crystal structure. We 
also determined that grain boundaries are formed 
by split edge dislocations. 

SEM was used to determine the chemical 
compositions of microinclusions in stacking 
faults of split dislocations, perform their phase 
identification, and determine the type of magnetism 
and the Curie temperature for each of them. 

The study of the magnetic properties showed 
that quenching of bulky samples of GaSb<Mn> 
results in the formation of a soft magnetic 
material. It also demonstrated the possibility 
of transition from the ferromagnetic to the 
superparamagnetic state. 

Author contributions
All authors made an equivalent contribution 

to the preparation of the publication.

Conflict of interests 
The authors declare that they have no 

known competing financial interests or personal 

relationships that could have influenced the work 
reported in this paper. 

References
1. Ivanov V. A., Aminov T. G., Novotortsev V. M., 

Kalinnikov V. T. Spintronics and spintronics materials. 
Russian Chemical Bulletin. 2004;53(11): 2357-2405. 
https://doi.org/10.1007/s11172-005-0135-5 

2. Pulzara-Mora С., Pulzara-Mora A., Forero-
Pico  A., Ayerbe-Samaca M., Marques-Marchan J., 
Asenjo A., Nemes, N. M., Arenas D., Saez Puche R. 
Structural, morphological and magnetic properties of 
GaSbMn/Si(111) thin films prepared by radio frequency 
magnetron sputtering. Thin Solid Films. 2020;705: 
137971. https://doi.org/10.1016/j.tsf.2020.137971

3. Dmitriev A. I., Kochura A. V., Kuz’menko A. P., 
Parshina L. S., Novodvorskii O. A., Khramova O. D., 
Kochura E. P., Vasil’ev A. L., Aronzon B. A. Effect of 
Heat Treatment on the Dispersion of the Magnetic 
Anisotropy of MnSb Nanoinclusions Embedded in Thin 
GaMnSb Films. Physics of the Solid State. 2019;61(4): 
523–529. https://doi.org/10.1134/S1063783419040073

4. Doria-Andrade J., Pulzara-Mora C., Bernal-
Correa R., Rosales-Rivera A., Pulzara-Mora Á. 
Segregation of Mn into GaAsMn thin films prepared 
by magnetron sputtering. Materia-Rio De Janeiro. 
2020;25(4): E-12884. https://doi.org/10.1590/s1517-
707620200004.1184

5. Yokoyama M., Ogawa T., Nazmul A. M., Tanaka 
M. Large magnetoresistance (> 600 %) of a GaAs : MnAs 
granular thin film at room temperature Journal of 
Applied Physics. 2006;99(8): 08D502. https://doi.
org/10.1063/1.2151817

6. Rednic L., Deac I. G., Dorolti E., Coldea M., 
Rednic V., Neumann M. Magnetic cluster developement 
in In1−xMnxSb semiconductor alloys. Open Physics. 
2010;8(4): 620–627. https://doi.org/10.2478/s11534-
009-0140-7

7. Tran L., Hatami F., Masselink W. T., Herfort J., 
Trampert A. Distribution of Mn in ferromagnetic 
(In,Mn)Sb films grown on (0 0 1) GaAs using MBE. 
Journal of Crystal Growth. 2011;323(1): SI 340–343 
(Specia l  I ssue) . https: / /doi .org/10.1016/ j .
jcrysgro.2010.10.127

8. Overberg M. E., Gila B. P.,  Thaler G. T.,  
Abernathy C. R., Pearton S. J., Theodoropoulou N. A. 
et. al. Room temperature magnetism in GaMnP 
produced by both ion implantation and molecular-
beam epitaxy. Journal of Vacuum Science & Technology 
B: Microelectronics and Nanometer Structures. 
2 0 0 2 ; 2 0 ( 3 ) :  9 6 9 – 9 7 3 .  h t t p s : / / d o i .
org/10.1116/1.1477424

9. Sobolev N. A., Oliveira M. A., Rubinger R. M., 
Neves A. J., Carmo M. C., Lesnikov V.P., Podolskii V. V., 
Danilov Y. A., Demidov E. S., Kakazei G. N. Ferromagnetic 
resonance and Hall effect characterization of GaMnSb 

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 413–420

V. P. Sanygin et al. Structure and chemical composition of grain boundaries in the magnetic semiconductor...



420

layers. Journal of Superconductivity and Novel Magnetism. 
2007;20(6): 399-403. https://doi.org/10.1007/s10948-
007-0243-6

10. Hartmann Th., Lampalzer M., Klar P. J., 
Stolz W., Heimbrodt W., von Nidda H. A. K., Loidl A., 
Svistov L. Ferromagnetic resonance studies of (Ga,Mn)
As with MnAs clusters. Physica E: Low-dimensional 
Systems and Nanostructures. 2002;13(2-4): 572–576. 
https://doi.org/10.1016/s1386-9477(02)00180-7 

11. Chen C., Chen N., Liu L., Li Y., Wu J. Ga1-xMnxSb 
grown on GaSb substrate by liquid phase epitaxy. 
Journal of Crystal Growth. 2004;260(1-2): 50–53. 
https://doi.org/10.1016/j.jcrysgro.2003.08.022 

12. Yoshizawa H., Toyota H., Nakamura S., 
Yamazaki M., Uchitomi N. Structural and ferromagnetic 
properties of InMnAs thin films including MnAs 
nanoclusters grown on InP substrates. Thin Solid Films. 
2017;622: 136–141. https://doi.org/10.1016/j.
tsf.2016.12.020

13. Novak J., Dujavova A., Vavra I., Hasenoehrl S., 
Reiffers M. Magnetic properties of InMnAs nanodots 
prepared by MOVPE. Journal of Magnetism and 
Magnetic Materials. 2013;327: 20-23. https://doi.
org/10.1016/j.jmmm.2012.09.041

14. Liu J. D., Hanson M. P., Peters J. A., Wessels B. W. 
Magnetism and Mn Clustering in (In,Mn)Sb magnetic 
semiconductors. ACS Applied Materials & Interfaces. 
2015;7(43): 24159–24167. https://doi.org/10.1021/
acsami.5b07471

15. Yakovleva E. I., Oveshnikov L. N., Kochura A. V., 
Lisunov K. G., Lahderanta E., Aronzon B. A. Anomalous 
Hall effect in the In1-x Mn (x) Sb dilute magnetic 
semiconductor with MnSb inclusions. JETP Letters. 
2015;101(2): 130–135. https://doi.org/10.1134/
s0021364015020149

16. Sanygin V. P., Tishchenko E. A., Shi D. H., 
Izotov A. D. Concept of impurity-dislocation magnetism 
in III-V compound semiconductors. Inorganic 
Materials. 2013;49(1): 6–13. https://doi.org/10.1134/
s0020168513010147

17. Blavette D., Cadel E., Fraczkiewicz A., Menand A. 
Three-dimensional atomic-scale imaging of impurity 
to line defects. Science. 1999;286(5448): 2317–2319. 
https://doi.org/10.1126/science.286.5448.2317

18. Nechaev Yu. S. Metallic materials for the 
hydrogen energy industry and main gas pipelines: 
complex physical problems of aging, embrittlement, 
and failure. Physics-Uspekhi. 2008;51(7): 681–697. 
https://doi.org/10.1070/pu2008v051n07abeh006570

19. Strel’chenko S. S., Lebedev V. V. Soedineniya 
A3B5[Compounds A3B5] Moscow: Metallurgiya Publ.; 
1984. 144 p. (In Russ.) 

20. Fizicheskie velichiny. Spravochnik pod redaktsiei 
Grigor’eva I. S., Meilikhova E. Z. [Physical quantities. 
Handbook. I. S. Grigoriev, E.Z. Meilikhov (eds.)]. 
Moscow: Energoatomizdat Publ.; 1991. 1232 p. (In 
Russ.) 

21. Osip’yan Yu. A. Elektronnye svoistva dislokatsii 
v poluprovodnikakh [Electronic properties of 
dislocations in semiconductors.]. Moscow: Editorial 
URSS Publ.; 2000. 314 p. (In Russ.) 

22. Hull D. Introduction to dislocations. Oxford, New 
York: Pergamon Press; 1984. 257 p.

23. Diagrammy sostoyaniya dvoinykh metallicheskikh 
sistem: Spravochnik: v 3 t. Kn. 1 [State diagrams of 
double metal systems: Handbook: In 3 vols. Book 1] / 
N. P. Lyakisheva (ed.). Moscow: Mashinostroenie Publ; 
2001. 872 p. (In Russ.)

24. Bean C. P., Livingston J. D. Superparamagnetism. 
Journal of Applied Physics 1959;30: S120. https://doi.
org/10.1063/1.2185850

Information about the authors
Vladimir P. Sanygin, PhD in Chemistry, senior 

research fellow, Laboratory of Semiconductor and 
Dielectric Materials, Kurnakov Institute of General and 
Inorganic Chemistry of the Russian Academy of 
Sciences, Moscow, Russian Federation; e-mail: 
sanygin@igic.ras.ru. ORCID iD: https://orcid.
org/0000-0002-1261-6895.

Olga N. Pashkova, PhD in Chemistry, senior 
research fellow, Laboratory of Semiconductor and 
Dielectric Materials, Kurnakov Institute of General and 
Inorganic Chemistry of the Russian Academy of 
Sciences, Moscow, Russian Federation; e-mail: olg-
pashkova@yandex.ru. ORCID iD: https://orcid.
org/0000-0002-2102-1025.

Alexander D. Izotov, DSc in Chemistry, Associate 
Member of the Russian Academy of Sciences, Chief 
Researcher, Laboratory of Semiconductor and 
Dielectric Materials, Kurnakov Institute of General and 
Inorganic Chemistry of the Russian Academy of 
Sciences, Moscow, Russian Federation; e-mail: 
izotov@igic.ras.ru. ORCID iD: https://orcid.org/0000-
0002-4639-3415. 

Received 14 April 2021; Approved after reviewing 30 
April 2021; Accepted for publication 15 May 2021; 
Published online 25.09.2021.

Translated by Yulia Dymant
Edited and proofread by Simon Cox

Condensed Matter and Interphases / Конденсированные среды и межфазные границы   2021;23(2): 413–420

V. P. Sanygin et al. Structure and chemical composition of grain boundaries in the magnetic semiconductor...



421

ISSN 1606-867Х (Print)
 ISSN 2687-0711 (Online)

Condensed Matter and Interphases
Kondensirovannye Sredy i Mezhfaznye Granitsy

https://journals.vsu.ru/kcmf/

Original articles
Research article
https://doi.org/10.17308/kcmf.2021.23/3527

Double molybdates of silver and monovalent metals 
T. S. Spiridonova1, S. F. Solodovnikov2, Yu. M. Kadyrova1,3, Z. A. Solodovnikova2,  
A. A. Savina1,4, E. G. Khaikina1,3 *

1Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences,  
6 ulitsa Sakhyanovoy, Ulan-Ude, Republic of Buryatia 670047, Russian Federation
2Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences,  
3 Akademika Lavrentieva prospekt, Novosibirsk 630090, Russian Federation
3Banzarov Buryat State University,  
24a ulitsa Smolina, Ulan-Ude, Republic of Buryatia 670000, Russian Federation
4Skolkovo Institute of Science and Technology,  
30, bld. 1 Bolshoy Boulevard, Moscow 121205, Russian Federation
Abstract 
The Ag2MoO4–Cs2MoO4 system was studied by powder X-ray diffraction, the formation of a new double molybdate 
CsAg3(MoO4)2 was established, its single crystals were obtained, and its structure was determined. CsAg3(MoO4)2 (sp. gr. P3̄, 
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1. Introduction
Double molybdates of alkaline elements with 

divalent and trivalent metals are well known 
as promising phosphors [1–6], ferroelectrics 
and ferroelastics [7–9], solid electrolytes [10–
13], electrode [14–19], laser [20–24], and other 
materials. A prominent place in the series of 
double molybdates is also occupied by phases 
formed in the M2MoO4–M¢2MoO4 systems (M, 
M¢ – alkaline elements). The largest number of 
publications is devoted to M2MoO4–Li2MoO4 
(M = K, Rb, Cs) systems and the double molybdates 
MLiMoO4 formed in them. The compounds melt 
congruently and have developed polymorphism, 
and ferroelectric and ferroelastic properties 
[25–32]. Based on the results of studying the 
Na2MoO4–Li2MoO4 system by visual polythermic 
method, differential thermal analysis and X-ray 
powder diffraction, it was concluded in [25, 33, 
34] that there are the phases with compositions 
3:1 and 6:1 in the system; however, both 
compounds were not isolated and characterised. 
In the systems M2MoO4–Na2MoO4 (M = K, Rb, Cs), 
double molybdates M2–xNaxMoO4 (M = K, Rb, Cs) 
were found [33, 35–39], which crystallize in the 
structure type of glaserite K3Na(SO4)2 [40]. Unlike 
stoichiometric Cs3Na(MoO4)2 [39], in the systems 
M2MoO4–Na2MoO4 (M = K, Rb) the glaserite-
type phases have upper temperature limits of 
stability and noticeable homogeneity ranges: 
K2–xNaxMoO4 (0.40 ≤ x ≤ 1.0) [36] and Rb2–xNaxMoO4 
(0.50  ≤  x  ≤  0.67) [37]. Another compound 
RbNa3(MoO4)2 revealed in the Rb2MoO4–Na2MoO4 
system is unstable at room temperature [37]. 

Until now, data on double molybdates of silver 
and monovalent metals were absent, although 
studies of the corresponding binary systems 
were undertaken. Thus, according to [41, 42], 
in the Ag2MoO4–Li2MoO4 system intermediate 
phases are not formed, while the authors of [43] 
on the base of the results of a visual polythermic 
analysis of the Ag2MoO4–Na2MoO4 system made a 
conclusion about formation of a continuous series 
of solid solutions with a minimum. The formation 
of continuous solid solutions of the spinel type 
was also confirmed by X-ray diffraction studies of 
the latter system [44]. One of the compositions of 
this solid solution (NaAgMoO4) was studied in [45, 
46]. The formation of boundary solid solutions was 
reported for the Ag2MoO4–Tl2MoO4 system [47, 48].

The first double molybdate of silver and an 
alkali metal was obtained by us when studying 
the Ag2MoO4–Rb2MoO4 system. The compound 
Rb3Ag(MoO4)2 melts at 435 °C and has a glaserite 
structure type [49]. Later, in the similar potassium 
containing system, we obtained a hexagonal 
double molybdate, K7–xAg1+x(MoO4)4 (0 ≤ x ≤ 0.4) 
[50], which crystallizes in its own structure type 
and at 334 °C undergoes a reversible first-order 
phase transition from the acentric form (sp. gr. 
P63mc) into centrosymmetric one.

In this study, we investigated the Ag2MoO4–
Cs2MoO4 system and determined the crystal 
structure of the compound formed in it. In 
addition, the structure of double rubidium-silver 
molybdate was refined and an X-ray diffraction 
analysis of one of the members of the solid 
solution formed in the Ag2MoO4–Tl2MoO4 system 
on the base of the high-temperature modification 
of thallium molybdate [51] was performed.

2. Experimental 
Commercially available AgNO3, TlNO3 

(analytical reagent grade), МоО3 (chemically pure 
grade), Cs2CO3 (extra-pure grade) reagents were 
used as starting materials. M2MoO4 (M = Ag, Tl) 
was obtained by calcining stoichiometric amounts 
of MNO3 and MoO3 with gradually increasing 
temperatures from 300–350 to 450 °С (in the case 
of silver) and up to 500 °С (in the case of thallium) 
for 50 h. Caesium molybdate was synthesised by 
the reaction Cs2CO3 + MoO3 = Cs2MoO4 + CO2 with 
annealing at 450–550 °С for 80 h. The thermal and 
crystallographic characteristics of the obtained 
compounds agreed with the literature data.

Powder X-ray diffraction (PXRD) analysis 
was carried out using a Bruker D8 ADVANCE 
automated powder diffractometer (lCuKa, 
secondary monochromator, scanning step 
2q = 0.02076°).

X-ray single crystal diffraction data for 
crystal structure determinations were taken 
at room temperature using Bruker-Nonius X8 
Apex automated diffractometer with a two-
dimensional CCD detector (MoKa-radiation, 
graphite monochromator, j-scanning with a 
scanning interval of 0.5°) in the hemisphere of 
reciprocal space. Calculations for solving and 
refinement of the structures were performed 
using the SHELX-97 software package [52].
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3. Results and discussion

3.1. Cs2MoO4–Ag2MoO4 system and crystal 
structure of CsAg3(MoO4)2 

The Cs2MoO4–Ag2MoO4 system was studied 
by PXRD in the subsolidus region in the entire 
concentration range with a step of 5–10 mol% 
(2.5 mol% in some cases). The formation of 
an intermediate compound CsAg3(MoO4)2 
was established (the composition was found 
by single crystal structure determination). 
According to PXRD data, the formation of this 
compound begins at 300 °C; however, a single-
phase CsAg3(MoO4)2 sample was not obtained. 
An increase of the duration of reaction mixtures 
calcination (up to 500 h), an expansion of the 
temperature range (up to the limits of subsolidus 
temperatures), as well as the use of stoichiometric 
AgNO3, Cs2MoO4, MoO3 or Ag2MoO4, Cs2CO3, 
MoO3 mixtures as starting components instead 
of simple silver and caesium molybdates, did not 
lead to a positive result. 

Single crystals of CsAg3(MoO4)2 suitable 
for X-ray structural analysis were obtained by 
spontaneous crystallization of the melt of a 
sintered sample of the compound, which was 
heated to 470 °C, kept at this temperature 
for 30  min and cooled at a rate of 4°/h down 
to 200 °C (then in a switched-off and cooling 
further). Crystal data and the structure 

refinement results are given in Table 1, the 
atomic coordinates and interatomic distances 
are listed in Tables 2 and 3. 

The structure of CsAg3(MoO4)2 was solved 
in the trigonal sp. gr. P3̄ and it was found to be 
isostructural to Ag2BaMn(VO4)2 [53]. The Mo 
atoms and 2/3 silver atoms (the Ag2 position) 
were tetrahedrally coordinated with the Mo–O 
distances 1.743(4)–1.776(2) Å, Ag2–O 2.314(2)–
2.499(4) Å. An unusual feature of the Ag2 
environment is its location almost in the centre 
of the oxygen face of Ag2O4 tetrahedron (Fig. 1), 
which was also found in the K6.68Ag1.32(MoO4)4 
structure [50]. The remaining third of silver 
atoms (Ag1) are located in octahedra with equal 
Ag1–O bond lengths of 2.446 (2) Å. The structure 
is based on glaserite-like layers of alternating 
MoO4-tetrahedra and Ag1O6-octahedra, which are 
linked by oxygen vertices and interconnected in 
a whole three-dimensional framework by Ag2O4 
tetrahedra (Fig. 1). The negative charge of the 
framework is compensated by caesium cations in 
cuboctahedral coordination (CN = 12); the Cs–O 
distances are 3.182(7)–3.451(1) Å.

3.2. Crystal structure of Rb2.81Ag1.19(MoO4)2

As we showed in [49], Rb3Ag(MoО4)2 is the only 
intermediate compound of the Rb2MoO4–Ag2MoO4 
system. A single-phase sample of the double 
rubidium-silver molybdate was synthesised by 

Table 1. X-ray structure analysis data for CsAg3(MoO4)2

Formula CsAg3(MoO4)2

Formula weight (g/mol) 776.40
Crystal system Trigonal
Space group P3
Unit cell dimensions a = 5.9718(5) Å, c = 7.6451(3) Å
V (Å3) / Z 236.115(12) / 1
Calculated density (g cm–3) 5.460
Crystal size (mm) 0.15 × 0.06 × 0.06
m(MoKa), mm–1 12.502
q range (o) 5.328–61.126
Miller index ranges –8 ≤ h ≤ 8, –7 ≤ k ≤ 8, –10 ≤ l ≤ 10

Reflections collected/unique 3234 / 490 [Rint= 0.0265]

Number of variables/constraints 24 / 0
Goodness-of-fit on F2 (GOF) 1.158
Extinction coefficient 0.0087(6)
Final R indices [I > 2s(I)]
R indices (all data)

R(F) = 0.0149, wR(F2) = 0.0349
R(F) = 0.0158, wR(F2) = 0.0353

Largest difference peak / hole (e Å–3) 0.81/–1.15
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annealing a stoichiometric mixture of Ag2MoО4 
and Rb2MoО4 at 380 °C for 100 h. Crystals suitable 
for X-ray structural analysis were obtained by 
spontaneous crystallisation from the melt. The 
preliminary results of X-ray structural analysis 
were previously published by us in [49]. In this 
study, the composition of the Rb2.81Ag1.19(MoO4)2 
crystal and its structure were corrected and 
refined (Tables 4–6).

Note that the solid-state synthesis of a single-
phase sample of the composition described above 
was not successful. After annealing the reaction 
mixtures of silver and rubidium molybdates, 

even at highest subsolidus temperatures, 
only Rb3–xAg1+x(MoO4)2 (0 ≤ x ≤ 0.10) samples 
were single-phase. Probably, the found crystal 
composition has an extremely high silver content 
and can be obtained only from melts.

In the structure of Rb2.81Ag1.19(MoO4)2 (sp. 
gr. P3̄m1) of the glaserite type K3Na(SO4)2 [40], 
molybdenum atoms have tetrahedral oxygen 
coordination with the distances Mo–O 1.730(6)–
1.773(3) Å. The Ag1 atoms are in octahedra 
with the equal bond lengths Ag–O 2.483(3) Å. 
The structure is based on layers of alternating 
MoO4 tetrahedra and Ag1O6 octahedra linked by 

Таблица 2. Координаты и эквивалентные изотропные тепловые параметры атомов в структуре 
CsAg3(MoO4)2

Atom x/a y/b z/c Ueq(Å
2)*

Mo 0.6667 0.3333 0.25304(5) 0.01327(11)
Ag1 0 0 0 0.02048(11)
Ag2 0.3333 0.6667 0.19216 0.02805(13)
Cs 0 0 0.5 0.02047(12)
O1 0.6667 0.3333 0.4810(5) 0.0306(9)
O2 0.7014(4) 0.631(4) 0.1792(3) 0.0242(4)

* Ueq = 4(U11 + U22 + 0.75U33−U12) / 9.

Table 3. Selected interatomic distances (Å) in CsAg3(MoO4)2

Mo-tetrahedron Ag1-octahedron
Mo1–O1
        –O2

<Mo1–O>

1.743(4) 
1.776(2) × 3

1.768

Ag1–O2 2.446(2) × 6

Cs-polyhedron Ag2-tetrahedron
Cs–O2′
  –O1

<Cs–O>

3.181(2) × 6
3.4509(2) × 6

3.316

Ag2–O2
      –O1

<Ag2–O>

2.314(2) × 3
2.499(4) 

2.360

Fig. 1. Crystal structure of CsAg3(MoO4)2
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Table 4. X-ray structure analysis data for Rb2.81Ag1.19(MoO4)2 and Tl3.14Ag0.86(MoO4)2

Formula Rb2.81Ag1.19(MoO4)2 Tl3.14Ag0.86(MoO4)2

Formula weight (g/mol) 688.42 1054.37
Crystal system Trigonal Trigonal
Space group P3̄m1 P3̄m1
Unit cell dimensions a = 6.1541(2) Å 

c = 7.9267(5) Å
a = 6.0977(3) Å 
c = 7.8600(7) Å

V (Å3) / Z 259.99 (2) / 1 253.10 (3) / 1
Calculated density (g cm–3) 4.397 6.918
Crystal size (mm) 0.13 × 0.10 × 0.02 0.09 × 0.09 × 0.05
m(MoKa), mm–1 3.645 53.840

q range (o) 2.26–28.83 2.09–30.50
Miller index ranges –10 ≤ h ≤ 8, –10 ≤ k ≤7,  

–13 ≤ l ≤ 9
–5 ≤ h ≤ 8, –8 ≤ k ≤ 6,  

–11 ≤ l ≤ 10
Reflections collected/unique 2370 / 504 [Rint = 0.0299] 2306 / 330 [Rint = 0.0314]

Number of variables/constraints 25 / 0 22 / 0
Goodness-of-fit on F2 (GOF) 1.271 1.087
Extinction coefficient 0.0016 (3) 0.0035 (4)
Final R indices [I > 2s(I)]

R indices (all data)

R(F) = 0.0263 
wR(F2) = 0.0625

R(F) = 0.0272
wR(F2) = 0.0627

R(F) = 0.0174
wR(F2) = 0.0419

R(F) = 0.0189
wR(F2) = 0.0425

Largest difference peak/hole (e Å–3) 1.00 / –1.21 0.87 / –0.87

Table 5. Coordinates and equivalent isotropic thermal parameters of atoms in the structure of 
Rb2.81Ag1.19(MoO4)2

Atom Occ. x/a y/b z/c Ueq (Å
2)*

Mo 1 0.6667 0.3333 0.25304(5) 0.0149(2)
Ag1 1 0 0 0 0.0221(2)
Ag2 0.10(1) 0.3333 0.6667 0.179(5) 0.047(7)
Rb1 0.90(1) 0.3333 0.6667 0.1580(3) 0.0205(4)
Rb2 1 0 0 0.5 0.0296(3)
O1 1 0.6667 0.3333 0.4810(5) 0.055(2)
O2 1 0.7014(4) 0.631(4) 0.1792(3) 0.0321(7)

*Ueq = 4(U11 + U22 + 0.75U33−U12) / 9. 

Table 6. Main interatomic distances (Å) in the structure of Rb2.81Ag1.19(MoO4)2

Mo-tetrahedron Rb1-polyhedron
Mo–O1

        –O2

<Mo–O>

1.730(6) 
1.773(3) × 3

1.762

Rb1–O1
       –O2
       –O2′
<Rb1–O>

2.705(7)
3.0990(5) × 6
3.296(4) × 3

3.119
Ag1-octahedron Rb2-polyhedron

Ag1–O2 2.483(3) × 6 Rb2–O2
      –O1

<Rb2–O>

3.033(4) × 6 
3.5531(1) × 6 

3.293
Ag2-polyhedron

Ag2–O1
        –O2
<Ag2–O>

2.54(4)
3.085(2) × 6

3.007
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common oxygen vertices (Fig. 2). The negative 
charge of the layers is compensated by two types 
of rubidium cations (CN = 12 and 10); the total 
range of Rb–O distances is 2.706(7) –3.553(1) Å. 
An additional position of silver (Ag2) near the 
Rb1 position (CN = 10) at the distance Rb1–Ag2 
0.17(4) Å was found, which partially replaces 
rubidium in Rb1; the Ag2–O bond lengths are 
2.54(4)−3.085(2) Å (CN = 7). 

Splitting of the Rb/Ag position in molybdates 
was revealed for the first time. As for tungstates, 
it was found earlier in the structure Ag3+xRb9−

xSc2(WO4)9, (x ≈ 0.11) [54], and a similar splitting of 
the K/Ag position was found by us in the structure 
of Ag1.32K6.68(MoO4)4 [50]. Such disordering and 
splitting of positions of large alkali cations is 
still rare. Examples are rubidium-containing 
defect pyrochlores RbNb2O5F [55], RbAl0.33W1.67O6 
[56], ferroelectric solid electrolytes RbTiOAsO4 
[57] and RbSbOGeO4 [58] of the KTiOPO4 type. 
As a rule, this is considered as the ability of the 
structure to have potential ionic conductivity 
and/or ferroelectricity [59]. Indeed, some 
rubidium-containing defect pyrochlores and 
many members of the KTiOPO4 family are bright 
examples of phases with these properties [58, 
60]. This tendency is confirmed by the fact that 
the Ag3+xRb9−xSc2(WO4)9 (x ≈ 0.11) studied by us 
probably has rubidium ion conductivity [54], and 
nonstoichiometric phases of the glaserite type 
can also be solid electrolytes [61].

3.3. Crystal structure of Tl3.14Ag0.86(MoO4)2

According to [47, 48], in the Tl2MoO4–
Ag2MoO4 system, boundary solid solutions are 
formed, including those based on the high-
temperature hexagonal form a-Tl2MoO4 of the 
K3Na(SO4)2 glaserite type [51]. Using spontaneous 
crystallisation of a molten sample of Tl3Ag(MoO4)2 
synthesized by solid-state reactions from a 
stoichiometric mixture of simple molybdates, 
we obtained crystals suitable for X-ray structural 
analysis from the region of the specified solid 
solution and refined their crystal structure. 

The composition of the studied crystal of the 
glaserite type, Tl3.14Ag0.86(MoO4)2 (sp. gr. P3̄m1), was 
determined by refinement of the site occupancies 
of the thallium and silver cations, which showed 
that the occupancy of thallium sites is 100 % 
within the experimental error limits, while the 
silver site contains an admixture of thallium. 
The correctness of this model is confirmed by a 
decrease in R-factor from 0.0235 to 0.0174, and 
the determined crystal composition fell into the 
range of the solid solution based on a-Tl2MoO4. 
The results of the structural refinement are 
given in Table 4, and the atomic coordinates and 
interatomic distances are shown in Tables 7 and 8.

In general, the structure of Tl3.14Ag0.86(MoO4)2 
repeats  the above-described structure 
of isostructural Rb2.81Ag1.19(MoO4)2 (Fig. 2). 
Molybdenum atoms are tetrahedrally coordinated 
with the distances Mo–O 1.760 (6)–1.765(3) Å, and 
the (Ag, Tl) atom has octahedral coordination with 
equal bond lengths (Ag, Tl)–O 2.535(4) Å, which 
is longer than the distance Ag1–O 2.483(3) Å in 
Rb2.81Ag1.19(MoO4)2 (see above) and is significantly 
shorter than the corresponding distance  
Tl1–O 2.769(10) Å in the structure of a-Tl2MoO4 
[51]. Thallium atoms of two sorts with CN = 
12 and 10 have the common distance range 
Tl–O 2.495(7)–3.5243(4) Å, which is close to 
the lengths of the corresponding bonds Tl–O 
2.467(16)–3.682(16) Å in a-Tl2MoO4 [51].

4. Conclusions 
The subsolidus region of the system Ag2MoO4–

Cs2MoO4 was studied by PXRD, the compound 
with the composition CsAg3(MoO4)2 crystallising 
in the structure type of Ag2BaMn(VO4)2 (sp. gr. 
P3̄, Z = 1) was revealed and its structure was 
determined.Fig. 2. General view of the Rb2.81Ag1.19(MoO4)2 structure
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We determined the structure and composition 
of double rubidium-silver molybdate, and 
performed X-ray structure analysis of a member 
of the solid solution on the base of the high-
temperature form of thallium molybdate formed 
in the system Ag2MoO4–Tl2MoO4. It was confirmed 
that Rb2.81Ag1.19(MoO4)2 and Tl3.14Ag0.86(MoO4)2 
(crystal compositions were determined by X-ray 
structure analysis) are of the glaserite structure 
type. In the case of the rubidium containing 
phase, splitting of the Rb/Ag position was 
revealed for the first time in molybdates. This 
phenomenon usually indicates the ability of the 
structure to have potential ionic conductivity 
and/or ferroelectricity.
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Abstract 
Photon activation of various physicochemical processes by the radiation of powerful pulsed xenon lamps (radiation range 
of 0.2-1.2 μm) is one of the promising areas of material science. The aim of this study was to determine the effect of pre-
oxidative pulsed photon treatment on the process of thermal oxidation of indium phosphide with a nanosized layer of V2O5 
on the surface, as well as its effect on the composition and morphology of the formed films.
We determined the optimal mode of pre-oxidative pulsed photon treatment of magnetron-formed V2O5/InP heterostructures 
with a radiation density of 15 J/cm2. By laser and spectral ellipsometry methods, photon activation of V2O5/InP before 
thermal oxidation was found to increase the thickness of the formed films practically twofold. X-ray diffraction analysis 
confirms the intensification of the phosphate formation process. The morphological characteristics of the films were 
determined by atomic force microscopy.
Pre-oxidative pulsed photon treatment with an optimal radiation density of 15 J/cm2 activates the thermal oxidation of 
V2O5/InP heterostructures. It is associated with the formation of new active centres and accelerated rearrangement of 
chemical bonds in the intermediate complexes of the V2O5 catalyst with semiconductor components.
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1. Introduction 
Oxidation of АIIIВV binary semiconductors 

is of great importance in various technological 
areas, such as designing optoelectronic devices, 
solar cells, and anti-reflective coatings, etc. [1–
5]. Thermal oxidation of InP can be widely used 
in the development of cheap and highly efficient 
photoconverters of natural and linearly polarised 
radiation [6], it provides new approaches to 
the formation of MOS structures based on this 
semiconductor [7]. 

d-metal oxides are effective chemostimulators 
for the thermal oxidation of AIIIBV semiconductors 
[8, 9]. Among them, vanadium (V) oxide has the 
highest potential. Deposited on the semiconductor 
surface even in a small amount, in the form 
of nanosized islands, it provides a catalytic 
mechanism for the thermal oxidation of indium 
phosphide [10].

The activation of physicochemical processes 
by irradiation with electrons, ions, and light is 
widely used to modify the subsurface layers of 
materials. One of the promising areas is pulsed 
photon treatment (PPT) by the radiation of 
powerful pulsed xenon lamps (radiation range of 
0.2–1.2 μm) [11]. 

The aim of this study was to determine the 
effect of pre-oxidative PPT on the process of 
thermal oxidation of indium phosphide with a 
nanosized layer of V2O5 on the surface, as well as 
its effect on the composition and morphology of 
the formed films.

2. Experimental 
For this study, we used monocrystalline indium 

phosphide plates (100), FIE-1А grade (indium 
phosphide, electronic conductivity), doped with 
tin, with the concentration of the main charge 
carriers no less than 5·1016 cm–3. The substrates 
were pre-treated in H2SO4 (92.80 %) : Н2О2 (56 %) : 
Н2О = 2 : 1 : 1 for 10 min, then washed with distilled 
water. Nanosized layers of the chemostimulator, 
V2O5 oxide (~30 nm) were applied on the InP 
surface by magnetron sputtering (Covap II vacuum 
ion sputtering unit). The heterostructures were 
formed in a chamber vacuumised to a pressure of 
2·10–5 mm Hg. Metallic vanadium with a purity of 
99.99 % was used as the initial target material, and 
О2+Ar gases with a purity of 99.99 % were used as 
an ion source.

The process of thermal oxidation (TO) of the 
InP-based heterostructures was carried out in 
an MTP-2M-50-500 resistance heating furnace 
at a temperature of 530 °C for 1–60 minutes. 
Temperature was controlled by the TPM-10 unit 
with a precision of ± 1 °C. Oxidation was carried 
out in an oxygen flow (the volume flow rate was 30 
l/h and the linear flow rate was 10 cm/min). Indium 
phosphide, oxidised in the same way without a 
chemostimulator, was used as a reference standard.

Pulsed photon treatment of the samples 
was carried out using a modernized UOLP-1M 
unit, designed for pulsed photon annealing of 
semiconductor materials. Heating was provided 
by the radiation of three INP 16/250 gas-discharge 
xenon lamps. The radiation dose for one treatment 
cycle was determined by the annealing time. It was 
regulated within the range of 0.02–20 s, which 
corresponds to 2–2000 unit pulses. The radiation 
dose varied from 15 to 120 J/cm2.

To determine the thickness of the films of 
the formed heterostructures and films after TO 
(PPT), we used the methods of laser ellipsometry 
(LE, LEF-754) and spectral ellipsometry (SE, 
Ellips-1891).

To characterise the heterostructures and thin 
films formed on the semiconductor surface, a set of 
instrumental methods was used: X-ray diffraction 
analysis (XRD, ARL X’TRA diffractometer, CuKa1 
with l = 1.540562 Å); infrared spectroscopy (IRS, 
Vertex 70 IR Fourier spectrometer); atomic force 
microscopy (AFM, Solver P47 Pro (NT-MDT) 
scanning microscope with the HA_NC Etalon 
cantilever); scanning tunnelling microscopy 
(STM, Umka laboratory nanotechnology complex, 
based on the improved Umka-02-U scanning 
tunnelling microscope).

3. Results and discussion 
A number of studies [12–15] revealed 

that the activating effect of PPT is expressed 
in the acceleration of diffusion processes, 
synthesis of thin films of the compounds, and 
recrystallisation. It is also associated with the 
decrease of temperature thresholds of phase 
formation, increase in the dispersity of synthesised 
structures, the formation of metastable phases, as 
well as nanocrystallisation of amorphous metal 
alloys. Nanocrystallisation leads to the increase 
in microhardness, while plasticity is preserved.
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In order to select an optimal PPT mode for 
V2O5/InP heterostructures, a batch of samples 
were prepared. They underwent pulsed photon 
treatment at various radiation density values of 15, 
30, 50, 60, and 90 J/cm2. While optimising the PPT 
effect, we determined that the use of modes with 
a radiation dose of more than 50 J/cm2 leaded to 
degradation of the surface of the heterostructure 
up to its complete destruction. We found out that 
a radiation density of 15 J/cm2 can be considered 
optimal for the purposes of this study. Under these 
conditions the film grows most intensively with no 
degradation of the heterostructure. 

Fig. 1 and Table 1 show the thickness values 
of the films formed by thermal oxidation of 
indium phosphide (intrinsic oxidation, reference 
standard), by the thermal oxidation of the 
V2O5/InP heterostructure without PPT, and upon 
pre-oxidative pulsed photon treatment carried 
out in the optimal mode. 

The use of the Cauchy model for the 
interpretation of spectral ellipsometry data is 
confirmed by the good correlation (especially in 
the wavelength range above 500 nm) between 
the calculated and experimental spectra of the 
ellipsometric parameters Y and D (Fig. 2).

Table 1. The thickness of the films formed by thermal oxidation of InP (reference) and V2О5/InP 
heterostructures without and with pre-oxidative PPT. Oxidation temperature: 530 ºС

Oxidation time, min

Film thickness d, nm

InP intrinsic oxidation
V2O5/InP, thermal 

oxidation at 530 ºС, 
without PPT

V2O5/InP, PPT 15 J/cm2 
and thermal oxidation 

at 530 ºС
5 6 20 39

10 25 32 44
20 31 39 72
30 33 44 80
40 36 49 86
50 39 50 94
60 39 52 96

Fig. 1. Kinetic curves of the InP intrinsic thermal oxidation and the V2О5/InP heterostructures thermal oxida-
tion, without PPT and upon PPT for 0.2 s. Oxidation temperature: 530 ºС
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We had previously determined [8, 16] that 
thermal oxidation of InP with a magnetron-
deposited nanoscale layer of V2O5 (25 nm) was 
carried out by the catalytic mechanism due to 
cyclic regeneration of V2O5 (the transition of 
vanadium from the oxidation state +5 (V2O5) 
to +4 (VO2) and vice versa). We suggested the 
following “phase” evolution of the magnetron-
formed V2O5/InP heterostructures during their 
thermal oxidation (Fig. 3). 

At the initial stage of oxidation, due to 
the chemostimulating effect of V2O5 of the 
catalytic type, there is a sharp increase in the 
concentrations of oxides In2O3 and Р2О5. In 
contrast to transition oxides (for example, NiO), 
which are consumed during the oxidation process, 
V2O5 is cyclically regenerated throughout the 
entire process. According to [17], this transition 
occurs quickly and with low energy consumption 
through the intermediate vanadium oxides V3O7 

Fig. 2. Spectra of the ellipsometric parameters y (1,2) and ∆ (3,4) of the V2O5/InP sample, which underwent 
preliminary PPT at 15 J/cm2 and ТО at 530 °С for 60 min (1,3 – measured, 2,4 – calculated by the Cauchy mo del) 

Fig. 3. Diagram of the evolution of V2O5/InP heterostructures during thermal oxidation
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and V4O9, which were detected in the formed films 
by the XRD method. Thus, the chemostimulating 
effect of vanadium pentoxide, which involves the 
intensive oxidation of semiconductor components 
by the catalytic mechanism, persists throughout 
the entire thermal oxidation process. A rapid 
increase in the concentration of АIII and ВV oxides 
leads to the intensive development of secondary 
interactions in the system. They are accompanied 
with the formation of indium phosphate and are 
prominent due to the large acid-base difference 
between the А2О3 and В2О5 oxides. Due to the 
chemical nature of the vanadium (V) oxide, taking 
into account the isostructurality of vanadate ions 
with phosphate ions, vanadium in the form of 
vanadate is included in the forming phosphate 
framework of the films (in the form of InVO4). Due 
to the electronic configuration V and the covalent 
type of chemical bonds between vanadium and 
oxygen, the metal is present in the films on 
the surface of indium phosphide in the form of 
vanadyl phosphates VO(PO3)3 and (VO)2Р2О7. It 
can be explained by the pronounced acidity of 
phosphorus oxide. 

According to [17–19] the stepwise redox 
mechanism of catalytic oxidation at high 
temperatures is typical for most reactions where 
transition metal oxides act as catalysts, as the 
reduction and re-oxidation rates of the catalyst are 
rather high. Under other conditions of catalysis, 
for example, with a change in temperature, a 
transition from the stepwise mechanism to the 
associative mechanism is possible, when oxygen 
and the oxidised reagent interact simultaneously 
[17,  19]. The simultaneous presence of vanadium 
oxides exhibiting oxidation states +5 and +4 in 
the V2O5/InP heterostructures formed during the 
oxidation process, established by XRD and IRS 
methods, is an argument in favour of the stepwise 
oxidation mechanism. However, according to 
classical concepts [20], catalytic reactions, in the 
course of which the formation of an activated 
complex is preceded by the breaking of bonds 
in the initial reagent (dissociative mechanism), 
have high activation energy values, although 
lower as compared to the non-catalytic reaction. 
Low activation energy values are characteristic 
of catalytic reactions proceeding through an 
activated complex, which involves the particles of 
both reactants and the active centre of the catalyst 

at the same time (synchronous mechanism). For 
V2O5/InP heterostructures, the hard method of 
deposition (magnetron sputtering, exploding wire 
method) “imposes” the formation of interface 
intermediate complexes of the catalyst V2O5 
with semiconductor components already in the 
synthesis process. That is, the weakening of the 
In-P bond and the beginning of the formation 
of the In-O and P-O bonds are simultaneous. 
Taking into account the low EAE values of the 
V2O5/InP thermal oxidation process, non-classical 
objects of study (solid reagent and catalyst, 
nanoscale state of the catalyst), it can be said 
these intermediate complexes are transformed 
by the mechanism of associative substitution by 
reactive oxygen species.

The pre-oxidat ive  PPT of  V 2O 5/ InP 
heterostructures almost doubles the thickness 
of the films formed during thermal oxidation. 
According to [21], various physicochemical 
processes are activated by the PPT mainly 
due to the excess of a certain critical heating 
rate and athermal processes initiated by the 
interaction of the light flux with the substance. 
The effect of pulsed photon activation of the 
thermal oxidation process can be caused by an 
increase in the number of active centres. Interface 
intermediate complexes of the V2O5 catalyst 
with semiconductor components are formed on 
them, possibly, of a different chemical nature. 
In addition, a significant energetic effect on 
the heterostructure significantly facilitates the 
rearrangement of chemical bonds in intermediate 
complexes during oxidation and accelerates the 
formation of indium and phosphorus oxides, and, 
consequently, various phosphates. The XRD data 
for the film formed by thermal oxidation of the 
V2O5/InP heterostructure upon preliminary PPT 
(15 J/cm2) indicate the formation of a pronounced 
phosphate and vanadate framework during 
oxidation (Fig. 4). 

The  pre-oxidat ive  PPT of  V 2O 5/ InP 
heterostructures affects the morphological 
characteristics of the films formed by thermal 
oxidation. Thus, the surface of the film synthesised 
by oxidation of V2O5/InP at 530 °C for 60 min with 
preliminary PPT (E = 15 J/cm2) is smooth, with 
no pronounced grain structure (Fig.5a). The 
difference in the relief height does not exceed 
7 nm, the arithmetic mean roughness Sa is 0.4 
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Fig. 4. Diffraction pattern of the V2O5/InP sample after preliminary PPT at 15 J/cm2, followed by ТО at 530 °С 
for 60 min

Fig. 5. AFM (a) and STM (b) images of the V2O5/InP heterostruc-
ture surface after preliminary PPT at 15 J/cm2 and ТО at 530 °С 
for 60 min

a
b
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nm, the mean square roughness Sq is 0.6 nm. 
The STM data also confirm the high smoothness 
of these films (Fig. 5b). The height gradient does 
not exceed 10 nm.

4. Conclusions
Pre-oxidative PPT with an optimal radiation 

density of 15 J/cm2 activates the thermal 
oxidation of the V2O5/InP heterostructures, 
resulting in an almost twofold increase in the 
thickness of the formed films. The PPT effect 
is associated with the formation of new active 
centres, where intermediate complexes of the 
catalyst V2O5 with semiconductor components are 
formed. The transformation of chemical bonds 
in these complexes also accelerates, resulting in 
the formation of indium and phosphorus oxides. 
Preliminary PPT stimulates the growth of films 
with a smooth surface, which arithmetic mean 
roughness Sa is 0.4 nm. 
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Abstract 
Porous silicon is currently one of the most studied materials which is used both in the areas traditional for silicon, such as 
electronics and optoelectronics, and in completely unconventional ones, such as catalysis, energetics, biology, and medicine. 
The multiple possibilities of the material are revealed due to the fact that its structure can be radically different depending 
on the properties of the initial silicon and the methods of obtaining porous phases. The use of any material inevitably leads 
to the need to classify its various forms. The purpose of the article was to find the most significant parameter that can be 
used as the basis for the classification of porous silicon. 
Historically, the terminology defined by the IUPAC pore size classification has been used to classify porous silicon. Due to 
the authority of IUPAC, many researchers have considered this terminology to be the most successful and important, and 
the radial pore size has often been regarded as a main parameter containing the most important properties of porous silicon. 
Meanwhile, the unique properties and practical application of porous silicon are based on its developed inner surface. The 
method of nitrogen porosimetry, which is simple in its practical implementation, is often used in scientific literature to 
determine this value.
The most suitable integral parameter for the classification of porous silicon, regardless of its structure and morphology, is 
the total specific internal surface (cm-1) that can be relatively easily established experimentally and is of fundamental 
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1. Introduction 
There are a great number of publications 

related to the study of porous silicon (PS), which 
shows increased interest to this material. The 
range of practical application of PS is potentially 
wide, from electronics, optoelectronics, and 
lithium-ion batteries to medicine [1, 6]. In 
simplistic terms, the properties of the material 
itself are determined by such parameters of 
porous layers as radial and axial pore size, 
interporous distances, and related density of pore 
distribution.

Currently, the following parameters are used 
in scientific literature to characterise the PS 
layers of various functional purpose: porosity, 
luminescence radiation wavelength, radial pore 
size, and some others. Certainly, each of these 
parameters describes the material only from the 
point of view of its functional use. At the same 
time, porosity is often mentioned as an “integral” 
parameter of PS which is the determining one 
for the properties of this material. However, this 
parameter is not significant for porous silicon, 
unlike most porous materials. It only indicates 
the correlation between the volume of the etched 
silicon and the full volume of silicon subjected to 
etching and is not related to the main properties 
of the material. This parameter is more likely to 
be applied to macrosystems and it carries certain 
functional information for the description of 
density and partly for the description of specific 
thermal and electric conductivity as well as 
mechanical properties, etc. The parameter is not so 
much informative for microsystems and especially 
for nanoscale systems. At the same time, such 
parameters as radial pore size, the density of their 
distribution, and growth direction are important 
on their own, although they rather describe the 
type of PS layers in the form of individual pores 
in the shape of a well and do not characterise 
any PS layers of other types. The International 
Union of Pure and Applied Chemistry (IUPAC) 
has accepted the size factor as the “classification 
parameter” of PS, so the pores are categorised 
by their size (micropores (d < 2 nm), mesopores 
(d = 20÷50 nm), and macropores (d > 50 nm)) [7, 8]. 
In our opinion, this classification is surely useful 
from the point of view of express classification of 
PS and is widely used in scientific literature, but it 
considers only its well-shaped structure and the 

underlying classification parameter of the radial 
pore size. This does not take into consideration 
such important parameters of PS layers as 
density of pore distribution, layer thickness, 
pore growth direction, and others. This does not 
allow determining general integral properties 
of PS layers and drawing conclusions about the 
possibility of their functional use. In fact, we can 
state that currently there is no integral feature 
that can characterise all or at least most types of 
PS layers.

2. Analysis of the parameters used 
in  studies on porous silicon

PS layers have relatively varied structures 
[9] that depend both on the conditions of their 
production (duration of etching, current density, 
etching reagent composition, etc.) and on the 
parameters of the initial silicon (conductivity 
type, impurity type and concentration, 
crystallographic orientation of the initial silicon 
wafer, etc.). These parameters determine the 
places of the origin of pores and influence their 
development as well as the formation of layers 
with different morphology, for example, in the 
form of individual well-shaped pores, coral-
like threads, rods, and other similar formations. 
Taking in consideration the aforementioned, we 
believe it is reasonable and important to choose 
some integral PS-characterising parameter which 
would indicate the specific features of almost all 
the formed layers while not depending much on 
their individual structure and morphology.

PS layers of any modification are characterised 
by a highly-developed surface of nanostructured 
layers being formed that in most cases are 
responsible for the practical significance of PS 
in the majority of the areas of practical use of PS 
(adsorption, medicine, energetics, etc.). It should 
be taken into account that the surface formed 
during the electrochemical etching of silicon 
contains different atomic groups such as Si-Hn, 
Si-OH, Si-O-Si, etc. [10] that can participate in 
various physicochemical processes determining 
the functional properties of the materials.

Thus, based on the aforementioned, we believe 
that the integral parameter is the total specific 
inner surface of PS which is able to characterise 
various obtained materials without specifying 
their structural individuality. The detailed 
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description of the types of characterisations of 
porous objects is presented in [11]. Total specific 
inner surface is often used when describing 
different porous materials. However, this 
parameter is very rarely used in the works 
related to porous silicon. This can be due to the 
fact that it is very laborious to determine it, and 
authors of the studies believe that this parameter 
can be fully replaced by porosity. At the same 
time, as it was mentioned above, a great number 
of properties of porous silicon depend on the 
behaviour of the pore surface, and the parameter 
we propose, the specific inner surface, seems 
to reflect the properties of porous silicon more 
comprehensively. This parameter surely depends 
on radial and axial pore sizes as well as the density 
of their distribution, as it contains the part of the 
total inner surface of PS that corresponds to these 
formations. Unlike the classification feature of 
IUPAC, this one allows characterising PS not by 
a particular parameter (radial pore size) but by 
the parameter that indicates the most important 
property for the use of this material which has a 
certain numeric value even in case when the pores 
of all size ranges from the IUPAC classification 
can be found in a PS layer at the same time.

The introduction of the parameter of total 
specific internal surface for the characterisation 
of PS is reasonable due to the fact that a great 
proportion of atoms in nanosized formations 
are located on the surface of particles and they 
participate in the implementation of surface 
phenomena. Table 1 shows these changes in 
the fraction of surface atoms depending on the 
number of atoms in the volume [12].

Table 1. Dependence of the fraction of surface 
atoms on the number of atoms in the volume of 
particles [12]

The number of 
atoms in the 
volume, cm–3 

106 105 104 103 102

Fraction of surface 
atoms, % 4 9 19 40 86

When the number of atoms in the volume 
decreases (that is, when the size of a particle 
decreases) from 106 to 102, the fraction of surface 
atoms increases to 86 %. The number of atoms 
in the volume 104 approximately corresponds to 
the lower size of a nanoparticle (2 nm). This is 

the state that determines an additional excess of 
surface energy, the so-called size effect typical for 
nanoformations.

The suggested classification parameter is the 
ratio of the total inner surface of PS to the volume 
of the etched material, and it has the dimension 
of the inverse length (cm–1). The total area formed 
by the etching of the surface can be determined 
by the standard method of nitrogen porosimetry, 
and the volume with due consideration of density 
is calculated through the weight of silicon after 
etching which can be determined by a simple 
gravimetric method of weighing.

It should be noted that it is reasonable to use 
the suggested parameter not only because it can 
characterise PS in various fields of application, 
such as energy, sensory studies, optoelectronics, 
medicine, pharmacy, and biology, but also 
because it can classify and characterise the 
obtained nanoparticles based on PS. The practical 
significance of the suggested classification 
parameter can be confirmed by the analysis of 
scientific literature where, in addition to the 
IUPAC classification, the parameters related to 
the total specific internal surface of PS are used 
directly or indirectly [13–30]. 

It is reasonable to use this parameter for the 
classification of PS by its numeric values that 
determine the area of greatest effectiveness of 
application of this material. Such classification 
may include, for example, the display area of 
a quantum size effect (optoelectronics), or the 
area determined by the value of specific surface 
depending on the linear pore sizes or the 
density of their distribution (sensory studies and 
medicine), etc. 

3. Conclusions
The introduction of a new classification 

feature, the total specific internal surface of PS 
layers, as an integral feature will allow defining the 
special characteristics and properties of various 
PS layers more comprehensively. The greater 
difficulty of its determination, as compared to 
the traditional parameters described above, is 
compensated for by its greater informational 
value, which makes it more preferable compared 
to other features. The use of this value does not 
exclude the use of other parameters for a more 
detailed classification.
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