УДК 541.123/.123.8/9:546.56'81'86/23

PHASE EQUILIBRIA IN THE Cu₂Se-SnSe-Sb₂Se₃ SYSTEM ALONG THE SnSe-Cu₃SbSe₃ SECTION

©2018 E. N. Ismayilova, L. F. Mashadieva

Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, 113 H. Javid ave., Az-1143 Baku, Azerbaijan e-mail: Leylafm76@gmail.com

Received 21.02.2018

Abstract. Phase equilibria in the $Cu_2Se-SnSe-Sb_2Se_3$ system were studied along the SnSe- Cu_3SbSe_3 section by means of differential-thermal and X-ray phase analysis and its phase diagram was constructed. It was found that the SnSe- Cu_3SbSe_3 section is stable below the solidus and is non-quasibinary thanks to the incongruent melting of the Cu_3SbSe_3 compound.

Keywords: Cu₂Se-SnSe-Sb₂Se₃ system, SnSe-Cu₃SbSe₃ section, phase diagram.

DOI: https://doi.org/10.17308/kcmf.2018.20/553

1. INTRODUCTION

Ternary and complex copper chalcogenides have attracted much attention thanks to their outstanding photoelectric, thermoelectric, non-linear optic and etc. properties [1-3]. In particular, the Cu-Sb-Sn-X (X=S, Se) systems are of great interest for the development of new ecologically safe thermoelectric materials [4–6]. In recent years, these compounds are very interesting due to the possibility of increasing their thermoelectric gure of merit. One of the ways to increase the thermoelectric gure of merit of these materials is to obtain solid solutions based on them. For this purpose, it is expedient to study phase equilibria in the corresponding systems [7, 8].

Earlier we carried out a multitude of comprehensive studies [9–11] of phase equilibria and thermodynamic properties of complex systems based on copper chalcogenides.

The purpose of this work is to clarify the phase equilibria in the $Cu_2Se-SnSe-Sb_2Se_3$ quasiternary system along the $SnSe-Cu_3SbSe_3$ polythermal section.

Tin monoselenide SnSe melts congruently at 1134 K [12] and crystallizes in the orthorhombic system, space group *Pcmn*, with following lattice parameters: a = 4.46, b = 4.19, c = 11.57 Å; Z = 4 [13].

The Cu₃SbSe₃ compound melts incongruently at 808 K [2] and crystallizes in the orthorhombic system, space group *Pnma*, with a = 7.9865(8), b = 10.6138(9)

and c = 6.8372(7) Å; Z = 4 [14]. Recent studies have shown that this compound due to its environmentallyfriendly constituent elements, ultralow thermal conductivity, and moderate thermopower, could be a potentially useful thermoelectric material [15–17], as well as the compound SnSe exhibit exceptionally good thermoelectric properties at high temperatures above ~800 K, including a very low thermal conductivity [18, 19].

2. EXPERIMENTAL

2.1. Materials and syntheses

The initial compounds SnSe and Cu₃SbSe₃ were synthesized by melting of elementary components of high purity (99.999 %) in vacuumed (~ 10^{-2} Pa) quartz ampoules. The synthesis was carried out at temperatures 50 °C higher than the melting points of the synthesized compounds. Further ampoule with tin selenide was slowly cooled to room temperature. The ampoule with Cu₃SbSe₃ according to the recommendations of [20] was rapidly cooled from the melt and then annealed at 600–673 K. Synthesized compounds SnSe and Cu₃SbSe₃ were identi ed by differential-thermal analysis (DTA) and powder X-ray diffraction (XRD) method.

A series of SnSe-Cu₃SbSe₃ alloys with compositions of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 95 mol % Cu₃SbSe₃ was prepared for the investigation. Alloys were prepared from pre-synthesized starting compounds by melting in a vacuum. In order to achieve the equilibrium state in alloys, cast non-homogenized samples obtained by slow cooling of melts were ground into a powder, thoroughly mixed and pressed into tablets with a mass of 0.8–1g, and then annealed at 700 K for 500 hours.

2.2. Methods

Studies carried out by DTA and XRD methods.

The differential-thermal analysis was carried out in the temperature range from room temperature to 1400 K with a heating rate of 10 K \cdot min⁻¹ on a differential scanning calorimeter (NETZSCH 404 F1 Pegasus system). The measurement results were processed using the NETZSCH Proteus Software. The accuracy of the temperature measurement was within ±2 K.

X-ray phase analysis was carried out at room temperature on a Bruker D8 ADVANCE diffractometer with $CuK\alpha_1$ radiation. The X-ray images were indexed using Topas V3.0 software Bruker.

3. RESULTS AND DISCUSSION

The results of XRD of annealed alloys showed that they are two-phase mixtures of the starting compounds. This indicates the stability of this section below the solidus. For example, Fig. 1 shows X-ray image of the alloy with composition 40 mol % SnSe – 60 mol % Cu₃SbSe₃ and con rmed its biphasic composition. As can be seen, the XRD pattern of this alloy is entirely composed of diffraction peaks of the SnSe (circles) and Cu₃SbSe₃ (triangles).

Based on the DTA data (Table), a phase diagram of the SnSe-Cu₃SbSe₃ section was plotted (Fig. 2). As can be seen, this section is a quasistable cross-section of the Cu₂Se-SnSe-Sb₂Se₃ system but is nonquasibinary

due to the incongruent melting of the Cu₂SbSe₂ compound. Solubility on the basis of SnSe (β -phase) with an extension of ~3 mol % is observed. Liquidus of the SnSe-Cu₂SbSe₂ system consists of two branches, which characterize primary crystallization of the β-phase and solid solutions based on a high-temperature modi cation of Cu₂Se compound (α -phase) formed along the Cu₂Se-Sb₂Se₂ section [2]. Below the liquidus in the 0-30 mol % SnSe composition range, thermal effects related to the monovariant peritectic reaction $L+\alpha \leftrightarrow$ Cu₂SbSe, are observed. During this reaction, a threephase region $L+\alpha+Cu_3SbSe_3$ is formed. In the 30-95 mol % SnSe composition range the joint crystallization of the α - and β -phases takes place. The horizontal at 725 K corresponds to an invariant transition reaction $L+\alpha \leftrightarrow Cu_3SbSe_3+\beta$. Crystallization is completed by the formation of a two-phase mixture $Cu_3SbSe_3+\beta$.

Table. Results of DTA for SnSe-Cu₃SbSe₃ alloys

Composition, mol % Cu ₃ SbSe ₃	Thermal effects, K
0 (SnSe)	1153
5	1105
10	725;1040
20	725; 950
30	725; 750; 880
40	725; 755; 835
50	725; 770; 800
60	725; 770
70	725; 810
80	725; 755; 850
90	725; 780; 890
95	725; 800; 920
$100 (Cu_3SbSe_3)$	808; 940

Fig. 1. Powder XRD pattern for the alloy 40 mol% SnSe-60 mol% Cu₃SbSe₃

Fig. 2. Phase diagram of the SnSe-Cu₃SbSe₃ section

4. CONCLUSION

The SnSe-Cu₃SbSe₃ section is studied by means of the DTA and XRD methods and its phase diagram is constructed. It was established that the SnSe-Cu₃SbSe₃ is a nonquasibinary and stable below the solidus crosssection of the phase diagram of the Cu₂Se-SnSe-Sb₂Se₃ system.

ACKNOWLEDGMENT

The work has been carried out within the framework of the international joint research laboratory "Advanced Materials for Spintronics and Quantum Computing" (AMSQC) established between Institute of Catalysis and Inorganic Chemistry of ANAS (Azerbaijan) and Donostia International Physics Center (Basque Country, Spain).

REFERENCES

1. Gurinder Kaur Ahluwalia (Ed.) Applications of Chalcogenides: S, Se, and Te. Springer, 2016, 463 p.

2. Babanly M. B., Yusibov Y. A., Abishev V. T., *Ternary Chalcogenides Based on Copper and Silver*. BSU Publisher, 1993, p. 342 (in Russ.)

3. Gayner C., Kar K. K. *Progress in Materials Science*, 2016, vol. 83, pp. 330–382 DOI: 10.1016/j.pmatsci. 2016.07.002

4. Suekuni K., Takabatake T. *Appl. Mater.*, 2016, vol. 4, pp. 104503–104513. DOI: 10.1063/1.4955398

5. Nasonova D. I., Verchenko V. Yu., Tsirlin A. A., Shevelkov A. V. *Chem. Mater.*, 2016, vol. 28, pp. 6621–6627 DOI: 10.1021/acs.chemmater.6b02720

6. Kim F. S., Suekuni K., Nishiate H., Ohta M., Tanaka H. I., Takabatake T. *J. Appl. Phys*, 2016, vol. 119, pp. 175105–175111. DOI: 10.1063/1.4948475

7. Alverdiyev I. J., Abbasova V. A., Yusibov Y. A, Babanly M. B. *Condensed Matter and Interphases*, 2017, vol. 19, no. 1, pp. 22–26. Available at: http://www.kcmf. vsu.ru/resources/t_19_1_2017_002.pdf (in Russ.)

8. Alakbarzade G. I., Babanly D. M., Imamaliyeva S. Z. *Condensed Matter and Interphases*, 2017, vol. 19, no. 4, pp. 474–478. Available at: http://www.kcmf.vsu.ru/resources/t_19_4_2017_001.pdf

9. Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. *J. Alloys Compd.*, 2017, vol. 691, pp. 255–262. DOI:10.1016/j. jallcom.2016.08.251

10. Mashadieva L. F., Gasanova Z. T., Yusibov Yu. A., Babanly M. B. *Russian Journal of Inorganic Chemistry*, 2017, vol. 62, no. 5, pp. 598–603. DOI: 10.1134/ S0036023617050151

11. Gasanova Z. T., Mashadieva L. F., Yusibov Yu. A., Babanly M. B. *Russian Journal of Inorganic Chemistry*, 2017, vol. 62, no. 5, pp. 591–597. DOI: 10.1134/ S0036023617050126

12. Massalski T. B. (Ed.) *Binary Alloy Phase Diagrams*. Second ed., ASM International, Materials Park, Ohio, 1990, 3589 p.

13. Okazaki A., Ueda I. J. Phys. Soc. Jpn., 1956, vol. 11, p. 470–470. DOI: 10.1143/JPSJ.11.470

14. P tzner A. Z. Anorg. Allg. Chem., 1995, vol. 621, pp. 685–688. DOI: 10.1002/zaac.19956210431

15. Liu R., Ren G., Tan X., Lin Y., Nan C. *Energies*, 2016, vol. 9, p.816. DOI: 10.3390/en9100816

16. Tyagi K., Gahtori B., Bathula S., Srivastava A. K., Shukla A. K., Auluck S., Dhar A. *J. Mater. Chem.* **A**, 2014, vol. 2, pp.15829–15835. DOI: 10.1039/C4TA02590C

17. Kirkham M., Majsztrik P., Skoug E., Morelli D., Wang H., Porter W., Payzant E. A., Lara-Curzio E. *Journal* of Materials Research, 2011, vol. 26, pp. 2001–2005. DOI: 10.1557/jmr.2011.43

18. Zhao L. D., Lo S. H., Zhang Y., Sun H., Tan G., Uher C., Wolverton C., Dravid V. P., Kanatzidis M. G. *Nature*, 2014, vol. 508 (7496), pp. 373–377 DOI: 10.1038/ nature13184

19. Chen C.-L., Wang H., Chen Y., Day T., Snyder G. J. *J. Mater. Chem. A*, 2014, vol. 2, pp. 11171–11176. DOI: 10.1039/C4TA01643B

20. Majsztrik P. W., Kirkham M., Garcia-Negron V., Lara-Curzio E., Skoug E. J., Morelli D. T. *Journal of Materials Science*, 2013, vol. 48, pp. 2188–2198. DOI: 10.1007/s10853-012-6994-x

УДК 541.123/.123.8/9:546.56'81'86/23

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Cu₂Se-SnSe-Sb₂Se₃ ПО РАЗРЕЗУ SnSe-Cu₃SbSe₃

©2018 Э. Н. Исмаилова, Л. Ф. Машадиева

Институт катализа и неорганической химии НАНА, пр. Г. Джавида 113, AZ 1134 Баку, Азербайджан e-mail: Leylafm76@gmail.com

Поступила в редакцию 21.02.2018

Аннотация. В работе приведены результаты исследования фазовых равновесий в квазитройной системе Cu,Se-SnSe-Sb,Se, по разрезу SnSe-Cu,SbSe, методами дифференциального термического (ДТА) и рентгенфазового (РФА) анализов. Результаты РФА отожженных сплавов показало, что они являются двухфазными смесями исходных соединений. Это указывает на стабильность данного разреза ниже солидуса. На основании полученных данных ДТА построена фазовая диаграмма разреза SnSe-Cu,SbSe,. Этот разрез является квазистабильным сечением системы Cu,Se-SnSe-Sb,Se,, но в целом неквазибинарен в силу инконгруэнтного характера плавления coeдинения Cu₃SbSe₃. В системе наблюдается растворимость на основе SnSe (β-фаза) с протяженностью ~3 мол.⁶/. Ликвидус системы SnSe-Cu₃SbSe₃ состоит из двух ветвей, характеризующих первичную кристаллизацию β-фазы и твердых растворов на основе высокотемпературной модификации соединения Cu₂Se (α-фазы) по разрезу Cu₂Se-Sb₂Se₃. Ниже ликвидуса в интервале составов 0-30 мол.% SnSe наблюдаются термические эффекты относящиеся моновариантной перитектической реакции $L+\alpha \leftrightarrow Cu_sSbSe_s$. В ходе реакции формируется трехфазная область L+α+Cu,SbSe₃. В интервале составов 30-95 мол.% SnSe происходит совместная кристаллизация α- и β-фаз. Горизонталь при 725 К отвечает нонвариантной переходной реакции: L+ $\alpha \leftrightarrow$ Cu,SbSe,+ β . Кристаллизация завершается образованием двухфазной смеси Cu₂SbSe₂+β.

Ключевые слова: система Cu₂Se-SnSe-Sb₂Se₃, сечение SnSe-Cu₂SbSe₃, фазовая диаграмма.

DOI: https://doi.org/10.17308/kcmf.2018.20/553

Работа выполнена в рамках международной совместной исследовательской лаборатории «Advanced Materials for Spintronics and Quantum Computing» (AMSQC), созданной между Институтом катализа и неорганической химии НАНА (Азербайджан) и Международным физическим центром Donostia (Страна Басков, Испания).

Исмаилова Эльнара Н. – аспирант, м. н. с., Институт катализа и неорганической химии НАНА; тел.: (+994) 552705005, e-mail: ismayilova818@ mail.ru

Машадиева Лейла Ф. – к. х. н., с. н. с., Институт катализа и неорганической химии НАНА; тел.: (+994) 556007506, e-mail: leylafm76@gmail.com Ismayilova Elnare Nadir – PhD student, Junior Scienti c fellow of Institute of Catalysis and Inorganic Chemistry Azerbaijan National Academy of Sciences; tel.: (+994) 552705005, e-mail: ismayilova818@mail.ru

Mashadieva Leyla Farkhad - PhD in chemistry, Senior Scienti c fellow of Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences; tel.: (+994) 556007506, e-mail: leylafm76@ gmail.com