УДК 538.956

ВЛИЯНИЕ ПРИМЕСИ L,α-АЛАНИНА НА СПОНТАННУЮ ЭВОЛЮЦИЮ ДОМЕННОЙ СТРУКТУРЫ ТРИГЛИЦИНСУЛЬФАТА ВБЛИЗИ ТОЧКИ КЮРИ

© 2018 О. М. Голицына, С. Н. Дрождин, В. О. Лесникова

Воронежский государственный университет, Университетская пл., 1, 394018 Воронеж, Россия e-mail: golitsynaom@yandex.ru; drozhdin@phys.vsu.ru

Поступила в редакцию: 30.11.2018

Аннотация. Методом атомной силовой микроскопии в режиме пьезоотклика изучена эволюция неравновесной доменной структуры кристаллов чистого триглицинсульфата (ТГС) и с примесью L, α -аланина (АТГС) вблизи температуры фазового перехода $T_{\rm C}$ в температурном интервале $\Delta T_{\rm C} = T_{\rm C} - T = 1$ К. В обоих кристаллах экспоненциально уменьшаются со временем общее число доменов N и полный периметр доменных границ L, диэлектрическая проницаемость ε , измеренная в слабом переменном электрическом поле. Изрезанность доменных границ в кристалле АТГС сохраняется с течением времени, приводя к росту значений среднего периметра домена L/N. Средняя скорость спонтанного бокового движения доменных границ в кристалле АТГС меньше чем в ТГС из-за демпфирующего действия дефектов. Вблизи $T_{\rm C}$ оба кристалла являются открытыми системами с неконсервативным параметром порядка, и развитие доменной структуры происходит с изменением поверхностного заряда. При удалении от $T_{\rm C}$ состояние с сохраняющимся параметром порядка достигается быстрее в дефектном кристалле АТГС.

Ключевые слова: атомная силовая микроскопия, триглицинсульфат, L,α-аланин, доменная структура, точка Кюри, кинетика, коэффициент униполярности, скорость доменных границ, периметр доменов.

DOI: https://doi.org/10.17308/kcmf.2018.20/630

ВВЕДЕНИЕ

Практическое использование сегнетоэлектрических кристаллов группы триглицинсульфата -ТГС (химическая формула (NH, CH, COOH), ·H, SO,) в качестве рабочих элементов пироэлектрических преобразователей сдерживается высокой чувствительностью их доменной структуры к различным внешним воздействиям [1]. Для минимизации этого фактора нестабильности пироэлектрических и иных свойств кристаллы ТГС в процессе роста легируются различными примесями внедрения и замещения (часто в их комбинации), среди которых наиболее эффективной признана примесь L,α-аланина [2]. Более крупная по сравнению с замещаемой молекулой глицина молекула L,α-аланина, имеющая нереверсируемую группу СН₃, создает эффективные локальные поля – механических напряжений и электрическое [2], которые ориентируют дипольные моменты близлежащих молекул глицина. Тем самым в кристалле создается высокоуниполярное, близкое к монодоменному состояние с одним преимущественным направлением спонтанной поляризации. Эффективные механические напряжения ответственны за сдвиг температуры фазового перехода $T_{\rm C}$ в область более высоких температур, а размытие фазового перехода обусловлено локальным электрическим полем [3].

Закономерности процессов перестройки доменной структуры кристаллов ТГС, как чистых, так и дефектных под действием внешних электрических полей изучены достаточно подробно [например, 4], но экспериментальная и теоретическая информация о спонтанной (т. е. не связанной с внешними полями) кинетике доменной структуры этих кристаллов, особенно на незначительном (до 1 К) удалении от точки фазового перехода кристаллов практически отсутствует, и соответствующие исследования являются актуальными.

В настоящей работе исследована эволюция доменной структуры кристаллов ТГС и ТГС+L, α -ала-

нин (АТГС) методом атомной силовой микроскопии пьезоотклика в температурном интервале шириной $\Delta T_{\rm C} = T_{\rm C} - T = 1$ К вблизи температуры фазового перехода $T_{\rm C}$. Результаты таких исследований номинально чистого ТГС [5, 6] в настоящей работе частично приводятся только для сравнения с соответствующими зависимостями кристалла АТГС.

ОБЪЕКТ ИССЛЕДОВАНИЯ И МЕТОДИКИ

Кристалл АТГС выращивался из пересыщенного раствора соли с содержанием 10 мол. % L, α – аланина методом понижения температуры. Неравномерное вхождение примеси L, α -аланина в объем выращиваемого кристалла приводит к неоднородному распределению поляризации, поэтому униполярность кристалла даже в пределах одной пирамиды роста может меняться [7].

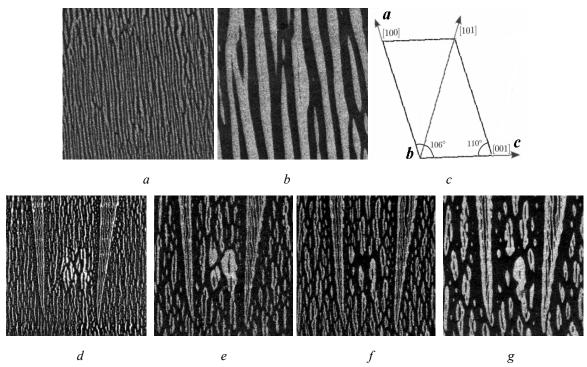
Качество образцов для исследований оценивалось по значениям диэлектрической проницаемости в точке Кюри ε_{max} , измеренным в переменном электрическом поле с амплитудой 0.1 V на частоте 1000 Hz с помощью измерителя импеданса Wayne Kerr WK-4270. Использовались образцы со средними размерами $5 \times 5 \times 1$ мм³ полярного скола по плоскости спайности [010] бруска из пирамиды роста (110). Непосредственно перед измерениями на них в вакууме были напылены серебряные электроды.

Для дальнейших исследований были отобраны образцы АТГС с относительно невысокой униполярностью (внутреннее поле смещения $E_{\rm вн} \leq 500~{\rm V~cm^{-1}}$). Значения $\epsilon_{\rm max}$ в режиме охлаждения, соответствующие температуре фазового перехода ($T_{\rm C} = 322.5 \div 322.6~{\rm ^{\circ}C}$), для таких образцов составляли $\sim 1.0 \div 1.5 \cdot 10^3$.

Сильнолегированные образцы кристалла АТГС (значения $\varepsilon_{\rm max}^{} < 10^3$) в настоящей работе не исследовались, поскольку сколь-либо заметные спонтанные изменения доменной структуры в них маловероятны. Протестированные образцы длительное время хранились при комнатной температуре в разомкнутом состоянии без каких-либо внешних воздействий. Доменные картины на плоскости (010) были получены с помощью атомно-силового микроскопа Solver P47 Pro с кантилевером NSG11/TiN в контактном режиме пьезоэлектрического отклика. Размеры сканируемой поверхности составляли 50×50µm. Температура поверхности сегнетоэлектрического образца измерялась терморезистором РТ100. Регулятор температуры, вмонтированный в головку микроскопа, позволил контролировать и поддерживать заданную температуру образца в диапазоне $373 \div 273$ К с точностью не хуже, чем ± 0.05 К.

«Состаренные» образцы «омолаживались» выдержкой в течение 30 минут в параэлектрической фазе при температуре T = 333 К. Затем они охлаждались со скоростью ~ 10 К min⁻¹ до T = 324 К и далее переводись в сегнетоэлектрическую фазу со скоростью, позволяющей минимизировать время установления заданной температуры.

Полученные доменные картины использовались для расчета числа доменов N, полного периметра доменных границ L, среднего размера домена < w>, средней скорости < v> движения доменных стенок, коэффициента статической униполярности ψ .


ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлены фрагменты двумерных АСМ изображений поверхности (010) кристалла номинально чистого ТГС при удалениях от точки Кюри равных: $\Delta T_c = 0.3 \; \mathrm{K} - a, b$ и кристалла АТГС при $\Delta T_c = 0.3 \; \mathrm{K} - d, e$ и $\Delta T_c = 0.8 \; \mathrm{K} - f, g$.

В кристалле АТГС (рис. 1d-g) наблюдается более мелкая по сравнению с ТГС (рис. 1a, b) ламелеподобная доменная структура с неровными ветвистыми доменными стенками. Измельчение доменной структуры, характерное для примесных кристаллов [8, 9], в АТГС связано с существованием дополнительных центров зарождения доменов на структурных неоднородностях при частичном замещении глицина L, α - аланином [10].

Развитие доменной структуры в АТГС качественно происходит также как в ТГС: она укрупняется, но менее интенсивно по сравнению с номинально чистым ТГС. Например, через \sim 50÷60 минут после перевода в полярную фазу геометрия доменов с характерными изрезанными границами меняется незначительно (рис. 1 e, g).

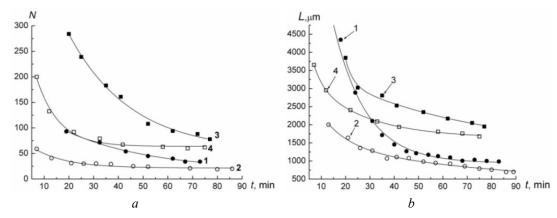
Визуальное сравнение доменных картин позволяет установить только качественное сходство их поведения в разных кристаллах группы ТГС: возникающие при фазовом переходе мелкие, вытянутые примерно вдоль направления [100] домены с размерами, отвечающими параметрам элементарной ячейки кристалла, со временем укрупняются, и этот процесс включает: і) исчезновение мелких доменов внутри крупных доменов противоположной полярности, іі) движение доменных стенок в направлениях [001] и [100], интенсивность которого определяется локальной кривизной границ, приводит, в том числе, к сглаживанию (выпрямле-

Рис. 1. Доменные картины на полярном сколе 50×50 µm кристалла ТГС в моменты времени: a) 14 min; b) 50 min при $\Delta T_{\rm C} = 0.3$ K [5]. Доменные картины на полярном сколе 50×50 µm кристалла АТГС в моменты времени: d) 20 min; e) 52 min при $\Delta T_{\rm C} = 0.3$ K. Доменные картины на полярном сколе 50×50 µm кристалла АТГС в моменты времени: f) 12 min; g) 58 min при $\Delta T_{\rm C} = 0.8$ K. Ориентация кристаллографических осей кристаллов ТГС и АТГС в плоскости (010) - c)

[Fig. 1. Domain patterns on a polar cleavages $50 \times 50 \, \mu m$ of TGS crystal at time points: a) 14 min; b) 50 min at $\Delta T_C = 0.3 \, K$. [4]. Domain patterns on a polar cleavages $50 \times 50 \, \mu m$ of ATGS crystal at time points: d) 20 min; e) 52 min at $\Delta T_C = 0.3 \, K$. Domain patterns on a polar cleavages $50 \times 50 \, \mu m$ of ATGS crystal at time points: f) 12 min; g) 58 min at $\Delta T_C = 0.8 \, K$. Orientation of the crystallographic axes of TGS and ATGS crystals in the (010) plane -c)]

нию) доменных границ, iii) слияние (коалесценция) доменов одного знака с образованием более крупных и правильных по форме. Вместе с тем, интерес представляют количественные закономерности поведения доменной структуры и влияние на них структурных дефектов.

Количественными характеристиками доменной структуры, определяющими, в том числе, абсолютную величину диэлектрической проницаемости ε сегнетоэлектрика в полярной фазе, являются число доменов, наблюдаемых на поверхности кристалла N и суммарный периметр доменных границ L [11–13], временные зависимости которых представлены на рис. 2.


На сканируемых поверхностях одинаковой площади во всем исследованном временном интервале $N_{\rm ATTC} > N_{\rm TTC}$ (рис. 2a). В непосредственной близости к $T_{\rm C}$ зависимости N(t) наилучшим образом описываются одной экспонентой: $N(t) = N_{\rm o} \exp(-t/\tau)$ со значениями $\tau = 46.39 \pm 0.23$ мин — $T\Gamma C$ (рис. 2a, кривая I) и $\tau = 25.10 \pm 3.06$ мин — $AT\Gamma C$ (рис. 2a, кривая 3). При небольшом понижении температуры

предпочтительнее функция: $N(t) = N_{\rm ol} \exp(-t/\tau_1) + N_{\rm o2} \exp(-t/\tau_2)$, где для ТГС (рис. 2a, κ ривая 2) $\tau_1 = 5.19 \pm 0.98$ мин, $\tau_2 = 352.53 \pm 7.22$ мин и для АТГС (рис. 2a, κ ривая 4) $\tau_1 = 4.42 \pm 0.48$ мин, $\tau_2 = 87.84 \pm 7.91$ мин. При обеих температурах значения времен релаксации для АТГС ниже, чем для чистого ТГС вследствие более быстрой локализации доменных границ в присутствии дефектов.

Экспоненциальное уменьшение величины L в кристалле АТГС (рис. 2b, кривые 3, 4) характеризуется значениями $\tau_1 = 3.07 \pm 0.27$ мин и $\tau_2 = 59.43 \pm 2.32$ мин при $\Delta T_{\rm C} = 0.3$ К; $\tau_1 = 3.91 \pm 0.45$ мин и $\tau_2 = 23.07 \pm 1.15$ мин при $\Delta T_{\rm C} = 0.8$ К, а наиболее существенное уменьшение величины L происходит во временном интервале $\sim 20-30$ минут с момента перевода кристалла в сегнетоэлектрическую фазу.

При одновременном уменьшении и L и N величина среднего периметра домена L/N в АТГС, тем не менее, растет с течением времени (рис. 3, *кривые 1*, 2), в отличие от номинально чистого ТГС [6].

Наиболее интенсивно укрупнение доменов в АТГС происходит вблизи $T_{\rm C}$, где во временном ин-

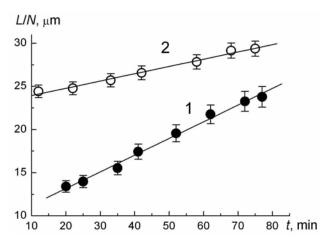


Рис. 2. Временные зависимости числа доменов N(t)-a) ТГС: $1-\Delta T_{\rm C}=0.1$ К, $2-\Delta T_{\rm C}=1.0$ К, АТГС: $3-\Delta T_{\rm C}=0.3$ К, $4-\Delta T_{\rm C}=0.8$ К (точки – эксперимент, линии – аппроксимация экспонентой). Временные зависимости полного периметра доменных границ L(t)-b) ТГС: $1-\Delta T_{\rm C}=0.1$ К, $2-\Delta T_{\rm C}=1.0$ К [6]; АТГС: $3-\Delta T_{\rm C}=0.3$ К, $4-\Delta T_{\rm C}=0.8$ К (точки – эксперимент, линии – аппроксимация экспонентой)

[Fig. 2. The time dependences of the number of domains N(t) –a) TGS: 1 - $\Delta T_{\rm C}$ = 0.1 K, 2 - $\Delta T_{\rm C}$ = 1.0 K; ATGS: 3 - $\Delta T_{\rm C}$ = 0.3 K, 4 - $\Delta T_{\rm C}$ = 0.8 K (the points are the experiment, the lines are the approximation by the exponent). The time dependences of the total perimeter of the domain boundaries L(t) –b) TGS: 1 - $\Delta T_{\rm C}$ = 0.1 K, 2 - $\Delta T_{\rm C}$ = 1.0 K [6]; ATGS: 3 - $\Delta T_{\rm C}$ = 0.3 K, 4 - $\Delta T_{\rm C}$ = 0.8 K (the points are the experiment, the lines are the approximation by the exponent)]

тервале наблюдения величина L/N увеличивается в 2 раза (рис. 3, *кривая 1*). Эти отличия в поведении L/N для АТГС при разных температурах связаны, вероятно, с сильной изрезанностью доменных границ в примесном кристалле, которая сохраняется и при удалении от $T_{\rm C}$ в сторону низких температур (рис. 1d–g).

Поведение во времени доменной структуры кристалла АТГС в рассматриваемой температурной области можно, как и для чистого ТГС [14] сопоставить с релаксацией низкочастотной диэлектрической проницаемости, измеренной в слабом пе-

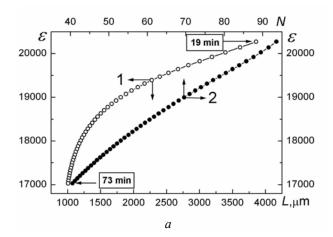
Рис. 3. Временные зависимости среднего периметра доменов кристалла АТГС: $1-\Delta T_{\rm C}=0.3~{\rm K},\,2-\Delta T_{\rm C}=0.8~{\rm K}$

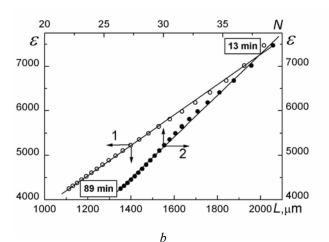
[Fig. 3. The time dependences of the average perimeter of domains of ATGS crystal: $1 - \Delta T_{\rm C} = 0.3 \text{ K}, 2 - \Delta T_{\rm C} = 0.8 \text{ K}$]

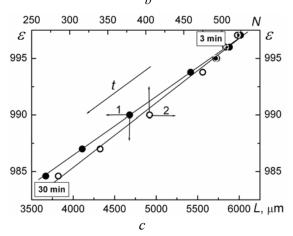
ременном электрическом поле.

После перевода образца АТГС в полярную фазу значения диэлектрической проницаемости є с течением времени уменьшаются - заметно в окрестности температуры фазового перехода, но чем дальше от T_c , тем слабее, и в глубокой сегнетофазе временная зависимость є практически отсутствует. Такое изменение абсолютной величины є в АТГС также как и в ТГС, вызвано изменением доменной структуры, возникшей при фазовом переходе [5, 6, 14]. С течением времени доменные границы становятся менее подвижными из-за тормозящего действия дефектов, закрепляющих границы в местах их новой устойчивой локализации, а при понижении температуры, также и из-за роста коэрцитивного поля, затрудняющего процессы локальной переполяризации, связанные с осцилляциями доменных границ в измерительном электрическом поле.

Сравнение зависимостей $\varepsilon(t)$ с L(t) и N(t) для ТГС и АТГС показано на рис. 4.

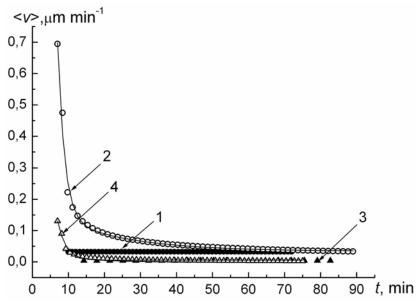

Видно, что уменьшение со временем L и N всегда сопровождается спадом значений $\varepsilon_{_{\rm H3M}} \approx \varepsilon_{_{\rm дом}}$. Связь $\varepsilon-L$, линейная для ТГС вблизи $T_{_{\rm C}}$ в начальные моменты времени, становится затем нелинейной (рис. 4a, κ ривая I), поскольку дефекты, постепенно закрепляя часть доменных стенок, «выключают» их из процессов локальной переполяризации. При этом связь $\varepsilon-N$ практически линейна во всем исследованном временном интервале (рис. 4a, κ ривая 2). При небольшом понижении температу-


ры обе зависимости — $\varepsilon(L)$ и $\varepsilon(N)$ становятся линейными для ТГС во всем исследованном временном интервале (рис. 4b, κ ривые l, 2). Для АТГС эти зависимости линейны и вблизи $T_{\rm C}$ (рис. 4c, κ ривые l, 2). В двух последних случаях дополнительное существенное закрепление доменных стенок дефектами не происходит, и поэтому понижение значений ε связано преимущественно только с уменьшением L и N.


Кинетика процесса спонтанной эволюции доменной структуры наглядно прослеживается по поведению средней скорости смещения доменных границ, которая и в чистом, и в примесном кристалле постоянна вблизи $T_{\rm C}$ (рис. 5, *кривые 1, 3*), а при понижении температуры демонстрирует быстрый двухэкспоненциальный спад с временами релаксации $\tau_1 = 2$ min, $\tau_2 = 25$ min для ТГС и $\tau_1 = 2$ min, $\tau_2 = 35$ min для АТГС (рис. 5, *кривые 2, 4*). При этом абсолютные значения <v> в АТГС всегда примерно на порядок ниже, чем в ТГС, что естественно объяснить присутствием примесных дефектов, тормозящих движение стенок в АТГС.

При исследованиях различных систем, быстро охлажденных через критическую точку из неупорядоченной однородной фазы в упорядоченную двухфазную, динамика упорядочения оценивается по поведению характерного масштаба *l* областей новой фазы – доменов [15]. Считая сегнетоэлектрическую доменную структуру такой упорядоченной двухфазной системой, возникшей в результате фазового перехода, осуществленного с конечной скоростью, можно рассматривать средний линейный размер домена < w >, как аналог l [15], исследовать его временные зависимости < w > (t) и сравнивать их с зависимостями l(t). В ряде работ [16-18] было показано, что развитие доменов (областей с разным знаком скалярного параметра порядка $\pm \eta_{o}$, претерпевающих макроскопическое упорядочение), описывается зависимостью $l(t) \sim t^{1/2}$ в системах с несохраняющимся параметром порядка и $l(t) \sim t^{1/3}$ в системах с сохраняющимся параметром порядка.

В непосредственной близости к температуре фазового перехода в обоих кристаллах (рис. 6a, b кривые I) временная зависимость $< w>_{[001]}$ практически линейна: $< w>_{[001]}(t) \sim t^{\varphi}$, где $\varphi \approx 1$, что не согласуется с существующими теоретическими



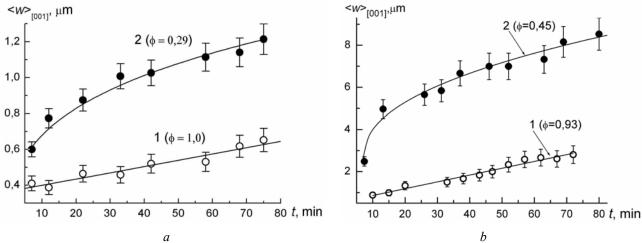


Рис. 4. Зависимости низкочастотной диэлектрической проницаемости ε от полного периметра доменных границ L (*кривые 1*) и от полного числа доменов N (*кривые 2*) для разных моментов времени: a) ТГС при $\Delta T_C = 0.3$ °C, b) ТГС при $\Delta T_C = 1.0$ °C, c) АТГС при $\Delta T_C = 0.3$ °C

[**Fig. 4**. The dependences of the low-frequency dielectric constant ε on the total perimeter of domain boundaries L (*curves 1*) and on the total number of domains N (*curves 2*) for different times: a) TGS at $\Delta T_{\rm C} = 0.3$ °C, b) TGS at $\Delta T_{\rm C} = 1.0$ °C, c) ATGS at $\Delta T_{\rm C} = 0.3$ °C]

Рис. 5. Временные зависимости средней скорости развития доменов в направлении [001]: ТГС – кривые 1, 2; АТГС – кривые 3, 4. ΔT_{C} = 0.1 K – 1; ΔT_{C} = 0.3 K – 3; ΔT_{C} = 1.0 K – 2; ΔT_{C} = 0.8 K – 4 [**Fig. 5**. The time dependences of the average rate of development of domains in the direction [001]: TGS - curves 1, 2; ATGS - curves 3, 4. ΔT_{C} = 0.1 K – 1; ΔT_{C} = 0.3 K – 3; ΔT_{C} = 1.0 K – 2; ΔT_{C} = 0.8 K – 4]

Рис. 6. Зависимости $< w>_{[001]}$ (t): a) для кристалла АТГС: $1 - \Delta T_{\rm C} = 0.3~{\rm K}$, $2 - \Delta T_{\rm C} = 0.8~{\rm K}$; b) для кристалла ТГС: $1 - \Delta T_{\rm C} = 0.1~{\rm K}$, $2 - \Delta T_{\rm$

представлениями [15], но наблюдалось экспериментально [19] для чистого кристалла ТГС методом нематических жидких кристаллов в интервале $\Delta T_{\rm C} \approx 0.4$ K, а, следовательно, этот результат требует дальнейшего изучения. Незначительное удаление от $T_{\rm C}$ понижает значения ϕ до 0.29 в АТГС (рис. 6а, кривая 2), указывая на консервативность параметра порядка в этом кристалле, и до 0.45 в ТГС (рис. 6b, кривая 2), свидетельствуя, вероятно, о неконсервативности параметра порядка. Результат, полученный здесь для АТГС, хорошо коррели-

рует с теоретическими данными, представленными в литературе, но для ТГС только в одной работе [20] при T = 47 °C было получено значение ϕ = 0.5. Если вблизи температуры фазового перехода любой кристалл с его доменной структурой является сильно неравновесной системой, чувствительной к незначительным изменениям внешних условий, то при удалении от $T_{\rm C}$ он постепенно переходит к состоянию с сохраняющимся параметром порядка, которое благодаря присутствию дефектов, затормаживающих динамику доменов, достигается

раньше при понижении температуры в кристалле АТГС, и для ТГС такое состояние по нашим оценкам [12, 14] может быть достигнуто при удалении от точки Кюри $\Delta T_{\rm C} \approx 2 \div 3~{\rm K}.$

Согласно [21], в качестве параметра дальнего порядка в сегнетоэлектрике с фазовым переходом типа порядок-беспорядок рассматривается величина

$$S = (n - n)/n$$

где n — число диполей в единице объема кристалла, из которых n_+ и n_- ориентированы при данной температуре, соответственно, в положительном и отрицательном направлениях вдоль полярной оси. Величины

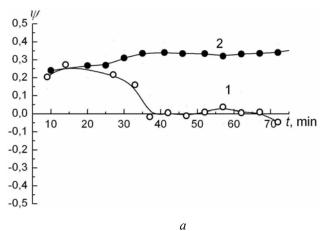
$$x_{+} \equiv n_{+} / n, \ x_{-} \equiv n_{-} / n$$

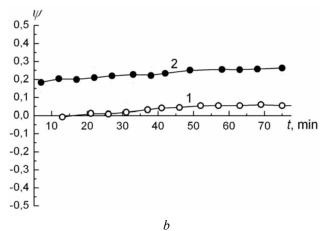
это вероятности того, что диполь ориентирован, соответственно, в положительном и в отрицательном направлении. Очевидно, что

$$x_{\perp} + x_{\perp} = 1 \text{ M } x_{\perp} - x_{\perp} = S.$$

Введенный таким образом параметр порядка *S*, по смыслу практически ничем не отличается от коэффициента статической униполярности, определяющего степень макроскопического упорядочения полидоменного сегнетоэлектрика через разность площадей «положительных» и «отрицательных» доменов, отнесенную к общей площади полярного среза образца:

$$\psi(t,T) = (\sigma_{\perp} - \sigma) / \sigma.$$


Значение $0 \le |\psi| \le 1$ определяет абсолютную величину макроскопической поляризация полидо-


менного сегнетоэлектрика $P_{s}(T,t) = \psi(t,T) \cdot P_{s}(T)$.

Возникающие при фазовом переходе распределения поляризации в объеме кристалла и поляризационного заряда на его поверхности меняются во времени за счет объемных и поверхностных носителей заряда [22], что может приводить при постоянной температуре к изменению ψ . Поэтому поведение $\psi(t,T=\text{const})$, как параметра дальнего порядка, позволяет оценить степень консервативности системы. В работе [23] для линзообразных доменов при комнатной температуре и в работе [13] для ламелеобразных доменов при T=316 К было установлено, что полный заряд поверхности образца сохраняется.

Зависимости $\psi(t)$ для кристаллов АТГС и ТГС приведены на рис. 7.

Наиболее заметные изменения значений у при стремлении доменной системы к равновесному состоянию происходят вблизи $T_{\rm C}$ примерно в течение первых ~ 30 минут (рис. 7a), что можно рассматривать как свидетельство неконсервативности параметра порядка в этом временном интервале, причем в кристалле ТГС эти изменения выражены значительно сильнее (рис. 7а, кривая 1), чем в АТГС. По прошествии этого времени ψ практически перестает меняться, слабо осциллируя вблизи $\psi = 0$ в ТГС и ψ = 0.35 в АТГС. При чуть более низких температурах (рис. 7b) значения ψ не претерпевают существенных изменений со временем, что указывает на формирование доменной структуры обоих кристаллов уже в условиях сохранения поверхностного заряда.

Рис. 7. Временные зависимости коэффициента статической униполярности: a) для ТГС при $\Delta T_{\rm C} = 0.1~{\rm K} - 1~{\rm M}$ АТГС при $\Delta T_{\rm C} = 0.3~{\rm K} - 2$; b) для ТГС при $\Delta T_{\rm C} = 1.0~{\rm K} - 1~{\rm M}$ АТГС при $\Delta T_{\rm C} = 0.8~{\rm K} - 2$

[Fig. 7. The time dependences of the coefficient of static unipolarity: a) for TGS with $\Delta T_{\rm C} = 0.1~{\rm K} - 1$ and ATGS with $\Delta T_{\rm C} = 0.3~{\rm K} - 2$; b) for TGS at $\Delta T_{\rm C} = 1.0~{\rm K} - 1$ and ATGS at $\Delta T_{\rm C} = 0.8~{\rm K} - 2$]

выводы

- 1. Для кристаллов ТГС и ТГС+L, α -аланин (АТГС) исследована эволюция свежеобразованной доменной структуры методом атомной силовой микроскопии пьезоотклика вблизи температуры фазового перехода T_C в температурном интервале шириной $\Delta T_C = T_C T = 1$ К. При качественном подобии развития доменной структуры в кристаллах ее трансформация в АТГС происходит менее интенсивно, чем в номинально чистом ТГС.
- 2. В ТГС и АТГС укрупнение доменной структуры сопровождается экспоненциальным уменьшением во времени числа доменов N и полного периметра доменных границ L. Во всем исследованном временном интервале $N_{\rm ATTC} > N_{\rm TTC}$.
- 3. В отличие от номинально чистого ТГС в АТГС величина среднего периметра домена L/N растет с течением времени вследствие сильной изрезанности доменных границ и вблизи $T_{\rm C}$, так и при более низких температурах.
- 4. В ТГС и АТГС средняя скорость движения доменных границ остается постоянной во времени вблизи точки Кюри и экспоненциально уменьшается со временем при удалении от нее.
- 5. В температурном интервале $\Delta T_C = T_C T = 1~\mathrm{K}$ временные зависимости среднего линейного размера домена < w > описываются функцией $< w > \sim t^{\varphi}$, где $0.45 \le \varphi \le 0.93$ для номинально чистого ТГС и $0.29 \le \varphi \le 1$ для АТГС. Значения $\varphi \approx 1$ в непосредственной близости к T_C . При понижении температуры состояние с консервативным параметром порядка, характеризуемое значением $\varphi = 0.3$, достигается быстрее в кристалле АТГС благодаря наличию дефектов.
- 6. Коэффициент статической униполярности ψ , характеризующий степень макроскопического упорядочения кристалла и величину поверхностного заряда, наиболее сильно изменяется вблизи $T_{\rm C}$ в первые 30 минут, указывая на открытость системы. При понижении температуры ψ не претерпевает значительных изменений с течением времени и доменная структура кристаллов ТГС и АТГС формируется в условиях сохранения поверхностного заряда.

СПИСОК ЛИТЕРАТУРЫ

1. Лайнс М., Гласс А. Сегнетоэлектрики и родственные материалы. М.: Мир, 1981, 736 с.

- 2. Цедрик М. С. Физические свойства кристаллов семейства триглицинсульфата. Минск, Наука и техника, 1986, 216 с.
- 3. Галстян Г. Т., Рез И. С., Рейзер М. Ю. // ΦTT , 1982, т. 24, с. 2186–2190.
- 4. Дрождин С. Н., Голицына О. М., Никишина А. И. и др. // Φ TT, 2006, т. 48, № 3, с. 497–500.
- 5. Golitsyna O. M., Drozhdin S. N., Chulakova V. O., Grechkina M. N. // *Ferroelectrics*, 2017, vol. 506, p. 127. DOI: https://doi.org/10.1080/00150193/2017.1282286
- 6. Голицына О. М., Дрождин С. Н., Коробова А. Д., Чулакова В. О. // Конденсированные среды и межфазные границы, 2017, т. 19, № 1, с. 42. DOI: https://doi.org/10.17308/kcmf.2017.19/175
- 7. Тихомирова Н. А., Гинзберг А. В., Донцова Л. И., и др. // *ФТТ*, 1986, т. 28, № 3, с. 3055–3058.
- 8. Константинова В. П., Станковска Я. // *Кристал-лография*, 1971, т. 16, с. 158–163.
- 9. Моравец Ф., Константинова В. П. // *Кристаллография*, 1968, т. 13, с. 284–289.
- 10. Донцова Л. И., Тихомирова Н. А. // *Письма в* \mathcal{K} Э $T\Phi$, 1985, т. 41, с. 183–185.
- 11. Новик В. К., Лотонов А. М., Гаврилова Н. Д. // *ФТТ*, 2009, т. 51, № 7, с. 1338–1343.
- 12. Дрождин С. Н., Голицына О. М. // *ФТТ*, 2012, т. 54, № 5, с. 853–858.
- 13. Likodimos V., Labardi V., Allegrini M. // *Phys. Review B*, 2000, vol. 61, № 21, pp. 14440–1447. DOI: https://doi.org/10.1103/physrevb.61.14440
- 14. 14.Голицына О. М., Гречкина М. В., Дрождин С. Н., Чулакова В. О. // Конденсированные среды и межфазные границы, 2016, т. 18, № 4, с. 494–504.
- 15. Bray A. J. // *Advances in Physics*, 1994, vol. 43, pp. 357–459. DOI: http://dx.doi.org/10.1080/00018739400 101505
- 16. Oono Y., Puri S. // *Phys. Review Letters*, 1987, vol. 58, № 8, pp. 836–839. DOI: https://doi.org/10.1103/physrevlett.58.836
- 17. Schins A. G., Arts A. F. M., de Wijn H. W. // *Phys. Review Letters*, 1993, vol. 70, pp. 2340–2343. DOI: https://doi.org/10.1103/physrevlett.70.2340
- 18. Abplanalp M., Eng L. M., Günter P. // *Appl. Phys. A*, 1998, vol. 66, pp. S231–S234. DOI: https://doi.org/10.1007/s003390051136
- 19. Nakatani N. // *Japan. J. of Appl. Phys.*, 1985, vol. 24, № 7, pp. L528–L530. DOI: https://doi.org/10.1143/jjap.24. 1528
- 20. Likodimos V., Orlik X. K., Pardi L., et al. // *J. of Applied Physics*, 2000, vol. 87, pp. 443–451. DOI: https://doi.org/10.1063/1.371882

EFFECT OF L,α-ALANINE IMPURITY ON THE SPONTANEOUS EVOLUTION OF THE DOMAIN STRUCTURE OF TRIGLICINE SULPHATE NEAR THE CURIE POINT

© 2018 O. M. Golitsyna, S. N. Drozhdin, V. O. Lesnikova

Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russia e-mail: golitsynaom@yandex.ru; drozhdin@phys.vsu.ru

Received 30.11.2018

Abstract. Using the atomic force microscopy method in the piezoelectric response mode, the evolution of the nonequilibrium domain structure of pure triglycine sulfate (TGS) crystals and doped with an L, α -alanine (ATGS) impurity was studied near the phase transition temperature over the interval $\Delta T_{\rm C} = T_{\rm C} - T = 1$ K. In both crystals the total number of domains N, the total perimeter of domain boundaries L and also the dielectric constant ϵ , measured in a weak ac electric field, decrease exponentially upon time. The ruggedness of the domain boundaries in the ATGS crystal persists over time, leading to an increase of the average domain perimeter L/N. The average velocity of spontaneous lateral movement of domain boundaries in a TGS crystal is less than in ATGS, due to the damping influence of defects. Near $T_{\rm C}$, both crystals are open systems with a non-conservative order parameter, and the development of the domain structure occurs with a change of the surface charge. With distance from the $T_{\rm C}$, the state with a conserved order parameter is reached faster in ATGS crystal.

Keywords: atomic force microscopy, triglycine sulfate, L,α -alanine, domain structure, Curie point, kinetics, coefficient of unipolarity, velocity of domain boundaries, domain perimeter.

DOI: https://doi.org/10.17308/kcmf.2018.20/630

REFERENCES

- 1. Lines M. E. and Glass A. M. *Principle and Applications of Ferroelectrics and Related Materials*. New York, Clarendon, 1982, 680 p.
- 2. Cedrik M. S. *Fizicheskie svojstva kristallov seme-jstva triglicinsul'fata* [The Physical Properties of the Triglycine Sulfate Family of Crystals.]. Minsk, Nauka i Tekhnika Publ., 1986, 216 p. (in Russ.)
- 3. Galstyan G. T., Rez I. S., Rejzer M. Yu. *Fizika Tverdogo Tela* [Physics of the Solid State], 1982, vol. 24, pp. 2186–2190. (in Russ.)
- 4. Drozhdin S. N., Golitsyna O. M., Nikishina A. I., et al. *Fizika Tverdogo Tela* [Physics of the Solid State], 2006, vol. 48, iss. 3, pp. 532–536. DOI: https://doi.org/10.1134/S106378340603019X
- 5. Golitsyna O. M., Drozhdin S. N., Chulakova V. O., Grechkina M. N. *Ferroelectrics*, 2017, vol. 506, p. 127. DOI: https://doi.org/10.1080/00150193/2017.1282286
- 6. Golitsyna O. M., Drozhdin S. N., Korobova A. D., Chulakova V. O. *Condensed Matter and Interphases*, 2017, vol. 19, no. 1, p. 42. DOI: https://doi.org/10.17308/kcmf.2017.19/175 (in Russ.)
- 7. Tihomirova N. A., Ginzberg A. V., Doncova L. I., et al. *Fizika Tverdogo Tela* [Physics of the Solid State], 1986, vol. 28, iss. 3, pp. 3055–3058. (in Russ.)
- 8. Konstantinova V. P., Stankovska Y A. *Kristallografi-ya* [Crystallography Reports], 1971, vol. 16, pp. 158–163. (in Russ.)

- 9. Moravec F., Konstantinova V. P. *Kristallografiya* [Crystallography Reports], 1968, vol. 13, pp. 284–289. (in Russ.)
- 10. Doncova L. I., Tihomirova N. A. *Pis'ma v ZHEHTF* [Technical Physics Letters], 1985, vol. 41, pp. 183–185. (in Russ.)
- 11. Novik V. K., Lotonov A. M., Gavrilova N. D. *Fizika Tverdogo Tela* [Physics of the Solid State], 2009, vol. 51, iss. 7, pp. 1414–1419. DOI: https://doi.org/10.1134/S1063783409070221
- 12. Drozhdin S. N., Golitsyna O. M. *Fizika Tverdogo Tela* [Physics of the Solid State], 2012, vol. 54, iss. 5, pp. 905–910. DOI: https://doi.org/10.1134/S10637834 12050071
- 13. Likodimos V., Labardi V., Allegrini M. *Phys. Review B*, 2000, vol. 61, no. 21, pp. 14440–1447. DOI: https://doi.org/10.1103/physrevb.61.14440
- 14. Golitsyna O. M., Grechkina M. V., Drozhdin S. N., Chulakova V. O. *Condensed Matter and Interphases*, 2016, vol. 18, no. 4, pp. 494–504. Available at: http://www.kcmf.vsu.ru/article.php?l=ru&aid=776 (in Russ.)
- 15. Bray A. J. *Advances in Physics*, 1994, vol. 43, pp. 357–459. DOI: http://dx.doi.org/10.1080/00018739400 101505
- 16. Oono Y., Puri S. *Phys. Review Letters*, 1987, vol. 58, no. 8, pp. 836–839. DOI: https://doi.org/10.1103/physrevlett.58.836

ВЛИЯНИЕ ПРИМЕСИ L,А-АЛАНИНА НА СПОНТАННУЮ ЭВОЛЮЦИЮ ДОМЕННОЙ СТРУКТУРЫ...

- 17. Schins A. G., Arts A. F. M., de Wijn H. W. *Phys. Review Letters*, 1993, vol. 70, pp. 2340–2343. DOI: https://doi.org/10.1103/physrevlett.70.2340
- 18. Abplanalp M., Eng L. M., Gьnter P. *Appl. Phys. A*, 1998, vol. 66, pp. S231–S234. DOI: https://doi.org/10.1007/s003390051136
- 19. Nakatani N. Japan. *J. of Appl. Phys.*, 1985, vol. 24, no. 7, pp. L528–L530. DOI: https://doi.org/10.1143/jjap.24. 1528
- 20. Likodimos V., Orlik X. K., Pardi L., et al. *J. of Applied Physics*, 2000, vol. 87, pp. 443–451. DOI: https://doi.org/10.1063/1.371882

Голицына Ольга Михайловна – к. ф.-мат. н., доцент, Воронежский государственный университет, Воронеж, Россия; тел.: +7 (473) 2208625, e-mail: golitsynaom@yandex.ru

Дрождин Сергей Николаевич — д. ф.-м. н., профессор, заведующий кафедрой, Воронежский государственный университет, Воронеж, Россия; тел.: +7 (919) 1824460, e-mail: drozhdin@phys.vsu. ru

Лесникова Валерия Олеговна — аспирант, Воронежский государственный университет, Воронеж, Россия; тел.: +7 (473) 2208625, e-mail: chulakovavo@mail.ru

Olga M. Golitsyna – Cand. Sci. (Phys.-Math.), Assistant Professor, Voronezh State University, Voronezh, Russia; tel.: +7 (473) 2208625, e-mail: golitsynaom@yandex.ru

Sergey N. Drozhdin – Dr. Sci. (Phys.-Math.), Full Professor, Head of Department, Voronezh State University, Voronezh, Russia; tel.: +7 (919) 1824460, e-mail: drozhdin@phys.vsu.ru

Valeriya O. Lesnikova – Graduate Student, Voronezh State University, Voronezh, Russia; tel.: +7 (473) 2208625, e-mail: chulakovavo@mail.ru