УДК 544.653.22:620.193.013:669

ЭЛЕМЕНТЫ МИКРОСТРУКТУРЫ УГЛЕРОДИСТЫХ СТАЛЕЙ КАК АКТИВНЫЕ ЦЕНТРЫ ПОВЕРХНОСТИ В УСЛОВИЯХ АНОДНОЙ ПОЛЯРИЗАЦИИ

© 2014 Н. В. Тарасова¹, Ю. М. Давыдова¹, С. Н. Салтыков¹, А. М. Ховив²

¹Липецкий государственный технический университет, ул. Московская, 30, 398600 Липецк, Россия ²Воронежский государственный университет, Университетская пл., 1, 394006 Воронеж, Россия Поступила в редакцию 16.01.2014 г.

Аннотация. Проведен анализ изменения топографии поверхности углеродистых сталей в условиях их анодного растворения в сернокислой среде. В качестве количественных характеристик рельефа поверхности использовали глубину растворения элемента структуры (Δh), среднее арифметическое отклонение профиля вдоль произвольной секущей (Ra) и среднее арифметическое отклонение профиля сканируемого участка поверхности (Sa). Установлено, что формирование активных участков анодного растворения на поверхности армко-железа с различной микроструктурой определяется наличием границ феррит/феррит и дополнительных дефектов в теле зерна феррита. Выявлено преобладание скорости растворения межзеренных границ феррит/феррит над межфазными границами феррит/цементит, что связано с углом разориентировки, увеличение которого до $\sim 30^\circ$ приводит к росту энергии границы и, как следствие, к увеличению скорости их анодного растворения. Показано, что растворение пластинчатого цементита происходит по границам блоков, а в случае глобулярного цементита в связи с большей скоростью анодного растворения ферритной матрицы происходит его преимущественное выкрашивание с поверхности образца.

Ключевые слова: углеродистые стали, топография поверхности, межфазные границы феррит/ цементит, межзеренные границы феррит/феррит, тело зерна феррита, цементит.

ВВЕДЕНИЕ

Процесс анодного растворения железоуглеродистых сплавов представляет собой совокупность процессов растворения отдельных элементов их микроструктуры: межфазных границ феррит/цементит, межзеренных границ феррит/феррит, ферритной матрицы перлита и тела зерна структурносвободного феррита. Указанные элементы микроструктуры имеют различное кристаллографическое и дефектное строение [1, 2], что приводит к различию скоростей их анодного растворения и формированию рельефа поверхности [3, 4]. Учитывая то, что характер растворения различных элементов микроструктуры зависит от их строения, актуальным является исследование изменения топографии поверхности железоуглеродистого электрода в ходе анодного растворения, что возможно с применением метода атомно-силовой микроскопии (АСМ).

ОБЪЕКТ И МЕТОДИКА ИССЛЕДОВАНИЯ

В качестве объекта исследования были выбраны: армко-железо после рекристаллизационного отжига,

закалки и отпуска при 200—600 °C; стали 45, 60 и У8 в сернокислых (рН 1.8—6.4) растворах. Выбор указанных сплавов позволил изучить изменение топографии их поверхности в ходе анодного растворения с учетом особенностей их микроструктуры. Топографию поверхности электрода после поляризации контролировали с использованием сканирующего зондового микроскопа Solver P47-PRO фирмы NT-MDT. В качестве геометрических параметров топографии поверхности использовали глубину растворения элемента структуры (Δh), среднее арифметическое отклонение профиля вдоль произвольной секущей (R_a) и среднее арифметическое отклонение профиля сканируемого участка поверхности (S_a) по методике, изложенной в работах [3, 4].

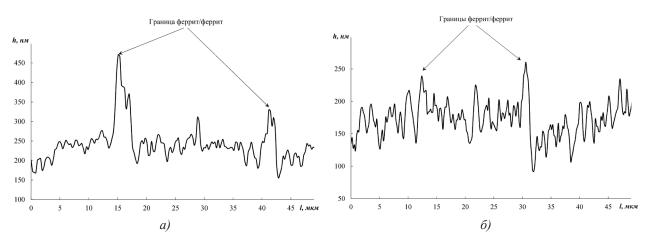
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рассмотрение АСМ-изображений исходной полированной поверхности до поляризации электрода показало, что независимо от их структуры колебание рельефа, т. е. разность между максимальным и минимальным значением глубины, в случае

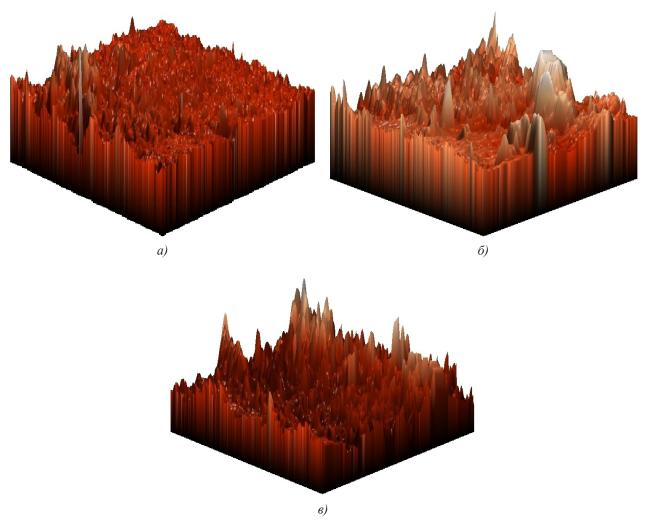
пересечения секущей неметаллического включения составляет \approx 90 нм, тогда как для чистой поверхности эта величина не превышает 20 нм. Таким образом, указанное значение Δh можно считать «фоновым» для данной группы сталей.

Изучение АСМ-изображений армко-железа с различной микроструктурой показало, что анодная поляризация электрода в сернокислом (рН 2.2) растворе приводит к последовательному растворению межзеренных границ феррит/феррит и тела зерна феррита в состояниях после рекристаллизационного отжига и закалки. Профиль участков поверхности на начальных этапах анодной поляризации (рис. 1) характеризуется наличием точек с Δh до 300 нм, соответствующих растворению границ феррит/ феррит, и дефектных участков внутри зерна закаленного армко-железа. Проведение дополнительных отпусков в интервале температур 200—600 °C приводит к формированию зерен с повышенной дефектностью, общая площадь которых увеличивается с ростом температуры отпуска. Сравнение топографии поверхности армко-железа (рис. 2) в состояниях после отпуска в интервале температур 200— 600 °C показало, что процесс растворения тела зерна феррита начинается на поверхности зерен с повышенной дефектностью, глубина растворения которых значительно превышает данную величину для остальных участков поверхности электрода.

Таким образом, характер топографии поверхности армко-железа с различной микроструктурой определяется не только наличием границ феррит/феррит, но и дополнительными дефектами в теле зерна феррита.


Анализ АСМ-изображений и профилей поверхности стали 45 после гальваностатического анодного растворения (рис. 3) показал, что в результате

селективного растворения элементов микроструктуры происходит формирование рельефа поверхности. При этом даже незначительное разрушение межфазных границ феррит/цементит и слабое выявление перлита приводят к колебаниям рельефа, достигающим 200 нм, что превышает «фоновое» значение Δh исходной полированной поверхности. Дальнейшее развитие процесса анодного растворения при увеличении тока поляризации в сернокислом растворе приводит к росту Δh .

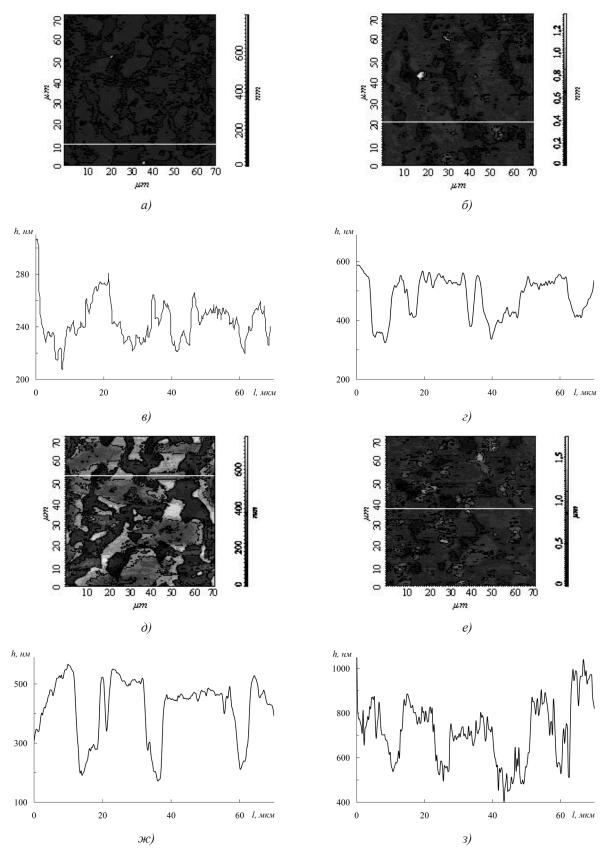

Детальное рассмотрение профилей поверхности стали 45 после анодной поляризации в растворе с рН 1.8 показало, что зерна перлита характеризуются меньшим, а зерна феррита — большим перепадом Δh . При этом на зависимости глубины растворения зерен феррита от величины плотности тока поляризации (і) наблюдаются две области, разделенные значением i=1.09 мA/см² (рис. 4). В соответствии с результатами микроскопического исследования, представленными в работе [5], после поляризации током $i=1.09 \text{ мA/cm}^2$ на поверхности стали 45 начинается растворение структурно-свободного феррита, состоящее из последовательного растворения межзеренных границ феррит/феррит, а затем тела зерна феррита. Таким образом, развитие анодного процесса при $i \ge 1.09 \text{ мA/cm}^2$ связано с растворением структурно-свободного феррита, что коррелирует с данными [5].

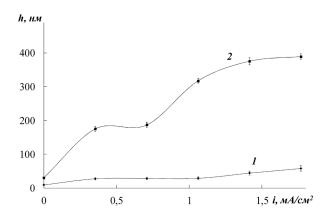
Также установлено преобладание скорости растворения межзеренных границ феррит/феррит над межфазными границами феррит/цементит, что связано с углом разориентировки. Его увеличение до $\sim\!30^\circ$ приводит к росту энергии границы и, как следствие, к росту скорости ее растворения.

Исследование углеродистых сталей 60 и У8 с различной формой цементита в сернокислых

Рис. 1. Профили поверхности армко-железа после рекристаллизационного отжига (a) и закалки (δ), поляризация до $i = 1.06 \text{ мA/cm}^2$ в сернокислом (pH 2.2) растворе

Рис. 2. Топография поверхности армко-железа после отпуска при 200 (*a*), 400 (б) и 600 °C (*в*), поляризация до $i = 1.06 \text{ мA/cm}^2$ в сернокислом (рН 2.2) растворе


(рН 3.1 и 4.2) растворах показало, что процесс разрушения пластинчатого цементита стали У8, имеющего фрагментарное строение, происходит на границах блоков и на дефектных плоскостях в местах выхода дислокаций на поверхность. При этом растворение происходит как со стороны ферритной пластины, так и в направлении, перпендикулярном плоскости поверхности цементита.


Результаты АСМ-исследования цементитных пластин (рис. 5) позволили проанализировать изменение топографии их поверхности. Установлено, что глубина колебания рельефа пластины цементита (Δh) в ходе его растворения увеличивается в десять раз по сравнению с пластиной, не подверженной растворению. Таким образом, нарушение периодичности рельефа стали У8 в ходе потенциостатической поляризации обусловлено разрушением цементитных пластин по дефектным плоскостям. При этом в первую очередь раство-

рению подвергаются пластины с определенным кристаллографическим расположением.

Визуализация топографии поверхности стали 60 с различной формой цементита также выявила формирование рельефа с выступающими пластинами или глобулами цементита в результате селективного растворения ферритной матрицы. Последующее увеличение продолжительности поляризации приводит к нарушению периодичности рельефа и появлению участков разрушения пластин цементита.

Таким образом, установлено, что растворение пластинчатого цементита происходит по границам блоков, а в случае глобулярного цементита в связи с большей скоростью анодного растворения ферритной матрицы происходит его выкрашивание с поверхности образца. Это приводит к статистически незначимому отличию глубины растворения ферритной матрицы зернистого перлита или, другими словами, шероховатости поверхности при

Рис. 4. Зависимости глубины растворения ферритной матрицы перлита (*1*) и структурно-свободного феррита (*2*) от плотности тока поляризации в сернокислом (рН 1.8) растворе

увеличении времени поляризации образца с глобулярным цементитом.

выводы

- 1. Формирование активных участков анодного растворения на поверхности армко-железа определяется межзеренными границами феррит/феррит и наличием дополнительных дефектов в теле зерна феррита.
- 2. Увеличение угла разориентировки межзеренных границ феррит/феррит до ~30° приводит к росту энергии границы и, как следствие, к увеличению скорости их анодного растворения по сравнению с межфазными границами феррит/цементит.
- 3. Растворение цементита определяется его геометрической формой и на пластинчатом цементите осуществляется по границам блоков, а на

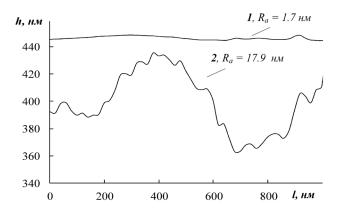


Рис. 5. Профили пластин цементита стали У8 после потенциостатической поляризации при 0.0 В в сернокислом (рН 4.2) растворе в течение 15 (1) и 60 мин (2) с указанием величины шероховатости

глобулярном цементите происходит путем преимущественного выкрашивания в связи с большей скоростью анодного растворения ферритной матрицы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Яковлева И. Л., Карькина Л. Е., Хлебникова Ю. Л. и др. // Материаловедение. 2003. № 7. С. 41.
- 2. *Перевалова О. Б.* // Физика металлов и металловедение. 2005. Т. 99. № 1. С. 46.
- 3. *Тарасова Н. В., Салтыков С. Н., Ховив А. М. //* Конденсированные среды и межфазные границы. 2012. Т. 14. № 4. С. 472.
- 4. *Тарасова Н. В., Салтыков С. Н., Рогожкина Е. О.* // Физикохимия поверхности и защита материалов. 2014. Т 50. № 1. С. 89.
- 5. *Тарасова Н. В., Салтыков С. Н.* // Коррозия: материалы, защита. 2007. № 4. С.6.

Тарасова Наталия Владимировна— к. т. н., доцент, доцент кафедры механики пластического деформирования, Липецкий государственный технический университет; тел.: (4742) 328239, e-mail: tarnv82@mail.ru

Давыдова Юлия Михайловна — аспирант кафедры химии, Липецкий государственный технический университет; тел.: (4742) 328155, e-mail: freedom7789@mail.ru

Салтыков Сергей Николаевич — д. х. н., доцент, заведующий кафедрой химии, Липецкий государственный технический университет; тел.: (4742) 328155, e-mail: saltsn@mail.ru

Ховив Александр Михайлович — д. х. н., д. ф-м. н., профессор, профессор кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208445, e-mail: khoviv@vsu.ru

Tarasova Natalia V. — Cand. Sci. (Eng.), Associate Professor, Lipetsk State Technical University; tel.: (4742) 328239, e-mail: tarnv82@mail.ru

Davydova Julija M. — postgraduate student, Lipetsk State Technical University; tel.: (4742) 328155, e-mail: freedom7789@mail.ru

Saltykov Sergey N. — Dr. Sci. (Chem.), Associate Professor, Head of Chemistry Chair, Lipetsk State Technical University; tel.: (4742) 328155, e-mail: saltsn@mail.ru

Khoviv Alexander M. — Dr. Sci. (Chem., Phys.- Math.), Professor, Voronezh State University; tel.: (473) 2208445, e-mail: khoviv@vsu.ru