УДК 621.315.592; 538.975

ОСОБЕННОСТИ ПРОВОДИМОСТИ ПОЛИКРИСТАЛЛИЧЕСКОГО ДИОКСИДА ВАНАДИЯ НА ПЕРЕМЕННОМ ТОКЕ

© 2014 Е. А. Тутов¹, П. И. Крюков^{1,2}, В. П. Зломанов³

¹Воронежский государственный архитектурно-строительный университет, ул. XX-летия Октября, 84, 394006 Воронеж, Россия

²Воронежский государственный университет, Университетская пл., 1, 394006 Воронеж, Россия ³Московский государственный университет, Ленинские горы 1, стр., 3, 119991 Москва, Россия *e-mail: tutov ea@mail.ru*

Поступила в редакцию 05.05.2014 г.

Аннотация. Исследованы температурная и частотная зависимости сопротивления поликристаллического диоксида ванадия (прессованного порошка и пленочного терморезистора ТРП 68—01) в области фазового перехода полупроводник — металл. Установлено, что в проводимость полупроводниковой фазы диоксида ванадия дают вклад зонный и прыжковый механизмы. Для терморезистора при измерениях на переменном токе обнаружено расширение петли температурного гистерезиса.

Ключевые слова: диоксид ванадия, фазовый переход полупроводник — металл, механизм проводимости.

введение

Фундаментальные и прикладные исследования фазового перехода полупроводник — металл в диоксиде ванадия, впервые описанного более пятидесяти лет назад, продолжаются с неубывающим интересом. Несмотря на значительное количество научных публикаций, к реальным коммерческим устройствам можно отнести, по-видимому, только терморезисторы.

Комплексный характер структурно-электронных трансформаций при фазовом переходе в диоксиде ванадия приводит к тому, что микроскопическая картина явления по-прежнему является дискуссионной. В отношении механизма проводимости даже вопрос о типе носителей заряда до сих пор не имеет однозначного ответа [1, 2]. Ситуация усложняется различными дефектами нестехиометрии поверхностных слоев и объема кристаллитов (зерна, пленки) VO₂ и, как следствие, различиями в характере их проводимости.

В ряду работ, посвященных анализу особенностей электропроводности соединений системы ванадий — кислород, выделяются публикации [3—6], в которых представлены результаты изучения электрофизических характеристик монокристаллических оксидов VO₂, V₄O₇, V₃O₅ и V₆O₁₁. Одним из основных выводов этих исследований является установление прыжкового механизма проводимости для низкотемпературной (диэлектрической) фазы оксидов ванадия, что обосновывается линейностью зависимости электропроводности от температуры в координатах $ln\sigma - T$.

Известно, что для практических применений эффектов, связанных с фазовым переходом в диоксиде ванадия, объемные монокристаллы малопригодны вследствие их быстрого термомеханического разрушения. Поэтому представляет интерес исследование механизмов переноса носителей заряда в практически важной области температур вблизи фазового перехода в керамических и пленочных материалах.

При прыжковом механизме наряду с указанной температурной зависимостью проводимости должна наблюдаться и определенная зависимость от частоты переменного тока, как правило, степенная зависимость вида $\sigma \sim \omega^{0.8}$ [7, 8]. В этом направлении исследований наиболее существенные новые результаты получены с использованием метода импедансной спектроскопии для высокоупорядоченных тонких пленок диоксида ванадия [9, 10].

Детальный анализ электрофизических характеристик пленок VO₂ позволил сделать вывод о сосуществовании полупроводниковой и металлической фаз не только в области фазового перехода, но и при более низких температурах. При этом в работе [9] наблюдалось уменьшение сопротивления пленок при частотах переменного тока выше 10 kHz, в работе [10] проводимость пленок до частот ~ 500 kHz оставалась практически постоянной, а при более высоких частотах уменьшалась. Такой необычный результат авторы объясняют индуктивным импедансом ультратонких включений металлической фазы VO₂ нитевидной формы (filaments).

Сравнение параметров фазового перехода на постоянном и переменном токе в работе [9] показало незначительное смещение нагревательной ветви петли гистерезиса в сторону снижения температуры, практически одинаковое для всех исследованных частот; охладительная ветвь для переменного тока в работе не приведена.

Целью настоящей работы было уточнение механизма проводимости поликристаллического (порошкового и пленочного) диоксида ванадия в температурной области вблизи фазового перехода на основании измерения частотной зависимости проводимости и ее температурной зависимости на постоянном и переменном токе.

МЕТОДИКА

Порошок поликристаллического диоксида ванадия стабильной моноклинной структуры (п-типа проводимости по измерениям эффекта Зеебека), синтезировали восстановлением пентоксида ванадия щавелевой кислотой при нагреве на воздухе до температуры 600—700 °С в соответствии с реакцией [11]:

$$V_2O_5 + H_2C_2O_4 = 2VO_2 + H_2O + 2CO_2$$

Фазовый анализ образцов проводили на рентгеновском дифрактометре ДРОН-4,0 с использованием отфильтрованного K_{α} -излучения кобальта ($\lambda = 0.179021$ nm).

Из порошка при давлении 300 bar прессовали таблетки диаметром 1 ст и толщиной 1 mm, к плоским поверхностям которых использовали прижимные контакты из оловянной фольги.

Также в качестве объекта исследований был использован серийно выпускаемый терморезистор ТРП 68-01 на основе пленки диоксида ванадия.

Измерения электрического сопротивления образцов на постоянном и переменном токе (в последнем случае с помощью LCR-метра INSTEK, модель 819) изучали в интервале температур от комнатной до 100 °C. В измерениях при напряжении сигнала 1 V и малосигнальных измерениях (при 20 mV) получены аналогичные результаты. Скорость нагревания и охлаждения составляла примерно один градус в минуту.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На дифрактограмме порошка оксида ванадия после восстановительной реакции (рис. 1) при-

Рис. 1. Дифрактограмма порошка синтезированного диоксида ванадия

№ реф- лекса	Угол, град.	Относит. интенс.	d, nm	(hkl)
1	31.50	11.58	0.330	(11Ī) (110)
2	32.50	100.00	0.320	(011)
3	39.10	8.38	0.268	(102)
4	43.40	8.58	0.242	(21Ī) (200)
5	44.80	50.90	0.235	(002)
6	49.60	27.74	0.213	(210)
7	52.60	8.78	0.202	(012) (021)
8	65.60	47.31	0.165	(220)
9	68.10	17.76	0.160	(022)
10	77.30	14.17	0.143	(013)
11	84.20	19.76	0.134	(23Ī) (202)
12	86.10	8.18	0.131	(413)

Таблица. Межплоскостные расстояния для моноклинной фазы порошкового диоксида ванадия

Рис. 2. Частотная зависимость сопротивления порошкового и пленочного диоксида ванадия при комнатной температуре (1 — терморезистор ТРП 68—01; 2 таблетка из порошка VO₂)

сутствуют рефлексы диоксида ванадия стабильной моноклинной фазы (α-VO₂ [11]). В таблице приведены значения межплоскостных расстояний.

Типичная зависимость сопротивления образцов диоксида ванадия (спрессованной из порошка таблетки и пленочного терморезистора) от частоты переменного тока в логарифмических координатах представлена на рис. 2. В обоих случаях электропроводность при частотах до 1 kHz практически постоянна, что свидетельствует о преобладании в проводимости VO₂ при комнатной температуре делокализованных носителей заряда.

В то же время для более высоких частот наблюдается уменьшение сопротивления с ростом частоты вследствие «включения» прыжкового механизма электропереноса. Поэтому при температурах вблизи фазового перехода в диоксиде ванадия, по-видимому, имеет место смешанный механизм проводимости.

Рост проводимости с частотой переменного тока проявляется и в увеличении диэлектрических потерь порошкового диоксида ванадия в том же интервале частот. Зависимость тангенса угла диэлектрических потерь от частоты и для порошка, и для пленки VO₂ монотонная и бесструктурная, что также характерно для преобладания проводимости делокализованными зонными носителями заряда.

Вклад прыжкового механизма в общую проводимость диоксида ванадия, тем не менее, может проявляться в особенностях изменения электрических характеристик VO_2 при фазовом переходе, поэтому мы измеряли температурную зависимость сопротивления для образцов обоих типов на постоянном токе и переменном токе максимальной частоты (100 kHz).

На рис. 3 приведена такая зависимость для пленочного терморезистора. В области температур от комнатной до начала фазового перехода зависимость сопротивления от температуры в координатах *lnR* — *T* для постоянного тока более сильная, чем для переменного, что качественно совпадает с приведенными в [9] данными.

Основные различия в измерениях на постоянном и переменном токе наблюдаются в области петли гистерезиса, характерного для фазового перехода полупроводник-металл в диоксиде ванадия. Для терморезистора ТРП 68-01 фазовый переход с изменением сопротивления примерно на четыре порядка занимает температурный интервал около десяти градусов, в отличие от результатов работы [9], где процесс изменения сопротивления на три порядка занимает на температурной шкале сорок градусов. Возможно, такой протяженный переход не позволил авторам проанализировать различие параметров петли гистерезиса на постоянном и переменном токе.

Для терморезистора ТРП 68-01 при измерениях на переменном токе петля гистерезиса расширяется на несколько градусов и смещается в сторону более высоких температур, причем нагревательная ветвь смещена более значительно, чем охладительная.

Фазовый переход полупроводник — металл в диоксиде ванадия — это переход от менее симметричной моноклинной структуры низкотемпературной полупроводниковой фазы к более симметричной структуре рутила с металлической проводимостью. Обратный переход — это переход от более симметричной структуры с высокой проводимостью к структуре менее симметричной. Возможно, этим объясняется асимметрия изменений в нагревательных ветвях перехода на постоянном и переменном токе по сравнению с охладительными ветвями (вклад прыжкового механизма более заметен при более низкой суммарной проводимости).

В отличие от пленок, прессованные таблетки из порошка поликристаллического диоксида ванадия при нагреве на воздухе до температур выше фазового перехода утрачивали способность к резкому изменению сопротивления за один-два цикла. Общее сопротивление образца при этом заметно снижалось. Быстрая деградация фазового перехода в порошковом диоксиде ванадия в окислительной атмосфере (на воздухе) связана с большим количеством доступных для молекул кислорода межзеренных границ, на которых образуется фаза V₆O₁₃, что подтверждается дифрактометрическим анализом. Термоциклирование таких деградировавших образцов в атмосфере доноров электронов (этанол, аммиак) сопровождалось уменьшением количества фазы оксида V₆O₁₃ и частичным восстановлением фазового перехода полупроводник — металл в диоксиде ванадия.

Исследование влияния хемосорбции различных газов на поверхности диоксида ванадия на характеристики фазового перехода являлось предметом отдельного исследования [12, 13]. Измерение на переменном токе (100 kHz) параметров перехода полупроводник — металл для терморезистора на основе пленки диоксида ванадия с открытым корпусом в атмосфере насыщенных паров воды и этанола [13] показало минимальные различия в ходе температурной зависимости сопротивления для полупроводниковой фазы.

Рис. 3. Температурная зависимость сопротивления пленочного диоксида ванадия (1 — переменный ток; 2 — постоянный ток). Правая ветвь петли гистерезиса — нагрев, левая — охлаждение. Частота измерительного сигнала 100 kHz

По сравнению с измерениями на воздухе было обнаружено повышение температуры перехода в присутствии паров этанола, ее снижение в присутствии насыщенных паров воды, а также заметное уширение петли гистерезиса в первом случае и небольшое сужение во втором.

По-видимому, хемосорбция (включая изменение количества адсорбированного на пленке VO₂ атмосферного кислорода) влияет как на концентрацию зонных носителей заряда, так и изменяет параметры дефектных центров, участвующих в проводимости по прыжковому механизму.

ЗАКЛЮЧЕНИЕ

Таким образом, на постоянном токе и переменном токе в диапазоне частот 12 kHz — 100 kHz измерены сопротивление и тангенс угла диэлектрических потерь для прессованной из порошка VO_2 таблетки и серийно выпускаемого терморезистора ТРП 68-01 на основе пленки VO_2 . Для терморезистора на постоянном токе и на частоте 100 kHz измерена температурная зависимость сопротивления в диапазоне температур, включающем область фазового перехода.

Анализ полученных результатов позволяет заключить, что в этой температурной области проводимость полупроводниковой фазы диоксида ванадия осуществляется как по прыжковому, так и по зонному механизму. При работе терморезистора на переменном токе вклад прыжкового механизма в электропроводность пленки диоксида ванадия приводит к расширению петли температурного гистерезиса.

СПИСОК ЛИТЕРАТУРЫ

1. *Hensler D. H.* // J. Appl. Phys. V. 39. № 5. 1968. P. 2354—2360.

2. *Kim H. T., Chae B. G., Youn D. H., et al.* // New Journal of Physics. 2004. V. 6. № 52. P. 1—19.

3. Андреев В. Н., Климов В. А. // ФТТ. 2007. Т. 49. В. 12. С. 2146—2150.

4. Андреев В. Н., Климов В. А. // ФТТ. 2009. Т. 51. В. 11. С. 2107—2112.

5. Андреев В. Н., Климов В. А. // ФТТ. 2011. Т. 53. В. 12. С. 2302—2307.

6. Андреев В. Н., Климов В. А. // ФТТ. 2013. Т. 55. В. 9. С. 1717—1722. 7. *Мотт Н., Девис Э*. Электронные процессы в некристаллических веществах. М.: Мир, 1982. Т. 1. 368 с.

8. Кудряшов М. А., Машин А. И., Логунов А. А. и др. // ЖТФ. 2012. Т. 82. В. 7. С. 69—74.

9. *Zhong X., LeClair P., Sarker S. K., Gupta A.* // Phys. Rev. B. 2012. V. 86. P. 094114—1 — 094114—7.

10. *Ramirez J. G., Schmidt R., Sharoni A., et al.* // Appl. Phys. Lett. 2013. V. 102. P. 063110—1 — 063110—4.

11. Волков В. Л. Фазы внедрения на основе оксидов ванадия. Свердловск: УНЦ АН СССР, 1987. 179 с.

12. Тутов Е. А., Зломанов В. П. // ФТТ. 2013. Т. 55. В. 11. С. 2233—2236.

13. *Тутов Е. А.* // Нано- и микросистемная техника. 2013. № 9. С. 26—28.

Тутов Евгений Анатольевич — д. х. н., профессор кафедры физики, Воронежский государственный архитектурно-строительный университет; e-mail: tutov_ea@ mail.ru

Крюков Павел Игоревич — студент кафедры физики твердого тела и наноструктур, Воронежский государственный университет

Зломанов Владимир Павлович — д. х. н., профессор химического факультета, Московский государственный университет

Tutov Evgeny A. — Dr. Sci. (Phys.-Math.), Professor of Physics Department, Voronezh State University of Architecture and Civil Engineering; e-mail: tutov_ea@mail.ru

Kryukov Pavel I. — student of Department of Solid State Physic and Nanostructures, Voronezh State University

Zlomanov Vladimir P. — Dr. Sci. (Chem.), Professor, Moscow State University