УДК:546.221:539.232

СПЕКРАЛЬНЫЕ СВОЙСТВА ПИРОЛИТИЧЕСКИХ ПЛЕНОК Cd_{0.8}Zn_{0.2}S ЧИСТЫХ И ЛЕГИРОВАННЫХ ИОНАМИ МЕДИ

©2014 В. Н. Семенов, В. Г. Клюев, Ю. С. Бездетко Т. В. Самофалова, А. Н. Нитута

Воронежский государственный университет, Университетская пл., 1, 394006 Воронеж, Россия e-mail: vgklyuev@rambler.ru

Поступила в редакцию 16.07.2014 г.

Аннотация. В работе представлены результаты спектральных исследований пленок $Cd_{0.8}Zn_{0.2}S$, полученных методом пиролиза аэрозоля из растворов координационных соединений $[Cd(N_2H_4CS)_2Br_2]$ и $[Zn(N_2H_4CS)_2Br_2]$ чистых и легированных ионами меди в концентрации $10^{-7} - 10^{-4}$ ат. %. Пленки формируются с кристаллической структурой вюрцита. Оптическая ширина запрещенной зоны пленок составляет 2.8 ± 0.1 эВ. Медь в концентрации 10^{-7} ат. % увеличивает интенсивность люминесценции до 15 раз. При дальнейшем увеличении количества меди она играет роль тушителя люминесценции.

Ключевые слова: метод пиролиза аэрозоля, пиролитические пленки, твердые растворы сульфидов кадмия-цинка, оптические спектры полупроводников, фотолюминесценция, структура центров люминесценции.

введение

Соединения группы А^пВ^{VI}, в частности, сульфиды цинка и кадмия и твердые растворы на их основе, являются перспективными материалами для создания различных устройств: светодиодов, фотоэлектрических преобразователей, электролюминесцентных экранов, лазеров, акустоэлектрических и многих других приборов [1]. Поэтому значительный интерес представляет синтез пленок системы CdS–ZnS, в том числе и легированных металлами, с контролируемыми оптическими, люминесцентными, электрофизическими свойствами и кристаллической структурой. С этой точки зрения удобным для получения сульфидов является метод пиролиза аэрозоля тиомочевинных координационных соединений (ТКС) [2].

Ранее [3] была изучена люминесценция легированных ионами меди пленок CdS, полученных из растворов TKC [Cd(N₂H₄CS)₂Cl₂], и выяснен механизм включения примеси в структуру сульфида. Также было установлено [4], что при легировании пленок Cd_{0.5}Zn_{0.5}S, осажденных из TKC [Me(N₂H₄CS)₂Br₂] (Me = Cd, Zn), ионами меди в концентрации 10⁻⁵, 10⁻⁴ ат. % происходит увеличение интенсивности люминесценции в синей и зеленой областях спектра до 10 раз. Целью данной работы является исследование влияния примеси меди на оптические и люминесцентные

свойства пленок смешанного состава $Cd_{0.8}Zn_{0.2}S$, полученных из растворов ТКС бромидов кадмия и цинка.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Пленки Cd_{0.8}Zn_{0.2}S получены методом пиролиза аэрозоля из водных растворов тиомочевинных координационных соединений [Me(N₂H₄CS)₂Br₂], образующихся при взаимодействии бромидов кадмия и цинка ($C_{\text{Me}} = 0.05 \text{ моль/л}$) и тиомочевины ($C_{\text{thio}} = 0.2 \text{ моль/л}$). Для получения комплексов применяли соли CdBr₂ • 4H₂O и ZnBr₂ марки «х. ч.» и тиомочевину N₂H₄CS марки «ос. ч.».

В качестве легирующей добавки использован бромид меди (+2), концентрация которого в распыляемом растворе варьировалась в пределах $10^{-7} - 10^{-4}$ моль/л. Проведенные ранее исследования [4, 5] показали, что концентрация активирующей примеси в растворе соответствует её концентрации в пленке. Концентрацию легирующей примеси в пленках пересчитывали в ат. % Си.

В качестве подложек использовали пластины кварца и ситалла. Температуру подложки поддерживали равной 400 °С. Время напыления пленки составляло 1—2 мин.

Рентгенофазовый анализ (РФА) пленок, осажденных на кварцевых подложках, проведен на рентгеновском дифрактометре PANalytical Етругеап (излучение $CuK_{\alpha l}$). Полученные из дифрактограмм значения межплоскостных расстояний сравнивались со справочными из базы данных [6].

Спектры поглощения образцов, осажденных на кварце, снимали на спектрофотометре Lambda 650 относительно чистой подложки в диапазоне 190—900 нм. Оптическая ширина запрещенной зоны E_g определена по краю собственного поглощения из спектральной зависимости D = f(hv) (D — оптическая плотность) в допущении прямых разрешенных переходов [7].

Рентгенофазовый анализ и оптические исследования проведены на оборудовании Центра коллективного пользования научным оборудованием ВГУ.

Спектры фотолюминесценции (ФЛ) пленок зарегистрированы на автоматической спектральной установке в диапазоне 400—800 нм. Для возбуждения ФЛ использован светодиод HPL-H77V1BA-V2 с $\lambda = 380$ нм. Люминесцентное свечение пленки фокусировалось с помощью системы линз на входную щель монохроматора МДР-4. Спектры люминесценции образцов были получены при помощи фотоумножителя ФЭУ R928P (Hamamatsu), работающего в режиме счета фотонов, и электронносчетного частотомера ЧЗ-35А. Интенсивность

стационарной ФЛ слоев измерена при комнатной температуре (25 °C).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Основой для направленного синтеза пленок сульфидов металлов с заданными свойствами и кристаллической структурой методом пиролиза аэрозоля ТКС является состав и строение исходных координационных соединений: вид ацидолигандов, образование водородных связей, стерические затруднения во внутренней сфере [2]. Согласно [8, 9], состав и особенности пространственного строения галогенидных комплексов [Ме(N₂H₄CS)₂X₂] (X – Cl, Вг) обуславливают формирование наиболее устойчивой вюртцитной фазы (*w*) сульфида.

При использовании галогенидных ТКС пленки сульфидов кадмия-цинка легируются хлором (бромом), и одним из основных типов дефектов является атом галогена в анионной подрешетке (Cl_{s}^{+} , Br_{s}^{+}), который совместно с собственными дефектами образует в пленках CdS–ZnS центры свечения [10].

Результаты рентгенофазового анализа показали, что все исследуемые слои твердых растворов $Cd_{0.8}Zn_{0.2}S$ имеют структуру вюртцита (табл. 1).

Концентрация ионов меди, ат. %										
0		1.10-4		1.10–5		1.10-6		1.10-7		Отнесе- ние
d, нм	I, %	d, нм	I, %	d, нм	I, %	d, нм	I, %	d, нм	I, %	
0.3451	4.53	-	-	0.3510	27.30	-	-	-	-	w (100)
0.3236	33.19	0.3272	100.00	0.3287	72.65	0.3282	100.00	0.3289	100.00	w (002)
0.3101	33.48	0.3132	10.25	0.3140	64.99	0.3136	24.80	0.3135	10.49	w (101)
-	-	-	-	0.2404	4.20	-	-	-	-	w (102)
0.2077	33.25	-	-	0.2027	11.62	-	-	-	-	w (110)
-	-	-	-	0.1863	8.10	-	-	-	-	w (103)
-	-	-	-	-	-	-	-	-	-	w (200)
0.1562	100.00	0.1568	29.92	0.1570	100	0.1569	42.82	0.1569	20.33	w (202)
-	-	0.2090	12.78	0.1728	6.55	0.2092	19.94	0.2091	10.79	CuS
-	-	-	-	0.2093	50.53	-	-	-	-	
-	-	-	-	0.1990	5.52	-	-	0.3704	6.60	CuBr ₂

Таблица 1. Межплоскостные расстояния в пленках Cd_{0.8}Zn_{0.2}S, чистых и легированных ионами меди

Обозначения: *d* — межплоскостное расстояние в пленках, нм; *I* — интенсивность дифракционного максимума, %. На дифрактограммах образцов с содержанием меди $10^{-4} - 10^{-7}$ ат. % присутствуют дополнительные рефлексы, которые могут быть отнесены к сульфидной фазе CuS. При этом наибольшее содержание CuS характерно для образцов, легированных ионами меди при концентрации 10^{-5} ат. %. Также дополнительные пики, соответствующие CuBr₂, присутствуют на дифрактограммах образцов, легированных ионами меди при концентрации 10^{-5} и 10^{-7} ат. %.

Из спектров поглощения исследуемых пленок $Cd_{0,8}Zn_{0,2}S$ получено, что край собственной полосы поглощения формируется в области 2.6—3.1 эВ. С увеличением содержания примеси меди в осаждаемых образцах не происходит заметного смещения края в более длинноволновую область. При этом оптическая ширина запрещенной зоны пленок $Cd_{0.8}Zn_{0.2}S$ равна 2.8 ± 0.1 эВ.

На рис. 1 приведены спектры люминесценции исследуемых пленок в видимой области спектра. Видно, что при введении примеси меди в концентрациях 10^{-7} , 10^{-6} и 10^{-5} ат. % интенсивность люминесценции увеличивается по сравнению с нелегированным образцом (рис. 1). При этом форма полосы не изменяется. Полуширина полос люминесценции составляет около 150 нм. Предполагается, что видимая часть полос люминесценции состоит из трех элементарных составляющих, аналогично работе [4]. На рис. 2 показан результат разложения

Рис. 1. Спектры люминесценции пленок с различным содержанием ионов меди: 1 - 0; $2 - 1 \cdot 10^{-7}$; $3 - 1 \cdot 10^{-6}$; $4 - 1 \cdot 10^{-5}$; $5 - 1 \cdot 10^{-4}$ ат. % Си

Рис. 2. Разложение спектра люминесценции (*кривая 1*) на три элементарные полосы (2, 3, 4)

полос люминесценции на три элементарных составляющих.

Изменение интенсивности люминесценции при легировании пленок медью можно объяснить следующим образом. Согласно представлению о структуре центров люминесценции в соединениях $Cd_xZn_{1-x}S$, полученных в присутствии кислорода, чистых и легированных медью [4, 11], в нелегированном $Cd_{0.8}Zn_{0.2}S$ центры люминесценции, ответственные за три элементарные составляющие, начиная с наиболее коротковолновой полосы, представляют собой комплексы дефектов: для $\lambda_{max 1} \approx 635$ нм — $\{O_S^{\bullet} \cdot Me_i^{+} \cdot V_{Me}^{2-}\}^0$, для $\lambda_{max 2} \approx 675$ нм — $\{O_S^{\bullet} \cdot Me_i^{+} \cdot V_{Me}^{2-}\}^{-}$, для $\lambda_{max 3} \approx 750$ нм — $\{O_S^{\bullet} \cdot Me_i^{+} \cdot V_{Me}^{2-}\}^{+}$ соответственно.

В пленках $Cd_{0,5}Zn_{0,5}S$ при наличии меди с большей вероятностью образуются комплексы дефектов $\{O_s^* \cdot Cu_{i3d9}^{2+} \cdot V_{Me}^{2-}\}^0$ и $\{O_s^* \cdot Cu_{i3d10}^+ \cdot V_{Me}^{2-}\}^-$, увеличивая интенсивность соответствующих двух более коротковолновых полос люминесценции при малых концентрациях [4].

Из спектров люминесценции (рис. 1) следует, что в пленках $Cd_{0.8}Zn_{0.2}S$ роль меди иная. Неизменность формы спектров люминесценции, увеличение (при 10^{-7} ат. %,), а затем уменьшение интегральной интенсивности полос люминесценции при повышении концентрации ионов меди от 10^{-7} до 10^{-4} ат. %, может свидетельствовать о влиянии меди на эффективность безызлучательной рекомбинации.

ЗАКЛЮЧЕНИЕ

Пиролитические пленки $Cd_{0,8}Zn_{0,2}S$, полученные из бромидных координационных соединений кадмия и цинка при температуре 400 °С, кристаллизуются в форме решетки вюрцита с шириной запрещенной зоны 2.8 ± 0.1 эВ. Полоса люминесценции этих пленок расположена в видимой области в диапазоне 550—800 нм. Легирование пленок ионами меди при концентрации 10⁻⁷ ат. % увеличивает интенсивность люминесценции до 15 раз. При более высокой концентрации ионов меди интенсивность люминесценции уменьшается.

С помощью модели центров люминесценции, состоящих из комплексов дефектов, включающих три объекта {O_s, Me_i, V_{Me}} в разном зарядовом состоянии, объяснена структура широкой полосы люминесценции и влияние на интенсивность этой полосы примеси меди.

СПИСОК ЛИТЕРАТУРЫ

1. Джумаев Б. Р. // Физика и техника полупроводников. 1998. Т. 32. № 6. С. 641—645.

2. Семенов В. Н., Наумов А. В. // Вестн. Воронежск. ун-та (химия, биология — серия). 2000. № 2. С. 50—55.

3. *Семенов В. Н. и др.* // Неорган. материалы. 1993. Т. 29. № 3. С. 323—326.

Семенов В. Н. — д. х. н., профессор кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208610. е-mail: office@ chem.vsu.ru

Клюев В. Г. — д. ф.-м. н., профессор кафедры оптики и спектроскопии, Воронежский государственный университет; тел.: (473) 2208780, e-mail: vgklyuev@ rambler.ru

Бездетко Ю. С. — аспирант кафедры оптики и спектроскопии, Воронежский государственный университет; тел.: (920) 4655944, e-mail: julfiz@yandex.ru

Самофалова Т. В. — к. х. н., ассистент кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208610, e-mail: TSamofalova@bk.ru

Нитута А. Н. — магистр кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208610, e-mail: djamalova.asiat@ yandex.ru 4. *Самофалова Т. В. и др.* // Журнал прикладной спектроскопии. 2014. Т. 81. № 1. С. 88—92.

5. *Угай Я. А., Семенов В. Н., Авербах Е. М. //* Журнал неорган. химии. 1981. Т. 26. С. 271—273.

6. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standards, 1996.

7. Уханов Ю. И. Оптические свойства полупроводников. М.: Наука, 1977. 366 с.

8. *Наумов А. В., Нечаев И. В., Самофалова Т. В. и др. //* Журнал прикладной химии. 2010. Т. 6. С. 922— 925.

9. Наумов А. В., Самофалова Т. В., Семенов В.Н и др. // Журнал неорган. химии. 2011. Т. 56. № 4. С. 666—672.

10. *Наумов А. В., Семенов В. Н., Гончаров Е. Г.* // Неорган. материалы. 2001. Т. 37. № 6. С. 647—652.

11. *Морозова Н. К., Каретников И. А., Блинов В. В. и др.* // Физика и техника полупроводников. 2001. Т. 35. № 1. С. 1435—1438.

Semenov V. N. — Dr. Sci. (Chem.), Professor, Department of General and Inorganic Chemistry, Voronezh State University; tel.: (473) 2208610, e-mail: office@chem. vsu.ru

Klyuev V. G. — Dr. Sci. (Phys.-Math.), Professor of the Department of Optics and Spectroscopy, Voronezh State University; tel.: (473) 2208780, e-mail: vgklyuev@ rambler.ru

Bezdetko Yu. S. — post-graduate student, Department of Optics and Spectroscopy, Voronezh State University; tel.: (920) 4655944, e-mail: julfiz@yandex.ru

Samofalova T. V. — Cand. Sci. (Chem.), Assistant Professor, Department of General and Inorganic Chemistry, Voronezh State University; tel.: (473) 2208610, e-mail: TSamofalova@bk.ru

Nituta A. N. — Master of Sciences, Department of General and Inorganic Chemistry, Voronezh State University; tel.: (473) 2208610, e-mail: djamalova.asiat@yandex.ru