УДК 543.572.3:541.123.5

ИССЛЕДОВАНИЕ СТАБИЛЬНОГО ТЕТРАЭДРА LiF – LiBr – Li $_2$ МоO $_4$ –КВг ЧЕТЫРЕХКОМПОНЕНТНОЙ ВЗАИМНОЙ СИСТЕМЫ Li,К||F,Br,МоO $_4$

© 2013 М. А. Радзиховская, И. К. Гаркушин, Е. Г. Данилушкина

Самарский государственный технический университет, ул. Молодогвардейская, 244, 443100 Самара, Россия Поступила в редакцию 15.10.2013 г.

Аннотация. Проведено разбиение на симплексы четырехкомпонентной взаимной системы $\text{Li}, \text{K}||\text{F}, \text{Br}, \text{MoO}_4$. Методом дифференциального термического анализа (ДТА) исследованы стабильные треугольники $\text{LiF} - \text{KBr} - \text{Li}_2 \text{MoO}_4$, $\text{LiF} - \text{KBr} - \text{K}_2 \text{MoO}_4$ и $\text{LiF} - \text{KBr} - \text{LiKMoO}_4$ для экспериментального подтверждения разбиения. Определены температуры плавления и составы трехкомпонентных эвтектик в стабильных треугольниках. Методом дифференциального термического анализа (ДТА) исследован стабильный тетраэдр $\text{LiF} - \text{LiBr} - \text{Li}_2 \text{MoO}_4 - \text{KBr}$. Установлены температура и состав четырехкомпонентной эвтектики. Определены объемы кристаллизующихся фаз. Описаны фазовые равновесия внутри стабильного тетраэдра.

Ключевые слова: дифференциальный термический анализ, четырехкомпонентная взаимная система, объединенный стабильный тетраэдр, точки нонвариантных равновесий.

ВВЕДЕНИЕ

Большое значение для разработки новых материалов различного функционального назначения имеет исследование свойств смесей на основе галогенидов щелочных элементов, поэтому изучение фазовых превращений в таких системах является актуальным. Галогениды щелочных металлов нашли широкое применение в различных областях современной промышленности. Разработка новых функциональных материалов невозможна без представления о характере фазовых диаграмм. Разделом общей химии, который имеет своей целью определение соотношений между составом и свойствами равновесных систем, результатом чего является графическое построение диаграмм состав — свойство (по определению Н. С. Курнакова) является физико-химический анализ [1]. Физико-химические исследования многокомпонентных систем (МКС) интенсивно развиваются. Многие природные объекты (руды, минералы, морская вода), а также технологические объекты (сплавы металлов, рудные концентраты, солевые, водно-солевые, оксидные, органические и другие смеси) являются многокомпонентными системами.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

В данной работе представлено исследование одного из стабильных тетраэдров четырехкомпонентной взаимной системы $\text{Li}_{,}K||F,\text{Br}_{,}MoO_{4}.$ Эле-

ментами огранения данной системы являются двухкомпонентные (LiF – LiBr, LiF – Li₂MoO₄, LiBr- Li_2MoO_4 , KF – KBr, KF – K_2MoO_4 , KBr – K_2MoO_4 , LiF-KF, LiBr - KBr, Li₂MoO₄-K₂MoO₄), трехкомпонентные (LiF – LBr – Li₂MoO₄, KF – KBr – K₂MoO₄) и трехкомпонентные взаимные системы $(Li,K||F,Br,Li,K||F,MoO_4,Li,K||Br,MoO_4)$. Двухкомпонентные системы LiF – LiBr [2], LiF – Li₂MoO₄ [3], LiBr-Li₂MoO₄ [4], KF – KBr [5], KBr – K₂MoO₄ [6], LiF-KF [7], LiBr-KBr [8] являются эвтектическими. В двухкомпонентных системах Li₂MoO₄ - K_2MoO_4 [3] и KF – K_2MoO_4 [9] образуются соединения конгруэнтного плавления D_1 (LiKMoO₄) и D_2 (К₃FMoO₄). Трехкомпонентные системы с общим катионом $LiF - LiBr - Li_2MoO_4$ [10] и KF - KBr -К₂МоО₄ [11] являются эвтектическими с образованием одной и двух тройных эвтектик соответственно. Все трехкомпонентные взаимные системы являются эвтектическими: в системе Li,K||F,Br [2] образуются две тройные эвтектики, в системе Li, K||Br, MoO₄ (была исследована впервые) — три трехкомпонентные эвтектики и в системе $Li,K||F,MoO_4[12]$ — три трехкомпонентные эвтектики и перитектика.

Наличие полной информации по топологии ликвидусов, характеристикам сплавов, отвечающих точкам нонвариантных равновесий элементов огранения изучаемой системы, позволяет нанести данные на комплексный чертеж-развертку (рис. 1) и

провести разбиение исследуемой системы на симплексы с применением теории графов [13]. Матрица смежности системы представлена в табл. 1.

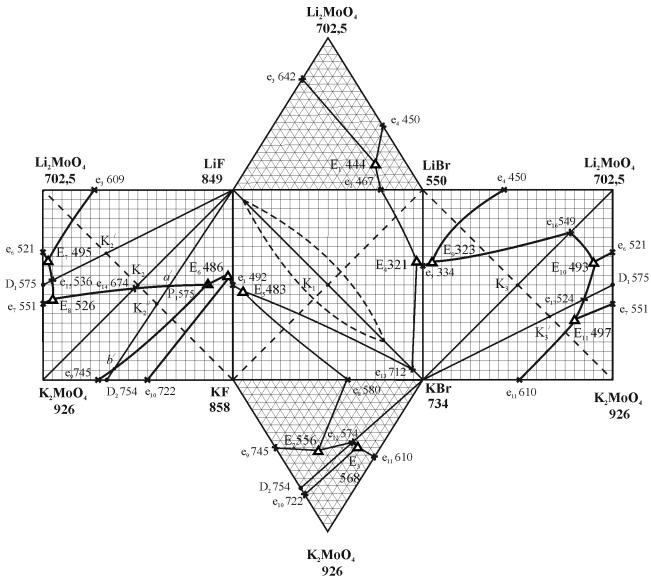
На основании данных табл. 1 составлено логическое выражение, представляющее собой произведение сумм индексов несмежных вершин:

$$(X_1 + X_5X_6X_7X_8)(X_2 + X_5X_6)(X_3 + X_5X_6).$$

Решая полученное логическое выражение с учетом закона поглощения получим набор однородных несвязных графов:

$$(X_1X_2X_3 + X_1X_5, X_6 + X_5X_6, X_7, X_8).$$

Путем выписывания недостающих вершин для несвязанных графов, получена совокупность симплексов:


I)
$$X_4X_5X_6X_7X_8$$
 $KBr - K_2MoO_4 - K_2WO_4 - D_1 - D_2$
II) $X_2X_3X_4X_7X_8$ $Li_2MoO_4 - Li_2WO_4 - D_1 - D_2 - KBr$

III)
$$X_1X_2X_3X_4$$
 LiBr – $Li_2MoO_4 – Li_2WO_4 – LiBr$

Общие элементы каждой пары смежных симплексов образуют стабильные секущие элементы (стабильные треугольники):

$$X_4X_7X_8$$
 $KBr - D_1 - D_2$ $X_2X_3X_4$ $KBr - Li_2MO_4 - Li_2WO_4$

Исходя из проведенного разбиения, построено древо фаз системы, имеющее линейное строение и состоящее из четырех стабильных треугольников LiF – KBr – Li $_2$ MoO $_4$, LiF – KBr – K $_2$ MoO $_4$, LiF – KBr – LiKMoO $_4$ и LiF – KBr – LiBr – Li $_2$ MoO $_4$, LiF – KBr – LiBr – Li $_2$ MoO $_4$, LiF – KBr – Li $_2$ MoO $_4$, LiF – KBr – LiK-MoO $_4$ – LiKMoO $_4$, LiF – KBr – LiK-MoO $_4$ – K $_2$ MoO $_4$, LiF – KBr – K $_3$ FMoO $_4$, LiF – KBr – K $_3$ FMoO $_4$, LiF – KBr – K $_3$ FMoO $_4$ – KF. Остов составов представлен следующими полями кристаллизации —

Рис. 1. Развертка граневых элементов четырехкомпонентной взаимной системы Li,K||F,Br,MoO₄

М. А. РАДЗИХОВСКАЯ, И. К. ГАРКУШИН, Е. Г. ДАНИЛУШКИНА

	Индексы	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
LiF	X_1	1	1	1	1	1	1	1	1
LiBr	X_2		1	1	0	1	0	0	0
Li ₂ MoO ₄	X_3			1	0	1	0	1	0
KF	X_4				1	1	0	0	1
KBr	X_5					1	1	1	1
K ₂ MoO ₄	X_6						1	1	1
LiKMoO ₄ (D ₁)	X_7							1	0
$K_3FMoO_4(D_2)$	X_8								1

Таблица 1. Матрица смежности системы Li,K||F,Br,MoO4

Таблица 2. Характеристики тройных эвтектических точек в секущих треугольниках четырехкомпонентной взаимной системы $Li,K||F,Br,MoO_4|$

Community	Характер	Содержа	Температура		
Секущий треугольник	точки	I	II	III	плавления, °С
$LiF - KBr - Li_2MoO_4$	E_{12}	17	8,2	75,8	525
LiF – KBr – LiKMoO ₄	E_{13}	7	8	85	504
$LiF - KBr - K_2MoO_4$	E_{14}	9,5	34,5	56	579

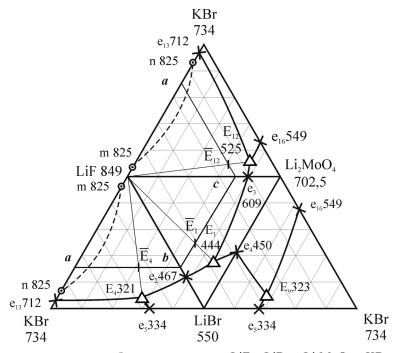
фторида лития, фторида калия, бромида лития, бромида калия, молибдата лития, молибдата калия, соединения конгруэнтного плавления $LiKMoO_4$ и соединения конгруэнтного плавления K_3FMoO_4 . Для подтверждения разбиения четырехкомпонентной взаимной системы $Li,K||F,Br,MoO_4$ было проведено экспериментальное исследование трех секущих треугольников: $LiF-KBr-Li_2MoO_4$, $LiF-KBr-LiKMoO_4$.

МЕТОДИКА ЭКСПЕРИМЕНТА

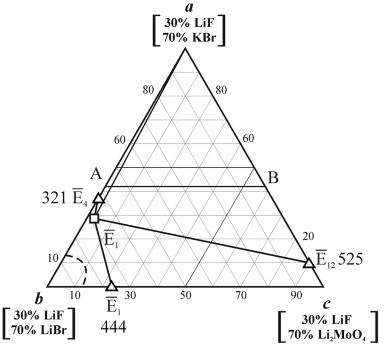
Экспериментальные исследования проводили методом дифференциального термического анализа (ДТА) на установке в стандартном исполнении [14]. Исходные реактивы квалификации «хч» (LiF, KF, LiBr, KBr, Li $_2$ MoO $_4$, K $_2$ MoO $_4$) были предварительно обезвожены. Температуры плавления веществ соответствовали справочным данным [15, 16]. Исследования проводили в стандартных платиновых микротиглях. Индифферентное вещество — свежепрокаленный Al_2O_3 (хч). Масса на-

весок составляла 0.3 г. Скорость охлаждения (нагрева) 15 К/мин. Составы — молярные концентрации эквивалентов, выраженные в %.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


C целью подтверждения разбиения исследуемой системы было произведено экспериментальное исследование секущих треугольников LiF – KBr – Li $_2$ MoO $_4$, LiF – KBr – K $_2$ MoO $_4$ и LiF – KBr – LiK-MoO $_4$. Было установлено, что все эти треугольники являются эвтектическими. В табл. 2 представлены температуры и составы трехкомпонентных эвтектик в исследованных секущих треугольниках.

Объектом исследования является стабильный тетраэдр $LiF - LiBr - Li_2MoO_4 - KBr$ четырехкомпонентной взаимной системы $Li,K||F,Br,MoO_4$. Развертка граневых элементов стабильного тетраэдра приведена на рис. 2. Тетраэдр состоит из одного секущего треугольника $LiF - KBr - Li_2MoO_4$, трехкомпонентной системы с общим катионом $LiF - LiBr - Li_2MoO_4$ и двух стабильных треуголь-


ников — LiF – LiBr – KBr и LiBr – KBr – Li $_2$ МоО $_4$ трехкомпонентных взаимных систем Li,K||F,Br и Li,K||Br,MоО $_4$

Для нахождения температур плавления и составов, отвечающих точкам нонвариантных равновесий, а также для установления характера взаимодействия компонентов внутри стабильного тетраэдра в объеме кристаллизации фторида лития

для экспериментального исследования было выбрано двухмерное политермическое сечение abc (a [70 % KBr+30 % LiF], b [70 % LiBr+30 % LiF], c [70 % Li $_2$ MoO $_4$ +30 % LiF]) (рис. 3). Точка $^{\Box}$ является проекцией соответствующей эвтектики из вершины фторида лития на сечение abc. В двухмерном политермическом сечении abc для экспериментального изучения был выбран одномерный политер-

Рис. 2. Развертка граневых элементов стабильного тетраэдра $LiF - LiBr - Li_2MoO_4 - KBr$ четырехкомпонентной взаимной системы $Li,K||F,Br,MoO_4$

Рис. 3. Политермическое сечение *abc*

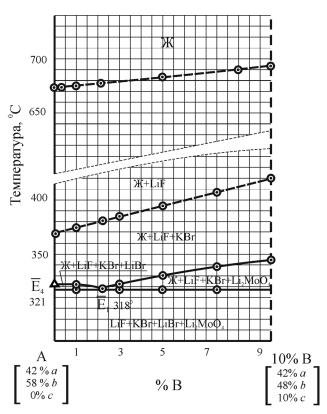
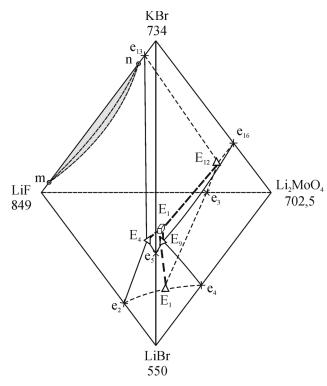



Рис. 4. Т-х-диаграмма политермического сечения АВ

мический разрез AB (A [42 % a+58 % b] B [42 % a+58 % c]) (рис. 4). Проекция ликвидуса на плоскость разреза AB представлена кривой кристаллизации фторида лития. Линия вторичной кристаллизации (Ж + LiF + KBr) также представлена в виде плавной кривой. Пересечение ветвей третичной кристаллизации определило положение проекции $\overline{E}_1^{\text{\tiny o}}$ четверной эвтектической точки на разрез AB. Изучением политермического разреза $a \rightarrow \overline{E}_1^{\text{\tiny o}} \rightarrow \overline{E}_1^{\text{\tiny o}}$, проходящего из вершины a через точку $\overline{E}_1^{\text{\tiny o}}$ найдена точка $\overline{E}_1^{\text{\tiny o}}$, являющаяся проекцией четверной эвтектики на двумерное политермическое сечение abc. Таким образом, найдено соотношение бромида лития, бромида калия и молибдата лития в $E_1^{\text{\tiny o}}$.

Определение состава четырехкомпонентной эвтектики сводилось к постепенному уменьшению концентрации фторида лития без изменения известных соотношений трех остальных компонентов по разрезу, выходящему из вершины фторида лития через точку \overline{E}_1^{\square} . В результате исследования найдены характеристики (температура и состав), отвечающий четверной эвтектике \overline{E}_1^{\square} : 318 °C, 5 % LiF, 58 % LiBr, 1 % Li₂MoO₄, 36 % KBr.

На рис. 5 представлен эскиз объемов кристаллизации стабильного тетраэдра LiF – KBr – LiBr –

Рис. 5. Эскиз объемов кристаллизации стабильного тетраэдра LiF – LiBr – Li_2MoO_4 – KBr четырехкомпонентной взаимной системы Li,K||F,Br,MoO $_4$

 ${
m Li_2MoO_4}.$ Тетраэдр состоит из четырех объемов кристаллизации: фторида лития, бромида калия, бромида лития и молибдата калия. В табл. 3 приведены фазовые реакции в изученной четырехкомпонентной системе.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведено разбиение четырехкомпонентной взаимной системы $Li,K||F,Br,MoO_4$ на симплексы с помощью теории графов. Остов составов представлен восьмью объемами кристаллизации: LiF, KF, LiBr, KBr, Li $_2$ MoO $_4$, K $_2$ MoO $_4$, LiKMoO $_4$, K $_3$ FMoO $_4$. Древо фаз четырехкомпонентной системы представлено пятью тетраэдрами LiF – LiBr – Li $_2$ MoO $_4$ – KBr, LiF – KBr – Li $_2$ MoO $_4$ – LiKMoO $_4$, LiF – KBr – LiKMoO $_4$, LiF – KBr – K $_2$ MoO $_4$, LiF – KBr – K $_3$ FMoO $_4$ – KF, которые соединены между собой стабильными треугольниками LiF – KBr – Li $_2$ MoO $_4$, LiF – KBr – LiKMoO $_4$, LiF – KBr – $_4$ MoO $_4$, LiF – KBr – LiKMoO $_4$, LiF – KBr – $_4$ MoO $_4$.

Теоретическое разбиение системы было подтверждено при помощи экспериментального исследования секущих треугольников четырехкомпонентной взаимной системы $LiF - KBr - Li_2MoO_4$, $LiF - KBr - LiKMoO_4$, $LiF - KBr - K_2MoO_4$. Все секущие треугольники являются эвтектическими.

Элементы диаграммы	Фазовые равновесия		
Поверхности:	Дивариантные:		
$e_{13}E_4E_1^{\Box}E_{12}e_{13}$	ж ≓ LiF+KBr		
$e_2E_4E_1^{\Box}E_1e_2$	ж≓LiF+LiBr		
$e_3E_{12}E_1^{\Box}E_1e_3$	ж≓LiF+Li₂MoO₄		
$e_5E_4E_1^{\Box}E_9e_5$	ж≓KBr+LiBr		
$e_{16}E_{12}E_1^{\Box}E_9e_{16}$	ж≓КВr+Li₂MoO₄		
$e_4E_1E_1^{\Box}E_9e_4$	ж≓LiBr+Li ₂ MoO ₄		
Линии:	Моновариантные:		
E_4E_1	ж≓LiF+KBr+LiBr		
$E_{12}E_1^{\Box}$	ж≓LiF+KBr+Li₂MoO₄		
E_1E_1	ж≓LiF+LiBr+Li ₂ MoO ₄		
$E_9E_1^{-}$	ж≃КВr+LiBr+Li ₂ MoO ₄		
Точки:	Нонвариантные:		
E ₁	ж≓LiF+KBr+LiBr+Li ₂ MoO ₄		

Таблица 3. Фазовые равновесия в стабильном тетраэдре $LiF - KBr - LiBr - Li_2MoO_4$

Исследование стабильного тетраэдра LiF — LiBr — Li_2MoO_4 — KBr четырехкомпонентной вза-имной системы $\text{Li}_1\text{K}||\text{F}_1\text{Br}_1\text{MoO}_4$ было проведено методом дифференциального термического анализа. В результате экспериментального исследования были определены температура плавления и состав, которые соответствуют четверной эвтектической точке E_1 . Остов составов стабильного тетраэдра $\text{LiF} - \text{LiBr} - \text{Li}_2\text{MoO}_4$ — KBr представлен четырьмя объемами кристаллизации: LiF, LiBr, KBr, Li $_2\text{MoO}_4$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Словарь-справочник по физико-химическому анализу / И. К. Гаркушин, М. А. Истомова. Самара: Самар. гос. техн. ун-т, 2011. 260 с.
- 2. Егорцев Г. Е., Гаркушин И. К., Истомова М. А. Фазовые равновесия и химическое взаимодействие в системах с участием фторидов и бромидов щелочных металлов. Екатеренбург: УрОРАН, 2008. 132 с.
- 3. Гаркушин И. К., Губанова Т. В., Петров А. С., и др. Фазовые равновесия в системах с участием молибдатов некоторых щелочных металлов. М.: «Машиностроение-1», 2005. 118 с.
- 4. *Губанова Т. В., Фролов Е. И., Гаркушин И. К.* // Журн. неорган. химии, 2007. Т. 52. № 12. С. 2095—2098.
- 5. Волков Н. Н., Дубинская Л. А. // Изв. физ.-хим. науч.-исслед. ин-та при Иркут. гос. Ун-те. 1953. Т. 2. Вып. 1. С. 45—47.
 - 6. Сухаренко М. А., Гаркушин И. К., Данилушки-

- на Е. Г. // Актуальные проблемы химии. Теория и практика. Тезисы докладов Всероссийской научной конференции. Уфа: РИЦ БашГУ, 2010. 136 с.
- 7. Воскресенская Н. К., Евсеева Н. Н., Беруль С. И. u др. Справочник по плавкости систем из безводных неорганических солей. Т. 1. Двойные системы. М.-Л.: АН СССР, 1961. 848 с.
- 8. *Арабаджан А. С., Бергман А. Г. //* Журн. неорг. химии. 1963. Т. VIII. Вып. 3. С. 720.
- 9. Диаграммы плавкости солевых систем. Ч. III // Под ред. В. И. Посыпайко, Е. А. Алексеевой. М.: Металлургия, 1977. 204 с.
- 10. *Фролов Е. И., Губанова Т. В., Данилушкина Е. Г.* // Труды междунар. науч. конф. Т. 1. Новые материалы и химические технологии. Пермь, 2006. С. 243—244.
- 11. Вердиев Н. Н., Арбуханова П. А., Искендеров Э. Г. и др. // Изв. ВУЗов. Химия и химическая технология. 2007. Т. 50. Вып. 12. С. 15—18.
- 12. *Малышева Е. И., Гаркушин И. К., Губанова Т. В. и др.* // Башкирский химический журнал. 2010. Т. 17. № 4. С. 57—60.
 - 13. Оре О. Теория графов. М.: Наука, 1980. 336 с.
- 14. *Егунов В. П.* Введение в термический анализ. Самара: ПО «САмВен». 1996. 270 с
- 15. Термические константы веществ. Вып. Х. Ч. І. Таблицы принятых значений / Под ред. В. П. Глушко. М.: ИВТ АНСССР, 1981.
- 16. Термические константы веществ. Вып. Х. Ч. II. Таблицы принятых значений/ Под ред. В. П. Глушко. М.: ИВТ АНСССР,1981.

М. А. РАДЗИХОВСКАЯ, И. К. ГАРКУШИН, Е. Г. ДАНИЛУШКИНА

Радзиховская Мария Александровна — аспирант кафедры общей и неорганической химии Самарского Государственного технического университета; тел.: (908) 3960713, e-mail: radzihovskaya@mail.ru

Гаркушин Иван Кириллович — д.х.н., профессор, зав. кафедрой общей и неорганической химии Самарского государственного технического университета; тел.: (846) 2423692, e-mail: baschem@samgtu.ru

Данилушкина Елена Григорьевна — к.х.н., доцент кафедры общей и неорганической химии Самарского государственного технического университета; тел.: (846) 2783692, e-mail: baschem@samgtu.ru

Radzihovskaia Mariai A. — the postgraduate student of the Common and Inorganic Chemistry chair, Samara State Technical University

Garkushin Ivan C. — grand PhD (Chem.), professor, head of the Common and Inorganic Chemistry chair, Samara State Technical University; tel.: (846) 2423692, e-mail: baschem@samgtu.ru

Danilushkina Elena G. — PhD (Chem.), lecturer of the Common and Inorganic Chemistry chair, Samara State Technical University; tel.: (846) 2783692, e-mail: baschem@samgtu.ru