

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 541.138.3 https://doi.org/10.17308/kcmf.2022.24/9266

Кинетика катодного выделения водорода на сплавах системы Мо_xW_{1-x}Si₂ в щелочном электролите

В. В. Пантелеева¹, Г. А. Симонов¹, А. Б. Шеин¹, П. А. Милосердов², В. А. Горшков²

¹Пермский государственный национальный исследовательский университет, ул. Букирева, 15, Пермь 614990, Российская Федерация

²Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН, ул. Академика Осипьяна, 8, Черноголовка 142432, Российская Федерация

Аннотация

Методами поляризационных и импедансных измерений изучены кинетика и механизм реакции выделения водорода на сплавах системы $Mo_x W_{1-x}Si_2$ (x = 1.0; 0.68; 0.41; 0) в растворе 1.0 М NaOH. Катодные поляризационные кривые силицидов характеризуются тафелевским участком с постоянными *a* и *b*, равными 0.47–0.49 и 0.068–0.076 В соответственно. Спектры импеданса $Mo_x W_{1-x}Si_2$ -электродов в тафелевской области представляют собой сочетание емкостной полуокружности со смещенным центром при высоких частотах и индуктивной дуги при низких частотах; в области наиболее высоких частот на графиках импеданса зарегистрирован прямолинейный участок с наклоном несколько выше 45°, свидетельствующий о присутствии пор в поверхностном слое электродов.

Для описания реакции выделения водорода на силицидах использована эквивалентная электрическая схема, фарадеевский импеданс которой состоит из последовательно соединенных сопротивления переноса заряда R_1 и параллельной R_2C_2 -цепочки (при $R_2 < 0$, $C_2 < 0$), отвечающей адсорбции атомарного водорода на поверхности электрода; импеданс двойнослойной емкости моделируется элементом постоянной фазы СРЕ₁.

Результаты поляризационных и импедансных измерений для исследованных силицидов удовлетворительно согласуются с механизмом разряд – электрохимическая десорбция, в котором обе стадии необратимы и имеют неравные коэффициенты переноса; замедленной стадией является электрохимическая десорбция; для адсорбированного атомарного водорода выполняется изотерма адсорбции Ленгмюра. Сделан вывод, что сплавы состава Mo_xW_{1-x}Si₂ в щелочном электролите представляют перспективные электродные материалы, проявляющие активность в реакции электролитического выделения водорода.

Ключевые слова: силициды молибдена и вольфрама, реакция выделения водорода, электрокатализ, самораспространяющийся высокотемпературный синтез

Благодарности: исследования выполнены при финансовой поддержке Пермского научно-образовательного центра «Рациональное недропользование», 2021 г. и в рамках государственного задания ИСМАН.

Для цитирования: Пантелеева В. В., Симонов Г. А., Шеин А. Б., Милосердов П. А., Горшков В. А. Кинетика катодного выделения водорода на сплавах системы Мо_xW_{1-x}Si₂ в щелочном электролите. *Конденсированные среды и межфазные границы*. 2022;24(2): 256–264. 10.17308/kcmf.2022.24/9266

For citation: Panteleeva V. V., Simonov G. A., Shein A. B., Miloserdov P. A., Gorshkov V. A. Kinetics of the cathodic evolution of hydrogen on alloys of the $Mo_x W_{1-x}Si_2$ system in an alkaline electrolyte. *Condensed Matter and Interphases*. 2022;24(2): 256–264. 10.17308/kcmf.2022.24/9266

[©] Пантелеева В. В., Симонов Г. А., Шеин А. Б., Милосердов П. А., Горшков В. А., 2022

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

[🖂] Пантелеева Виктория Вячеславовна, e-mail: vikpant@mail.ru

Кинетика катодного выделения водорода на сплавах системы Mo₂W₁ "Si₂...

1. Введение

Среди приоритетных направлений развития исследований в области водородной энергетики ведущее место занимает поиск эффективных и недорогих электродных материалов для электролитического получения водорода. В связи с этим в качестве катализаторов реакции выделения водорода (р.в.в.) исследовались металлы, сплавы, интерметаллические и металлоподобные соединения, композиционные материалы [1-9]. Исследование р.в.в. на силицидах переходных металлов показало [1-3, 5-7, 10-14], что электрокаталитическая активность этих материалов в катодном процессе существенно зависит от природы и концентрации металла в соединении, структуры материала, рН и состава среды. Рядом авторов [2, 5, 11, 14] отмечены высокая электрохимическая активность силицидов в р.в.в. и коррозионная стойкость этих соединений.

Силициды переходных металлов могут быть получены различными методами (прямой синтез из элементов, электролиз расплавов, термическое восстановление оксидов металлов, газофазный синтез и др. [15]). Одним из наиболее высокопроизводительных и малоэнергоемких методов получения силицидов и композиционных материалов на их основе является самораспространяющийся высокотемпературный синтез (СВС) [16]. Использование этого метода позволяет управлять химическим и фазовым составом, микроструктурой получаемого материала путем изменения состава исходной смеси и параметров синтеза.

Целью настоящей работы является установление кинетики и механизма реакции выделения водорода на синтезированных методом CBC силицидах состава $Mo_x W_{1-x} Si_2$ (x = 1.0; 0.68; 0.41; 0) в щелочном электролите, определение электрохимической активности $Mo_x W_{1-x} Si_2$ в р.в.в.

2. Материалы и методика эксперимента

Материалами для исследования служили силициды состава $Mo_x W_{1-x} Si_2$ (x = 1.0; 0.68; 0.41; 0), которые были получены методом CBC из порошковых оксидов молибдена и вольфрама квалификации «ч.д.а.» и кремния марки КР-0 в смеси с алюминием в атмосфере аргона под давлением газа 5 МПа. Методика синтеза и материалы исследования подробно описаны в работе [17].

Для проведения электрохимических измерений образцы помещали в специально изготовленные фторопластовые держатели и заливали полимеризованной эпоксидной смолой, оставляя неизолированной только рабочую поверхность электродов, которая составляла 0.8– 1.4 см². Все приведенные в работе удельные величины отнесены к единице геометрической площади поверхности электродов. Перед проведением измерений поверхность электродов шлифовали абразивными бумагами с последовательным уменьшением размера зерна, обезжиривали этиловым спиртом, ополаскивали рабочим раствором.

Электрохимические измерения проводили при температуре 25 °С в условиях естественной аэрации в неперемешиваемом растворе 1.0 М NaOH. Для приготовления раствора использовали деионизованную воду (удельное сопротивление воды – 18.2 МОм·см, содержание органического углерода – 4 мкг/л), полученную с помощью системы очистки воды Milli-Q фирмы Millipore (Франция), и NaOH квалификации «х.ч.».

Измерения проводили с помощью потенциостата-гальваностата с встроенным частотным анализатором Solartron 1280С фирмы Solartron Analytical (Великобритания) в электрохимической ячейке ЯСЭ-2 с разделенными пористой стеклянной диафрагмой катодным и анодным отделениями. В качестве электрода сравнения использовали насыщенный хлоридсеребряный электрод, в качестве вспомогательного электрода – платиновый электрод. Потенциалы в работе приведены относительно стандартного водородного электрода.

После погружения в раствор электроды подвергали катодной поляризации при плотности тока 0.5 мА/см² в течение 10 мин; затем выдерживали при потенциале разомкнутой цепи до установления стационарного значения, который составлял –0.63±0.02, -0.66±0.02, -0.69±0.03 и -0.80±0.02 В для MoSi₂-, $Mo_{0.68}W_{0.32}Si_2$ -, $Mo_{0.41}W_{0.59}Si_2$ - и WSi_2 -электродов, соответственно; далее регистрировали спектры импеданса. Перед измерением спектров импеданса при каждом потенциале проводили потенциостатическую поляризацию электродов до установления практически постоянного значения тока, после чего начинали измерения импеданса при данном Е и более низких потенциалах, изменяя потенциал с определенным шагом. На основе полученных значений і для данного значения Е строили катодные потенциостатические кривые. Диапазон используемых в импедансных измерениях частот f(ω/2π) составлял от 20 кГц до 0.01 Гц (10 точек на декаду при

Кинетика катодного выделения водорода на сплавах системы Mo_vW_{1-v}Si₂...

равномерном распределении по логарифмической шкале), амплитуда переменного сигнала – 5–10 мВ. Величину перенапряжения выделения водорода определяли относительно равновесного потенциала водородного электрода в растворе 1.0 M NaOH (–0.818 B).

При измерениях и обработке данных использовали программы CorrWare2, ZPlot2, ZView2 (Scribner Associates, Inc.). Доверительные интервалы рассчитывали при уровне значимости, равном 0.05.

3. Результаты и их обсуждение

Катодные поляризационные кривые $MoSi_2$ -, $Mo_{0.68}W_{0.32}Si_2$ -, $Mo_{0.41}W_{0.59}Si_2$ - и WSi_2 -электродов, исправленные на омическое падение потенциала [18], в растворе 1.0 М NaOH приведены на рис. 1.

Катодные кривые силицидов MoSi₂, Mo_{0.68}W_{0.32}Si₂, Mo_{0.41}W_{0.59}Si₂ имеют однотипный вид, характеризуются наличием тафелевского участка в области потенциалов от -1.04 до -1.13 В с наклоном $b \approx 0.068-0.074$ В и константой *a*, равной ~0.47-0.49 В (табл. 1). Поляризационная кривая WSi₂-электрода имеет линейный участок в диапазоне потенциалов от -1.0 до -1.1 В с наклоном ~0.076 В и величиной *a* ≈ 0.48 В (табл. 1). На основе значений констант *a* и *b* в соответствии с [19] сделан вывод, что исследованные силициды в щелочном электролите относятся к материалам с невысоким перенапряжением выделения водорода.

Рис. 1. Катодные поляризационные кривые в 1.0 M NaOH: *1* – MoSi₂; *2* – Mo_{0.68}W_{0.32}Si₂; *3* – Mo_{0.41}W_{0.59}Si₂; *4* – WSi₂

Теоретическое значение тафелевского наклона ~0.06 В (при коэффициентах переноса $\alpha \approx 0.5$ для стадий переноса заряда), к которому наиболее близки зарегистрированные для $Mo_x W_{1-x} Si_2$ -электродов значения *b* (табл. 1), может иметь несколько объяснений. При допущении о выполнении изотермы адсорбции Ленгмюра для адсорбированного атомарного водорода H_{ads} тафелевский наклон ~0.06 В может наблюдаться в случае механизмов: 1) замедленный безбарьерный разряд или замедленная безбарьерная электрохимическая десорбция [20]; 2) замедленная поверхностная диффузия атомарного водорода (для этого механизма тафелевский наклон составляет ~0.06 В [21] или ~0.079 В [22]).

При выполнении логарифмической изотермы адсорбции Темкина для H_{ads} значение b, соответствующее ~0.06 В, может быть объяснено в рамках механизмов [23]: 1) разряд – рекомбинация с квазиравновесной стадией разряда при неактивированной адсорбции водорода; 2) разряд – электрохимическая десорбция с квазиравновесной стадией разряда.

Наблюдаемые сравнительно небольшие отклонения тафелевского наклона для $Mo_x W_{1-x} Si_2$ от теоретического ~0.06 В могут быть связаны с конкретными значениями коэффициентов переноса стадий р.в.в. и другими факторами [24].

Для уточнения механизма и кинетических закономерностей р.в.в. на силицидах проведены измерения частотных зависимостей составляющих импеданса.

Спектры импеданса силицидов $Mo_x W_{1-x} Si_2$ при всех исследованных *E* представляют собой сочетание емкостной полуокружности с центром ниже оси действительной составляющей импеданса *Z'* при высоких частотах (ВЧ) и индуктивной дуги при низких частотах (рис. 2). На графиках импеданса в области наиболее высоких частот регистрируются отклонения от полуокружности. Эти отклонения имеют вид почти прямолинейных участков с наклоном несколько выше 45° и, по-видимому, свидетельствуют о том, что в поверхностном слое электродов присутствуют

Таблица 1. Кинетические параметры р.в.в. на сплавах системы Мо_xW_{1-x}Si₂ в 1.0 М NaOH

<i>−b</i> , B	<i>−a</i> , B	
0.068±0.001	0.47±0.01	
0.071±0.001	0.48±0.01	
0.074±0.002	0.49±0.02	
0.076±0.001	0.48±0.02	
	-b, B 0.068±0.001 0.071±0.001 0.074±0.002 0.076±0.001	

Кинетика катодного выделения водорода на сплавах системы Mo_W₁ _Si₂...

поры, приблизительно соответствующие модели цилиндрических пор [25]. Угол наклона больше 45° можно объяснить значительным влиянием «плоской» поверхности электрода вокруг пор [26], для которой наклон Z", Z'-зависимости в области высоких частот меньше 90°, но существенно больше 45° (см. ниже данные для элемента постоянной фазы СРЕ). Величина сопротивления R_{0} , равная расстоянию между точкой, полученной экстраполяцией прямолинейного участка в область высоких частот до пересечения с осью Z', и точкой, полученной экстраполяцией емкостной полуокружности в ВЧ-область до пересечения с осью Z', составляет 0.44 \pm 0.02, 0.46±0.02, 0.41±0.03 и 0.47±0.02 Ом·см² для MoSi₂-, $Mo_{0.68}W_{0.32}Si_2$ -, $Mo_{0.41}W_{0.59}Si_2$ - и WSi_2 -электродов, соответственно. Малая величина R_{Ω} указывает на то, что поры не являются глубокими.

Согласно теории пористых электродов для модели цилиндрических пор [27]:

$$R_{\Omega}=\frac{\rho L}{3n\pi r^2},$$

где ρ – удельное сопротивление раствора электролита, r и L – радиус и длина пор, соответственно, n – число пор на 1 см² поверхности электрода; величина $S = n\pi r^2$ представляет собой общее сечение пор на 1 см² поверхности. Соотношение для R_{Ω} не позволяет определить r и L по отдельности; можно определить только отношение L/r^2 или L/S. Для 1.0 М NaOH величина r = 6.05 Ом·см [28], и, например, для MoSi₂-электрода отношение L/S составляет

Рис. 2. Спектры импеданса MoSi₂-электрода в 1.0 M NaOH при *E*, В: *1* – –1.04; *2* – –1.06; *3* – –1.08; *4* – –1.10; *5* – –1.12; *6* – –1.14

0.22 см⁻¹; в предположении *S* = 0.01 см² получим *L* = 22 мкм.

Обозначим через f_0 частоту, соответствующую точке перехода от прямолинейного ВЧ-участка к емкостной полуокружности. При частоте f_0 переменный ток проходит на всю длину пор, и при $f < f_0$ электрод с порами ведет себя как гладкий электрод с площадью поверхности, равной полной поверхности электрода, включая внутреннюю поверхность пор [26]. Для обработки спектров импеданса с целью изучения кинетики и механизма р.в.в. брали точки при $f < f_0$. Это позволяет использовать эквивалентные схемы, обычно применяемые для гладких электродов.

Вид графиков импеданса Мо_"W_{1."}Si₂электродов указывает на стадийный характер р.в.в.; для их описания требуется не менее двух временных констант. Регистрация индуктивного импеданса в области низких частот свидетельствует о том, что р.в.в. протекает по маршруту разряд – электрохимическая десорбция. Согласно [29] индуктивный импеданс может появиться только при удалении $H_{\rm ads}$ через стадию электрохимической десорбции и не может появиться в случае механизма разряд – рекомбинация. Таким образом, на основании частотных зависимостей составляющих импеданса можно заключить, что в исследованной области потенциалов для описания выделения водорода на силицидах Мо_vW_{1,v}Si₂ маршрут разряд – рекомбинация может быть отклонен.

Для моделирования р.в.в. на силицидах $Mo_x W_{1-x} Si_2$ использованы эквивалентные электрические схемы, представленные на рис. 3. В схеме на рис. 3а: R_c – сопротивление электро-

Рис. 3. Эквивалентные электрические схемы для сплавов системы $Mo_x W_{1-x} Si_2$ в 1.0 М NaOH в области потенциалов выделения водорода

Кинетика катодного выделения водорода на сплавах системы Mo_vW_{1-v}Si₂...

лита, R_1 имеет смысл поляризационного сопротивления, сопротивление R_2 и индуктивность L_1 описывают адсорбцию атомарного водорода (релаксацию заполнения H_{ads} при наложении переменного сигнала) на поверхности электрода, элемент СРЕ₁ моделирует двойнослойную емкость на неоднородной поверхности твердого электрода.

Импеданс элемента постоянной фазы равен:

$$Z_{\rm CPE} = Q^{-1}(j\omega)^{-p}.$$

В этом соотношении при $p = 1 - \gamma$ элемент постоянной фазы представляет неидеальную емкость; γ – величина, значительно меньше 1 (типично γ < 0.2) [18].

Эквивалентная схема на рис. Зб является тождественной схеме на рис. За (в схеме на рис. Зб: R_1 – сопротивление переноса заряда, а адсорбция атомарного водорода на поверхности электрода моделируется R_2C_2 -цепочкой). Согласно [30] для описания р.в.в. на электродах, которым соответствуют спектры импеданса с индуктивностью в области низких частот, целесообразно использовать эквивалентную схему на рис. Зб с отрицательными R_2 и C_2 . В этом случае в качестве диагностических критериев механизмов р.в.в., основанных на анализе зависимости параметров фарадеевского импеданса от потенциала, используются абсолютные величины $|R_2|$ и $|C_2|$.

Экспериментальные спектры импеданса силицидов при исследованных *E* удовлетворительно описываются схемой на рис. Зб с отрицательными R_2 и C_2 . Критерий χ^2 , вычисленный в ZView2 (при использовании статистических весов, выраженных через обратную величину модуля импеданса), составляет $(1.1-2.3)\cdot10^{-4}$; сумма квадратичных отклонений равна $(1.0-2.1)\cdot10^{-2}$; ошибка определения значений параметров R_3 , R_1 и CPE₁ не превышает 1-3 %, параметров R_2 и $C_2 - 8-10$ %. Значения параметров эквивалентной схемы для MoSi₂-электрода приведены в табл. 2.

Результаты определения численных значений параметров $X = R_1$, $|R_2|$, $|C_2|$ эквивалентной схемы на рис. Зб для $Mo_x W_{1-x} Si_2$ -электродов проанализированы в зависимости от потенциала в полулогарифмических координатах. На рис. 4 приведены исправленные на омическое падение потенциала $\lg X, E$ -зависимости для МоSi₂-электрода, в табл. 3 указаны величины наклонов ($\partial \lg X / \partial E$)_{смаен} для $Mo_x W_{1-x} Si_2$. Для всех исследованных силицидов при потенциалах тафелевского участка отмечается линейное снижение величин $\lg R_1, \lg |R_2|$ и слабый рост величины на $\lg |C_2|$ с повышением катодной поляризации.

В качестве одного из предполагаемых на основе поляризационных измерений механизмов для р.в.в. на силицидах рассматривался механизм разряд – электрохимическая десорбция с квазиравновесной стадией разряда при выполнении логарифмической изотермы адсорбции для H_{ade} . Однако для этого механизма в соответ-

Рис. 4. Зависимости lgX (X: $1 - R_1, 2 - |R_2|, 3 - |C_2|$) от потенциала MoSi₂-электрода в 1.0 M NaOH. Единицы измерения: R_1 и R_2 – в Ом×см², C_2 – в Ф/см²

Таблица 2. Значения параметров эквивалентной схемы на рис. Зб для MoSi₂-электрода в 1.0 М NaOH

<i>−E</i> , B	R_1 , Ом-см ²	$-R_2$, Ом·см ²	$-C_2, \Phi \cdot \mathrm{cm}^{-2}$	$Q_1 \cdot 10^4, \ \Phi \cdot \mathrm{cm}^{-2} \cdot \mathbf{c}^{(p_1-1)}$	p_1
1.04	184.9	15.8	0.104	4.69	0.827
1.06	95.8	10.0	0.105	4.82	0.831
1.08	51.2	6.1	0.120	4.89	0.834
1.10	29.0	3.5	0.138	4.89	0.842
1.12	17.6	2.0	0.161	4.74	0.858
1.14	11.6	1.2	0.179	5.19	0.852

Кинетика катодного выделения водорода на сплавах системы Mo_W₁ _Si_...

ствии с [30] отмечается независимость R_1 и C_2 от потенциала. Экспериментально зарегистрированные для силицидов $Mo_x W_{1-x} Si_2$ заметное снижение R_1 и небольшой рост $|C_2|$ с потенциалом (табл. 3) не согласуются с теоретическими для рассматриваемого механизма р.в.в.

Механизм замедленной поверхностной диффузии атомарного водорода при выделении водорода на силицидах $Mo_x W_{1-x} Si_2$ можно считать вероятным, так как в исследованных материалах присутствуют разные атомы, и, следовательно, образование адсорбированных атомов водорода при переносе электрона на молекулу воды и электрохимическая десорбция H_{ads} могут происходить на разных участках поверхности (активных центрах) электродов. Использование для моделирования спектров импеданса силицидов эквивалентной схемы, соответствующей данному механизму [31], приводит к высоким ошибкам определения параметров диффузионного импеданса и величин емкости для $H_{\rm ads}$ на активных центрах, к которым происходит поверхностная диффузия. По-видимому, механизм замедленной поверхностной диффузии также может быть отклонен.

Параллельный ход $\lg R_1, E$ - и $\lg |R_2|, E$ зависимостей и слабое изменение величины $\lg |C_2|$ с понижением потенциала являются характерными для механизма разряд - электрохимическая десорбция, в котором обе стадии необратимы и коэффициенты переноса стадий не равны [30]. Измерения импеданса проведены при значениях перенапряжения более 0.18 В, которые являются достаточно высокими для необратимости стадий. Согласно [30] в этом механизме при логарифмической изотерме адсорбции для H_{ads} индуктивность на спектрах импеданса отсутствует, при ленгмюровской изотерме индуктивность может появиться как в случае замедленной стадии разряда, так и в случае замедленной стадии электрохимической десорбции. Таким образом, на основании полученных зависимостей элементов фарадеевского импеданса $Mo_x W_{1-x} Si_2$ -электродов от *E* можно предположить, что р.в.в. на силицидах в изученном диапазоне потенциалов протекает по маршруту разряд – электрохимическая десорбция, то есть описывается последовательностью реакций:

$$\begin{split} H_{2}O + e^{-} &= H_{ads} + OH^{-}, \\ H_{ads} + H_{2}O + e^{-} &= H_{2} + OH^{-}, \end{split}$$

при ленгмюровской изотерме адсорбции для H_{ads} . Дополнительные критерии механизмов р.в.в., основанные на анализе зависимости произведений iR_1 , $i|R_2|$ и R_2C_2 от потенциала электрода [32], также свидетельствуют о выполнении данного механизма на силицидах. Для Мо-Si₂-электрода величины наклонов ($\partial \lg Y / \partial E$)_{смон} для $Y = iR_1$, $i|R_2|$, R_2C_2 составляют – 1.3±0.2, –1.1±0.4 и 9.8±0.4 В⁻¹ соответственно.

При необратимых стадиях р.в.в. возможны два варианта объяснения полученных результатов: а) лимитирующей стадией является образование H_{ads} при переносе электрона на молекулу $H_{2}O, \alpha_{1} > \alpha_{2}; \delta$) лимитирующей стадией является электрохимическая десорбция, $\alpha_1 < \alpha_2$. Здесь α, и α, – коэффициенты переноса стадий разряда и электрохимической десорбции, соответственно. Молибден и вольфрам относятся к металлам с весьма высокой энергией связи с водородом $E_{\rm \tiny M-H}$ [20]. При этом $E_{\rm \tiny W-H}$ примерно на 12 кДж/моль выше $E_{\rm Mo-H}$ при адсорбции из газовой фазы, а оценки для водных растворов дают близкие значения $E_{_{\rm M-H}}$ для этих металлов. В связи с большой прочностью связи металл-водород вероятным механизмом р.в.в. для Мо и W в кислых растворах считается замедленная электрохимическая десорбция (безбарьерная при сравнительно малых η и обычная при более высоких η) [20]. Очевидно, $E_{\rm M-H}$ на силицидах молибдена и вольфрама несколько отличается от $E_{_{\rm M-H}}$ для чистых металлов. В то же время было показано, что электрокаталитическая активность сили-

Таблица 3. Величины наклонов $(\partial \lg X / \partial E)_{c_{\text{NAOH}}}$ ($X = R_1, |R_2|, |C_2|$) и коэффициентов переноса α_1 и α_2 для сплавов системы $Mo_x W_{1-x} Si_2$ в 1.0 М NaOH

Электрод	$\left(\frac{\partial \log R_{\rm l}}{\partial E}\right)_{c_{\rm NaOH}}, {\rm B}^{-1}$	$\left(\frac{\partial \log R_2 }{\partial E}\right)_{c_{\text{NAOH}}}, \text{ B}^{-1}$	$\left(\frac{\partial \log C_2 }{\partial E}\right)_{C_{\text{NAOH}}}, \text{ B}^{-1}$	α_1	α2
MoSi ₂	13.3±0.2	13.1±0.4	-3.3±0.4	0.59±0.04	0.78±0.02
Mo _{0.68} W _{0.32} Si ₂	12.9±0.3	12.6±0.3	-3.6±0.2	0.55 ± 0.02	0.76±0.03
$Mo_{0.41}W_{0.59}Si_2$	12.1±0.4	12.3±0.5	-3.8±0.4	$0.49{\pm}0.04$	0.72±0.04
WSi ₂	10.5±0.2	10.3±0.3	-4.8±0.3	0.34±0.03	0.62±0.02

Кинетика катодного выделения водорода на сплавах системы Mo₂W₁ "Si₂...

цидов коррелирует с активностью соответствующих металлов, и наибольшие плотности тока наблюдаются на силициде платины [3]. Можно предположить, что на силицидах молибдена и вольфрама, как и на Мо и W, энергия адсорбции водорода является высокой. Поэтому из двух вышеприведенных вариантов более вероятным представляется вариант (б) – замедленная электрохимическая десорбция. При этом данная стадия, по-видимому, находится в состоянии переходном от обычной электрохимической десорбции к безбарьерной, что выражается в больших значениях α, (табл. 3). Коэффициенты переноса стадий р.в.в. на Мо_xW_{1-x}Si₂ рассчитаны по соотношениям, приведенным в работе [30]: коэффициент переноса α, лимитирующей стадии определен из наклона $lg R_1, E$ -зависимости, а разность $(\alpha_2 - \alpha_1)$ – из наклона lg | C_2 |,E-зависимости.

4. Заключение

На основе поляризационных и импедансных измерений показано, что реакция выделения водорода на сплавах системы Мо_vW_{1-v}Si₂ в щелочном электролите протекает по маршруту разряд – электрохимическая десорбция с замедленной стадией электрохимической десорбции, в котором обе стадии необратимы и имеют неравные коэффициенты переноса; для адсорбированного атомарного водорода выполняется изотерма адсорбции Ленгмюра. Обнаружено, что сплавы системы Мо_xW_{1-x}Si₂ в щелочном электролите характеризуются невысоким перенапряжением выделения водорода и, таким образом, представляют перспективные электродные материалы для электролитического получения водорода.

Заявленный вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds: I. The hydrogen Eevolution reaction on NiSi, NiAs, NiSb, NiS, NiTe₂, and their constituent elements. *Journal of The Electrochemical Society*. 1964;111(3): 270-278. https:// doi.org/10.1149/1.2426107 2. Tilak B. V., Ramamurthy A. C., Conway B. E. High performance electrode materials for the hydrogen evolution reaction from alkaline media. *Proceedings of the Indian Academy of Sciences – Chemical Sciences volume*. 1986;97(3-4): 359–393. https://doi. org/10.1007/BF02849200

3. Wirth S., Harnisch F., Weinmann M., Schröder U. Comparative study of IVB-VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. *Applied Catalysis B: Environmental*. 2012;126: 225–230. https://doi.org/10.1016/j.apcatb.2012.07.023

4. Meyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo_2C , TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. *International Journal of Hydrogen Energy*. 2015;40(7): 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076

5. Safizadeh F., Ghali E., Houlachi G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review. *International Journal of Hydrogen Energy*. 2015;40(1): 256–274. https://doi. org/10.1016/j.ijhydene.2014.10.109

6. Sapountzi F. M., Gracia J. M., Weststrate C. J., Fredriksson H. O. A., Niemantsverdriet J. W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. *Progress in Energy and Combustion Science*. 2017;58: 1–35. https://doi.org/10.1016/j. pecs.2016.09.001

7. Eftekhari A. Electrocatalysts for hydrogen evolution reaction. *International Journal of Hydrogen Energy*. 2017;42(16): 11053–11077. https://doi. org/10.1016/j.ijhydene.2017.02.125

8. Kichigin V. I., Shein A. B. An electrochemical study of the hydrogen evolution reaction at YNi_2Ge_2 and $LaNi_2Ge_2$ electrodes in alkaline solutions. *Journal of Electroanalytical Chemistry*. 2018;830-831: 72–79. https://doi.org/10.1016/j.jelechem.2018.10.029

9. Theerthagiri J., Lee S. J., Murthy A. P., Madhavan J., Choi M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. *Current Opinion in Solid State and Materials Science*. 2020;24(1): 100805–100827. https://doi.org/10.1016/j. cossms.2020.100805

10. Vijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. *International Journal of Hydrogen Energy*. 1990;15(11): 789–794. https://doi.org/10.1016/0360-3199(90)90014-P

11. Vijh A. K., Belanger G., Jacques R. Electrolysis of water on silicides of some transition metals in alkaline solutions. *International Journal of Hydrogen Energy*. 1992;15(7): 479–483. https://doi. org/10.1016/0360-3199(92)90146-N Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2022;24(2): 256–264

В. В. Пантелеева и др.

Кинетика катодного выделения водорода на сплавах системы Mo₂W₁ "Si₂...

12. Kichigin V. I., Shein A. B. Kinetics and mechanism of hydrogen evolution reaction on cobalt silicides in alkaline solutions. *Electrochimica Acta*. 2015;164: 260–266. https://doi.org/10.1016/j.electacta.2015.02.198

13. Пантелеева В. В., Вотинов И. С., Полковников И. С., Шеин А. Б. Кинетика катодного выделения водорода на моносилициде марганца в сернокислом электролите. *Конденсированные среды и межфазные границы*. 2019;21(3): 432–440. https://doi. org/10.17308/kcmf.2019.21/1153

14. Кузъминых М. М., Пантелеева В. В., Шеин А. Б. Катодное выделение водорода на дисилициде железа. І. Щелочная среда. *Известия вузов. Химия и химическая технология.* 2019;62(1): 38–45. https://doi.org/10.6060/ivkkt.20196201.5745

15. Гурин В. Н. Методы синтеза тугоплавких соединений переходных металлов и перспективы их развития. *Успехи химии*. 1972;41(4): 616–647. https://doi.org/10.1070/RC1972v041n04ABEH002059

16. Мержанов А. Г., Боровинская И. П. Самораспространяющийся высокотемпературный синтез тугоплавких неорганических соединений. Доклады Академии наук СССР. 1972;204(2): 366–369. Режим доступа: http://www.ism.ac.ru/handbook/1st_art.htm

17. Gorshkov V. A., Yukhvid V. I., Miloserdov P. A., Sachkova N. V. Autowave synthesis of cast Mo-W-Si silicides. *Inorganic Materials*. 2011;47(4): 375–378. https://doi.org/10.1134/S002016851104011X

18. Orazem M. E., Tribollet B. *Electrochemical impedance spectroscopy*. John Wiley and Sons, Hoboken; 2008. 533 p.

19. Conway B. E., Bai L., Sattar M. A. Role of the transfer coefficient in electrocatalysis: applications to the H_2 and O_2 evolution reactions and the characterization of participating adsorbed intermediates. *International Journal of Hydrogen Energy*. 1987;12(9): 607–621. https://doi.org/10.1016/0360-3199(87)90002-4

20. Krishtalik L. I. Hydrogen overvoltage and adsorption phenomena: Part III. Effect of the adsorption energy of hydrogen on overvoltage and the mechanism of the cathodic process. In: P. Delahay (Ed.), *Advances in Electrochemistry and Electrochemical Engineering*. Vol. 7. Intersci. Publ., New York; 1970. pp. 283–340.

21. Fleischmann M., Grenness M. Electrocrystallization of Ruthenium and Electrocatalysis of Hydrogen Evolution. *Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases.* 1972;68: 3205–3215. https://doi.org/10.1039/ F19726802305 22. Введенский А. В., Гуторов И. А., Морозова Н. Б. Кинетика катодного выделения водорода на переходных металлах. І. Теоретический анализ. *Конденсированные среды и межфазные границы*. 2010;12(3): 288–300. Режим доступа: https://elibrary. ru/item.asp?id=15574174

23. Thomas J. G. N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. *Transactions Faraday Society*. 1961;57(9): 1603–1611. https://doi.org/10.1039/TF9615701603

24. Фрумкин А. Н. Избранные труды: Перенапряжение водорода. М.: Наука; 1988. 240 с.

25. Keiser H., Beccu K. D., Gutjahr M. A. Abschatzung der Porenstruktur porösen Elektroden aus Impedanzmessung. *Electrochimica Acta*. 1976;21(8): 539–543. https://doi.org/10.1016/0013-4686(76)85147-X

26. Lasia A. Modeling of impedance of porous electrode. In: *Modern Aspects of Electrochemistry*. No. 43. Ed. by M. Schlesinger. Springer, New York, 2009. pp. 67–137.

27. Candy J.-P., Fouilloux P., Keddam M., Takenouti H. The characterization of porous electrodes by impedance measurements. *Electrochimica Acta*. 1981;26(8):1029–1034. https://doi.org/10.1016/0013-4686(81)85072-4

28. Сухотин А. М. *Справочник по электрохимии*. Ленинград: Химия; 1981. 488 с.

29. Новосельский И. М., Гудина Н. Н. Расчет механизма и кинетики выделения водорода по данным импедансных измерений. Электрохимия. 1969;5(6): 670–676.

30. Kichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. *Electrochimica Acta*. 2014;138: 325–333. https://doi.org/10.1016/j.electacta.2014.06.114

31. Кичигин В. И., Шеин А. Б. Кинетика катодного выделения водорода на CeCu₂Ge₂-электроде в щелочном растворе. Влияние поверхностной и объемной диффузии атомарного водорода. *Вестник Пермского университета. Cep. Химия.* 2016;23(3): 6–19. Режим доступа: https://elibrary.ru/item. asp?id=27128572

32. Кичигин В. И., Шеин А. Б. Дополнительные критерии механизма реакции выделения водорода в методе импеданстной спектроскопии. *Вестник Пермского университета. Сер. Химия.* 2018;8(3): 316–324. https://doi.org/10.17072/2223-1838-2018-3-316-324 Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2022;24(2): 256–264

В.В.Пантелеева и др.

Кинетика катодного выделения водорода на сплавах системы Mo_vW_{1-v}Si₂...

Информация об авторах

Пантелеева Виктория Вячеславовна, к. х. н., доцент кафедры физической химии химического факультета, Пермский государственный национальный исследовательский университет (Пермь, Российская Федерация).

https://orcid.org/0000-0002-1506-6665 vikpant@mail.ru

Симонов Григорий Антонович, студент кафедры физической химии химического факультета, Пермский государственный национальный исследовательский университет (Пермь, Российская Федерация).

https://orcid.org/0000-0002-9948-6797 grisha.simonov@yandex.ru

Шеин Анатолий Борисович, д. х. н., профессор, зав. кафедрой физической химии химического факультета, Пермский государственный национальный исследовательский университет (Пермь, Российская Федерация).

https://orcid.org/0000-0002-2102-0436 ashein@psu.ru

Милосердов Павел Александрович, к. т. н., с. н. с. лаборатории жидкофазных СВС-процессов и литых материалов, Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН (Черноголовка, Российская Федерация).

https://orcid.org/0000-0002-2587-0067 yu group@ism.ac.ru

Горшков Владимир Алексеевич, д. т. н., в. н. с. лаборатории жидкофазных СВС-процессов и литых материалов, Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН (Черноголовка, Российская Федерация).

https://orcid.org/0000-0001-8845-4717 gorsh@ism.ac.ru

Поступила в редакцию 20.10.2021; одобрена после рецензирования 18.02.2022; принята к публикации 15.04.2022; опубликована онлайн 25.06.2022.