УДК 546.683'131

TEPMИЧЕСКИЙ АНАЛИЗ ВЗАИМНОЙ СИСТЕМЫ 2InCl₃ + 3Mn=3MnCl₂ + 2In

© 2012 Ю. П. Афиногенов

Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия Поступила в редакцию: 10.03.2011 г.

Аннотация. Методом дифференциально-термического анализа изучено взаимодействие в тройной взаимной системе вытеснения ${\rm In}^{3+}$, ${\rm Mn}^{2+}$, ${\rm In}$, ${\rm Mn}//{\rm Cl}^-$. Определены стабильные адиагональные сечения, триангулирующие фазовую диаграмму взаимной системы на более простые составляющие.

Ключевые слова: дифференциально-термический анализ, эвтектика, фазовые равновесия.

ВВЕДЕНИЕ

Необходимость исследования взаимных систем вытеснения типа соль — металл в расплавленном состоянии и построение их диаграмм плавкости вызвана практическим использованием реакций металлотермического восстановления для получения чистых металлов и сплавов, создания защитных пленок и декоративных покрытий на поверхности различных металлов. С исследованием этих систем связано и изучение явления растворимости металлов в расплавленных солях, находящих широкое применение в качестве флюсов, теплоносителей, сред для термообработки металлов и плавки специальных сталей.

МЕТОДИКА ЭКСПЕРИМЕНТА

Взаимная система вытеснения, квадрат состава которой представлен на рис. 1, изучалась методом дифференциально-термического анализа. Исходные составы загружались в кварцевые сосуды Степанова, которые затем вакуумировались. Расплавы нагревались до 660 °С, перемешивались в течение 1 часа. Записывались кривые охлаждения.

Бинарные системы $MnCl_2$ — $InCl_3$, $InCl_3$ — In, $MnCl_2$ — Mn и Mn — In изучены в [1-4]. В системе $MnCl_2$ — $InCl_3$ образуются ограниченные твердые растворы. Эвтектика отвечает 35 мол. % $MnCl_2$ и 495 °C. Характерной особенностью системы $InCl_3$ — In является растворение индия в соли с образованием целого ряда химических соединений, наиболее интересными из которых являются In_3InCl_6 (т. пл. 320 °C) и InCl (т.пл. 216 °C). Отслаивание In происходит при содержании в системе менее 33,33 мол. % $InCl_3$.

Система $MnCl_2$ — Mn характеризуется практически полным расслоением. В металлической системе Mn — In образуется инконгруэнтно плавящееся соединения Mn_3In . Состав эвтектики практически совпадает с ординатой индия (156 °C).

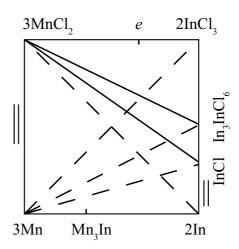
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Диагональный разрез InCl₃-Mn. Полученные данные позволяют считать данный разрез нестабильным. При содержании в исходных составах до 50 мол. % InCl₃ из расплавов после установления равновесия кристаллизуются только лишь солевые сплавы. Металлическая фаза отсутствует. Это объясняется восстановлением треххлористого индия марганцем до низших хлоридов индия по реакциям:

$$4InCl_3+3Mn=In_3InCl_6+3MnCl_2$$
,
 $InCl_3+Mn=InCl+MnCl_2$.

Увеличение концентрации марганца до 60 ат. % и более приводит к отслаиванию солевых сплавов, содержащих монохлорид индия (малые количества) и хлорид марганца, и металлических сплавов, плавящихся в соответствии с диаграммой плавкости системы Mn — In.

Диагональный разрез MnCl₂ — **In.** Диаграмма разреза представлена тремя линиями: первая — отвечает температуре начала кристаллизации хлорида марганца, вторая — температуре перитектического процесса ж+MnCl₂=4MnCl₂·InCl, третья — температуре кристаллизации вырожденной эвтектики Mn₃In + In (156 °C). Наличие лишь одной ветви кристаллизации хлористого марганца, понижающейся с 649 до 600 °C, свидетельствует о


том, что данный разрез является значительно более стабильным, чем разрез $InCl_3$ — Мп. Равновесие во взаимной системе значительно сдвинуто в сторону вытеснения индия.

Адиагональный разрез $MnCl_2$ — InCl. Данный разрез представляет собой обычную бинарную солевую систему. В ней обнаружены два инконгруэнтно плавящихся соединения $InCl\cdot 4MnCl_2$ и $InCl\cdot MnCl_2$. Перитектические точки отвечают соответственно 60 и 81 мол. % монохлорида индия. Перитектические реакции образования соединений протекают при 375 и 316 °C. Эвтектика содержит 95 мол. % монохлорида индия и плавится при 204 °C.

Адиагональный разрез InCl — Mn. Полученные данные указывают на нестабильность разреза. Равновесие реакции $2InCl+Mn=MnCl_2+2In$ в значительной степени смещено вправо, что подтверждается отслаиванием металлического индия при 156 °C для составов, содержащих 66,67 мол. % InCl и более.

выводы

Тройная взаимная система вытеснения $2InCl_3+3Mn=3MnCl_2+2In$ представляет собой сложный комплекс бинарных, тройных и квазивзаимных систем вытеснения. Триангуляция квадрата состава (рис. 1) с помощью стабильных адиагональных сечений In_3InCl_6 — $MnCl_2$ и InCl — $MnCl_2$ позволила выявить две простые тройные солевые системы $MnCl_2$ — $InCl_3$ — In_3InCl_6 и $MnCl_2$ — In_3InCl_6 — InCl и две квазивзаимные системы 2InCl + Mn — $MnCl_2$ + Mn — $MnCl_2$ + Mn — $MnCl_2$ — $MnCl_3$ — $MnCl_4$ — Mn — $MnCl_5$ — Mn — $MnCl_6$ — Mn — M

Рис. 1. Тройная взаимная система вытеснения $2InCl_3 + 3Mn = 3MnCl_2 + 2In$

Если исходные составы ($InCl_3+Mn$) лежат в границах простых тройных солевых систем, то после установления равновесия из расплава кристаллизуются только лишь солевые сплавы. Металлические сплавы отслаиваются лишь в области составов, взятых в пределах тетрагона $MnCl_2$ — InCl — In — Mn.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Федоров П. И., Ильина Н. И.* // Журн. неорган. химии. 1969. Т. 14. № 5. С. 1432.
- 2. *Федоров П. И., Малова Н. С. //* Журн. неорган. химии. 1968. Т. 13. С. 2534.
- 3. Коршунов Б. Г., Сафонов В. В., Дробот Д. В. Диаграммы плавкости хлоридных систем. Л.: Химия, 1972. 257 с.
- 4. *Вол А. Е., Каган И. К.* Строение и свойства двойных металлических систем. М.: Наука, 1976. Т. 3. 387 с.

Афиногенов Юрий Петрович — к.х.н., профессор кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208973, e-mail: office@chem.vsu.ru

Afinogenov Yuri P. — PhD (chemistry science), professor of general and inorganic chemistry chair, Voronezh State University; tel.: (473) 2208973, e-mail: office@chem.vsu.ru