УДК 546.41-185

ТОКИ ТЕРМИЧЕСКОЙ АКТИВАЦИИ НАНОКРИСТАЛЛИЧЕСКОГО ГИДРОКСИАПАТИТА КАЛЬЦИЯ Са₁₀(PO₄)₆(OH)₂

© 2012 Н. А. Захаров¹, В. А. Клюев², М. Ю. Сенцов¹, Ю. П. Топоров²

¹ Институт общей и неорганической химии им. Н. С. Курнакова РАН, Ленинский пр. 31, 119991 Москва, Россия ² Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, Ленинский пр. 31, 119071 Москва Россия

Поступила в редакцию 10.02.2012 г.

Аннотация. В биомиметических условиях синтезирован нанокристаллический стехиометрический гидроксиапатит кальция Ca₁₀(PO₄)₆(OH)₂ (НК ГА) — аналог неорганической компоненты костной ткани. Методами физико-химического анализа (РФА, ИКС, ТГА, ДСК, ЭСХА, СЭМ, ПЭМ, ДЭ) проведена идентификация продуктов синтеза. В интервале температур 300—600 К исследована температурная зависимость термостимулированных токов (TCT) НК ГА и проанализировано влияние степени дисперсности ГА на TCT.

Ключевые слова: гидроксиапатит кальция, нанокристаллы, термоактивационные токи.

введение

Термоактивационные процессы являются эффективным методом анализа физико-химических характеристик материалов [1]. Термоактивационная токовая спектроскопия открывает широкие возможности определения фундаментальных взаимосвязей состав — структура — свойства, оценки энергетических процессов, протекающих в веществе, установления физической природы происходящих процессов [2, 3].

Биологические апатиты нативных тканей относятся к основным (~60%) составляющим костной и зубной тканей [4]. Они представляют собой наноразмерные (~5—50 нм) кристаллы игловидного габитуса с катионными (Na⁺, K⁺, Mg²⁺) и анионными (CO₃²⁻, Cl⁻, F⁻) замещениями в кристаллической структуре гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ (ГA) [5]. ГА, являясь кристаллохимическим аналогом неорганической компоненты минерализованных тканей млекопитающих, служит базовым компонентом синтетических материалов для имплантатов в ортопедии и стоматологии.

Задача создания методов направленного синтеза ГА с заданным комплексом физико-химических характеристик для использования в качестве материала медицинских имплантатов предполагает развитие методов его исследования. Целью настоящей работы явилось использование метода термостимулированных токов (TCT) для изучения свойств синтетического стехиометрического нанокристаллического ГА.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез ГА проводили в биомиметических условиях (37 °C) в системе Ca(OH)₂ — H₃PO₄ — H₂O по методике [6], моделирующей процесс биоминерализации. В качестве исходных реактивов использовали Ca(OH)₂ и H₃PO₄ квалификации ОСЧ и дистиллированную воду.

Рентгенофазовый анализ (РФА), определение кристаллографических характеристик и размеров кристаллов проводили с использованием автоматизированного дифрактометра ДРОН-4 (СиК_аизлучение, графитовый монохроматор, управляющая программа EXPRESS). Модифицированный полнопрофильный анализ, оценку размеров блоков Коши (D_{hkl}) и величин микродеформаций кристаллической решетки проводили с использованием программ РНАМ и РНАМ %. ИК спектры диффузного отражения продуктов синтеза регистрировали в диапазоне 4000—400 см⁻¹ с использованием ИК-Фурье спектрометра Nexus фирмы Nicolet. Термический анализ ГА (термогравиметрический анализ (ТГА), дифференциальная сканирующая калориметрия (ДСК)) проводили на воздухе с использованием приборов Universal V4.4A TA Instruments и DSC Q100 V9.8 Build, соответственно, в диапазоне температур 293—1273 К. Структуру и химический состав образцов определяли с использова-

Рис. 1. Схематическое изображение ячейки для поляризации образцов в коронном разряде (*a*) и измерительной установки для регистрации и записи ТСТ (*б*). (*a*): *1* — электроды установки коронного разряда; 2 — образец для измерения; 3 — силовые линии электрического поля. (*б*): *1* — испытуемый образец; 2 — измерительные электроды; 3 — разборный экран; 4 — высокоомный измеритель-преобразователь; 5 — персональный компьютер с программным обеспечением

нием сканирующего электронного микроскопа (СЭМ) CamScanS4 с приставкой микроанализатора Linc Analytical. Микроструктуру образцов изучали методом просвечивающей электронной микроскопии (ПЭМ) с использованием электронного микроскопа JEOL JEM 1210.

Образцы для измерения ТСТ готовили в форме дисков (диаметр 10 мм, толщина 1,5—2 мм) прессованием нанокристаллических порошков ГА в металлической пресс-форме (без добавления пластификатора и применения обжига) и инициировали в поле отрицательного коронного разряда в течение 20 минут.

При этом происходит перенос заряда из области электрического разряда в воздушном зазоре на поверхность образца НК ГА. Ионы либо передают свой заряд образцу и возвращаются в воздух, либо проникают в приповерхностную область НК ГА, где фиксируются ионными ловушками. Создание короноэлектретного состояния может сопровождаться частичным нарушением электронейтральности диэлектрика.

Регистрацию ТСТ проводили в режиме нагрева образцов на воздухе с постоянной скоростью. В ходе измерения регистрировали электрический ток цепи, замыкающей электроды (рис. 1 δ). Нагревание проводили с постоянной скоростью μ :

$$\mu = \frac{dT}{d\tau} = const \tag{1}$$

в интервале температур 293—573К.

Результаты РФА свидетельствуют об образовании в ходе синтеза стехиометрического нанокристаллического ГА гексагональной сингонии, пр. гр. $P6_3/m$, брутто-формула которого может быть описана формулой $Ca_{10}(PO_4)_6(OH)_2 \cdot 4H_2O$ (табл. 1), включающей сорбированную воду. Дифрактограммам синтезированного ГА (рис. 2) отвечают неявно выраженные пики отражения от плоскостей (211), (300) и (202) в характерной области отраже-

Таблица 1. Фазовый состав продуктов синтеза и кристаллографические характеристики синтезированного стехиометрического НК ГА

Образец	Неорганическая фаза	Массовая доля (%)	Параметры эл. ячей- ки, Â		Размеры блока Коши, нм*	
			а	С	D	D⊤
Продукт синтеза (ГА)	Ca ₁₀ (PO ₄) ₆ (OH) ₂	100	9,442	6,878	56,8	13,6
Данные JCPDS, №9-432	Ca ₁₀ (PO ₄) ₆ (OH) ₂		9,418	6,884		

* Размеры блока Коши параллельно (*D* **||**) и перпендикулярно (*D* **⊥**) оси «*c*» НК ГА.

Рис. 2. Дифрактограмма синтезированного стехиометрического НК ГА

ния 2 Θ ~32 град. Нанокристаллы ГА (табл. 2) удлинены вдоль оси «*c*» (отношение размеров нанокристаллов вдоль осей *c/a* > 4) и имеют размеры и кристаллографические характеристики, близкие к таковым для нанокристаллов апатитов нативной кости [4]. Параметры элементарной ячейки синтезированного ГА близки по значениям к табличным данным (данные JCPDS, №9-432 [7]).

ИК спектры продуктов синтеза типичны для стехиометрического нанокристаллического ГА. ИК спектры НК ГА характеризуются полосами поглощения основных структурных компонентов ГА (тетраэдров PO_4^{3-} и гидроксильных групп ОНГ), а также адсорбированной воды H_2O и карбонатных групп CO_3^{2-} (за счет поглощения CO_2 окружающей атмосферы при синтезе) (рис. 3, табл. 2).

По результатам ЭСХА образующийся в ходе синтеза ГА однороден и соответствует стехиометрическому составу (рис. 4 *a*). Данные ПЭМ (рис. 4 δ , *в*) свидетельствуют об агломерации наночастиц ГА в блоки с размерами около 50 нм,

Рис. 3. ИК спектры диффузного отражения стехиометрического НК ГА до (*1*) и после (*2*) термической обработки (1273 К, 1 ч)

взаимодействующие между собой за счет образования перемычек или срастания блоков смежными гранями.

В ходе нагревания порошкообразного НК ГА до 1200 К происходит непрерывная потеря веса (рис. 5а) с общей потерей веса ~10%. Перегибы кривой имеют неявно выраженный характер и происходят при температурах 352 К (потеря веса ~0.5 %/град.), 878 К (~0.003 %/град.), 903 К (~0.003%/град.), 1158 К (~0.01%/град.). Потерю веса в области 373 К и выше 1073 К можно, по литературным данным [8—13], соотнести с испарением сорбированной воды (~373 К) и выгоранием выше 1073 К карбоната из синтезированного ГА, соответственно. Данные ДСК (рис. 5б) находятся в соответствии с подобным выводом. На кривой ДСК (рис. 5б) имеет место характерный эндоэффект в области 373 К с тепловыми характеристиками, соответствующими такому процессу. Типичными для нанокристаллического ГА и композиционных материалов ГА/полимер на его осно-

Таблица 2. Колебательные частоты стехиометрического НК ГА (1) и продукта его термической обработки (2)

Образец	Термооб- работка	Структурные составляющие продуктов синтеза и их частоты (см ⁻¹) в колебательном спектре						
		v ОН групп ГА	<i>δ</i> Н–О–Н в Н ₂ О	v CO ₃ групп	$v \operatorname{PO}_4$ групп	δ CO $_3$ групп	$\delta\mathrm{PO}_4$ групп	
1	нет	3569	1655	1490—1420	1096, 1036, 963	876	604, 563, 472	
2	1273 К, 1 ч	3571		1490—1420*	1089, 1050, 963	890*	602, 573, 472	

* интенсивности линий СО3 групп после термообработки значительно снижаются.

Рис. 4. Результаты анализа ЭСХА (а) образцов синтезированного ГА, ПЭМ агломератов наночастиц ГА (б, в)

Рис. 5. Кривые ТГА и ДТА образцов стехиометрического НК ГА

ве являются участки кривой ТГА в областях 273—473 К и 523—823 К с наибольшими потерями веса образцов [8—14]. В интервале 823—1023 К потери веса ГА практически не наблюдается. Процесс потери веса интенсифицируется выше 1023 К в связи с процессами декарбоницации ГА.

Экспериментально установленная потеря веса образцов синтезированного ГА разумно согласуется с количествами сорбированных воды и CO₂, результатами ДТА и данными по исследованию термических эффектов апатитов иного состава и композиционных материалов ГА/полимер [14—16].

В серии исследованных образцов имел место незначительный разброс значений абсолютной и относительной величин интенсивности пиков ТСТ. Для всех исследованных образцов НК ГА представлялось возможным выделить температурные области, соответствующие двум характерным пикам (рис. 6) с максимумами в области температур ~373 К и ~503 К, согласующимися с данными термического анализа.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Феноменологические параметры термоактивационных процессов (энергию термической активации (E(i)), характеризующую глубину уровня ловушек данного типа относительно дна зоны проводимости; частотный фактор ($K_0(i)$), характеризующий вероятность освобождения электрона из ловушек определенного типа; время жизни делокализованного электрона в зоне проводимости $\tau = 1/K_0$ определяли на основе уравнений формальной кинетики реакций первого порядка [1,17] для образцов с наиболее типичным видом температурных зависимостей TCT:

$$-\frac{dC}{d\tau} = K_0 C^l e^{-\frac{E}{kT}},$$
(2)

где C — концентрация активных центров, ответственных за ТСТ; τ — время; K_0 — частотный фактор; l — показатель порядка реакции; E — энергия активации; k — постоянная Больцмана; T температура, K;

Рис. 6. Кривая ДСК (a) и температурная зависимость ТСТ (δ) образцов стехиометрического НК ГА

$$K_{0} = \mu \frac{E}{kT_{m}^{2}} e^{-\frac{E}{kT_{m}}},$$
(3)

где *T_m* — температура, соответствующая максимуму кривой ТСТ; *µ* — скорость нагревания.

Значения подгоночных максимумов ($T_{m/calc.}(i)$, *i* — номер пика), полученных с использованием аппроксимации экспериментальных зависимостей полиномами, для обоих пиков TCT разумным образом согласуются по величине с экспериментально наблюдаемыми ($T_m(i)$) (табл. 3).

Интерпретация физической природы температурных зависимостей ТСТ НК ГА может быть проведена по аналогии с интерпретацией термоактивационных процессов в мелкокристаллическом ГА, исследованном с использованием термостимулированной экзоэлектронной эмиссии (ТСЭЭ) [1, 18]. В соответствии с [1, 18] для спектров ТСТ можно выделить два вида процессов, ответственных за возникновение пиков. Вопервых, это процессы, обусловленные как адсорбцией дефектной структурой поверхности НК ГА воды и кислорода воздуха, так и участием в термоактивационных процессах структурированной воды и воды, образующейся в результате термического разложения ГА. Для рассматриваемой задачи участие адсорбированных и структурированных молекул H_2O и O_2 , а также радикалов ОНГ и O^- , в возникновении низкотемпературного пика (рис. 1) особенно правдоподобно в связи с результатами физико-химического анализа объекта исследования — НК ГА с брутто-формулой $Ca_{10}(PO_4)_6(OH)_2 \cdot 4H_2O$, включающей несколько молекул адсорбированной воды.

Во-вторых, помимо влияния адсорбции на ТСТ активную роль в термоактивационных процессах играют фазовые превращения исследуемого объекта, сопровождающиеся нарушениями кристаллической решетки (образование напряжений и трещин при пластической деформации в ходе термического расширения) [1, 18]. Высокотемпературный пик (2) ТСТ, в соответствии с данными по температурной зависимости ТСЭЭ [1, 18], можно связать со структурным переходом ГА (моноклинная P2₁/b — гексагональная *P*6₃/*m* фаза), вызванным переориентацией дипольных групп ОН в треугольных каналах из ионов Са²⁺. При этом, как отмечалось для ТСЭЭ [1, 18], тонкая структура и возможное смещение $T_m(2)$ в область высоких температур может быть связана с дефектностью структуры ГА.

Таблица 3. Экспериментальные характеристики и расчетные параметры электронных ловушек спектров TCT с максимумами $T_m(i)$ (i = 1; 2)

i	μ	$T_m(i), \mathbf{K}$	$T_{m/calc.}(i), \mathbf{K}$	<i>Е</i> (<i>i</i>), эВ	$K_0(i), \mathrm{c}^{-1}$	$ au = 1/K_0$, c
1	0,35	349	382	0,65	$6,62 \cdot 10^{6}$	1,51.10-7
2	0,15	499	497	1,72	$6,65 \cdot 10^{14}$	$1,50 \cdot 10^{-15}$

 $\mu = dT/d\tau$, град/с — скорость нагрева образцов; $T_m(i)$ — температура максимума пика (*i*) кривой ТСТ экспериментальная; $T_{m/calc.}(i)$ — температура максимума пика (*i*) кривой ТСТ для аппроксимирующей кривой; E(i) — энергия термической активации ловушек; $K_0(i)$ — частотный фактор; $\tau = 1/K_0$ — время жизни делокализованного электрона в зоне проводимости.

Сравнение экспериментальных данных для термоактивационных процессов в ГА, полученных на основе использования методов ТСТ и ТСЭЭ, позволяет сделать ряд выводов о влиянии степени дисперсности на свойства ГА и характер протекающих в нем процессов. В связи с этим обращают на себя внимание, прежде всего, характеристики низкотемпературного пика (1) спектра ТСТ: его ширина, абсолютная и относительная (по отношению к высокотемпературному пику (2)) интенсивности. Образцам, подвергшимся термическому циклированию (при неоднократных измерениях на одном образце в пределах нагревания до 600 К), была также характерна отмеченная особенность спектров ТСТ. Ширина низкотемпературного спектрального пика (1) ТСТ превосходит ширину соответствующего пика ТСЭЭ [18]. Эта особенность спектров ТСТ может быть отнесена за счет высокой степени дисперсности НК ГА и связанной с ней значительной адсорбционной способностью НК ГА.

Вместе с тем, в отличие от спектров ТСЭЭ [18], относительная интенсивность высокотемпературного пика (2) ТСТ, связанного со структурным переходом ГА, уменьшается. К этому может приводить высокая степень дефектности НА ГА, затрудняющая процессы переориентации дипольных групп ОН в треугольных каналах из ионов Ca²⁺.

выводы

Полученные результаты наглядно свидетельствуют о полезности использования метода ТСТ при изучении кристаллических материалов. Благодаря существенно более высокой чувствительности к структурным изменениям в материале по сравнению с методами ДТГ и ДСК (что наглядно видно из сопоставления соответствующих кривых) анализ спектров ТСТ позволяет более точно фиксировать наличие и температуру структурных переходов, происходящих при нагреве. При этом появляется возможность получить сведения о кинетике переходных процессов.

Использование метода ТСТ в комплексе с другими методами позволило изучить особенности структуры синтезированного гидроксиапатита кальция и характер структурных изменений, происходящих при его нагреве. При этом обнаружено, что у нанокристаллического материала, каким является синтезированный гидроксиапатит, перераспределение электронной плотности, приводящее к появлению ТСТ и обусловленное структурным переходом, наблюдается в диапазоне температур более широком, чем диапазон, фиксируемый другими методами.

Полученные результаты могут, наряду с существующими методами, быть использованы для физико-химического анализа НК ГА и создания методов направленного синтеза материалов с заданным комплексом свойств для медицинского применения.

За частичную финансовую поддержку исследований авторы выражают признательность Фондам Президиума РАН (ФНМ), ОХНМ РАН, РФФИ (ФОИН).

СПИСОК ЛИТЕРАТУРЫ

1. Гороховатский Ю. А., Бордовский Г. А. Термоактивационная токовая спектроскопия. М.: Наука, 1991. 248 с.

2. Захаров Н. А., Орловский В. П. и др. // Неорганические материалы. 2001. Т. 37. № 8. С. 1017—1022.

3. *Захаров Н. А.* // Письма в ЖТФ. 2001. Т. 27. № 24. С. 22—28.

4. *Dorozhkin S. V.* // J. of Materials Science. 2007. V. 42. P. 1061—1095.

5. Смолеговский А. М. История кристаллохимии фосфатов. М.: Наука, 1986. 266 с.

6. Захаров Н. А., Сенцов М. Ю. // Сорбционные и хроматографические процессы. 2011. Т. 11. № 2. С. 177—184.

7. Powder diffraction file (inorganic phases). Joint Committee on Powder Diffraction Standards (JCPDS) File № 9-432, International Centre of Diffraction Data, Newton Square, PA, 1980.

8. *Murugan R., Panduranga Rao K. //* Biomaterials. 2002. V. 15. P. 407–410.

9. *Wang X., Li Y., Wei J., et al.* // Biomaterials. 2002. V. 23. P. 4787—4791.

10. *Murugan R., Panduranga Rao K.* // J. of Biomaterials Science, Polymer Edition. 2003. V. 14. P. 457–458.

11. *Murugan R., Panduranga Rao K.* // Macromolecular Research. 2003. V. 11. P. 14—18.

12. Zakharov N. A., Ezhova Zh. A., Koval E. M., et al. // Inorganic Materials. 2005. V. 41. № 5. P. 509—515.

13. Chen F., Wang Z. C., Lin C. J. // Materials Letters. 2002. V. 57. P. 858-861.

14. *Ежова Ж. А., Захаров Н. А., Коваль Е. М. и др.* // Журнал неорган. химии. 2006. Т. 51. № 2. С. 375—379.

15. *Rey C., Miguel J. L., Faccini L., et al.* // Bone. 1995. V.16. № 5. P. 583—586.

16. *Калинников В. Т., Ежова Ж. А., Захаров Н. А. и др.* // Журнал неорган. химии. 2007. Т. 52. № 1. С. 85—89.

17. Balarin M., Zetzsche A. // Physica Status Solidi. 1962. V. 2. P. 1670-1682.

18. Захаров Н. А., Орловский В. П., Клюев В. А. и др. // Неорган. материалы. 2001. Т. 37. № 8. С.1017—1022. Захаров Николай Алексеевич — д.ф.-мат.н., с.н.с., зав. сектором биосовместимых материалов, ИОНХ РАН; тел.: (495) 9554884, e-mail: zakharov@igic.ras.ru

Клюев Валерий Андреевич — к.ф.-мат.н, с.н.с., ИФХЭ РАН

Сенцов Максим Юрьевич — аспирант; ИОНХ РАН; e-mail: sentsov.maxim@gmail.com

Топоров Юрий Павлович — д.х.н.; гл.н.с., ИФХЭ РАН Zakharov Nikolay A. — grand PhD (Phys.-Math.), senior research scientist, head of the biocompatible materials sector; IGIC RAS; tel.: (495) 9554884, e-mail: zakharov@ igic.ras.ru

Klyuev Valerii A. — PhD (Phys.-Math.), senior research scientist, IPCE RAS

Sentsov Maxim Yu. — the post graduate student; IGIC RAS; e-mail: sentsov.maxim@gmail.com

Toporov Yury P. — grand PhD (Chem.), chief scientist, IPCE RAS