УДК 531.992:621.302

СТАДИЯ ЗАРОДЫШЕ ОБРАЗОВАНИЯ ФАЗЫ ${\rm A_2^{III}C_3^{VI}}$ НА ПОВЕРХНОСТИ КРИСТАЛЛОВ ${\rm A^{III}B^V}$

© 2012 Н. Н. Безрядин¹, А. В. Буданов¹, В. Д. Стрыгин¹, Е. В. Руднев², Б. Л. Агапов¹

¹ Воронежский государственный университет инженерных технологий, пр. Революции 19, 394036 Воронеж, Россия ² Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия

Поступила в редакцию 26.04.2012 г.

Аннотация: В работе исследуется кинетика роста и коалесценция зародышей соединения $A_2^{II}C_3^{VI}$ на кристаллах $A^{III}B^V$. Методом экстраполяции из гистограмм распределения зародышей по радиусам определено критическое значение радиуса зародыша ≈ 17 нм, которое хорошо согласуется с радиусом когерентности кристаллических решеток GaAs — Ga_Se₃ ≈ 14 нм. Оценки размеров неоднородностей поверхности и их концентраций, полученные по микрофотографиям, согласуются с результатами измерений релеевского рассеяния от поверхностей Ga_Se₃ и данными туннельной микроскопии. Темп генерации вакансий элемента B^V и механические напряжения, вызванные рассогласованием периодов идентичности кристаллических решеток, максимальны в ближайшем окружении зародыша фазы $A_2^{III}C_3^{VI}$. Микроскопический механизм замещения анионов кристаллической решетки $A^{III}B^V$ на элемент C^{VI} определяется термостимулированным образованием вакансий в анионных узлах и их последующим заполнением атомами C^{VI} из адсорбированного слоя халькогена.

Ключевые слова: коалесценция зародышей, кинетика роста, генерации вакансий.

ВВЕДЕНИЕ

В работах [1-7] показано, что твердофазное термостимулированное гетеровалентное замещение анионов в кристаллах А^ШВ^V элементами VI группы таблицы Менделеева ведет к образованию сплошных кристаллических слоев А₂^{III}C₃^{VI}. Таким образом, получены гетероструктуры GaAs - Ga_2Se_3 [1], $GaAs - Ga_2S_3$ [2], $InAs - In_2S_3$ [3,4], InAs — In₂Se₃ [5] и другие. Актуальность и практическая значимость исследований халькогенидной пассивации поверхности полупроводников класса А^ШВ^V обоснована в работах [1—4] и обзоре [8]. Образование сплошных слоев $A_2^{III}C_3^{VI}$ протекает через стадию зародышеобразования с последующей их коалесценцией [6]. Понятно, что пространственный масштаб топографической неоднородности поверхности гетероструктур определяется количеством зародышей и кинетикой их роста до коалесценции. Поэтому в настоящей работе анализируется кинетика роста уединенных зародышей, приведены некоторые экспериментальные данные о коалесценции и топографии поверхности гетероструктур.

ФИЗИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ МОДЕЛИ

Микроскопический механизм твердофазной реакции замещения анионов кристаллической решетки $A_2^{\ III}C_3^{\ VI}$ на элемент C^{VI} сводится к термостимулированному образованию вакансий в анионных узлах с сохранением их координационного окружения катионами и их последующему заполнению атомами С^{VI} из адсорбированного слоя. Состав адсорбированного слоя халькогена сложен. На поверхности $A^{III}B^{V}$ могут находиться как различные молекулы, так и атомы халькогена. Встреча молекулы C_2^{VI} с вакансией аниона B^V в подложке, по-видимому, стимулирует диссоциацию $C_2^{VI} \rightarrow C^{VI} + C^{VI}$ или $C_3^{VI} \rightarrow C_2^{VI} + C^{VI}$ с образование атомов C^{VI} и последующее образование элемента структуры A2^{III}C3^{VI}. Если концентрация атомизированного халькогена достаточно велика, процесс заполнения сгенерированных вакансий можно считать мгновенным. Тогда кинетика роста концентрации элементов структуры А₂^{III}C₃^{VI} определяется только темпом генерации вакансий элемента В^V подложки. Несмотря на то, что периоды идентичности и кристаллические структуры

Рис. 1. Кусочно-линейные аппроксимации U(r, t) (кривая 1) и $I(r, t) = \iint_{t} U(r, t) dS$ (кривая 2)

 $A_2^{III}C_3^{VI}$ и $A_3^{III}B_3^{V}$ близки, имеющееся рассогласование периодов идентичности решеток вызывает механические напряжения, стимулирующие процесс генерации вакансий. В мостиках $C^{VI}-A^{III}-B^{V}$ связи $C^{VI}-A^{III}$ более прочные, чем связи $A^{III}-B^{V}$. Поэтому после формирования уединенного элемента структуры $A_2^{III}C_3^{VI}$ темп генерации вакансий элемента B^{V} максимален в его ближайшем окружении с радиусом порядка радиуса релаксации механических напряжений (r_0). Тогда кинетику роста концентрации $A_2^{III}C_3^{VI}$ можно описать уравнением:

$$\frac{\partial U(\vec{r},t)}{\partial t} = \gamma \left(\frac{1}{\pi r_0^2} \iint_{\sigma} U(\vec{r},t) ds \right) \left[1 - U(\vec{r},t) \right], \quad (1)$$

где $U(\vec{r},t)$ — концентрация $A_2^{III}C_3^{VI}$ (за единицу принята концентрация при сплошном покрытии поверхности $A^{III}B^V$); t — время, \vec{r} — двумерный радиус-вектор с началом в точке генерации зародыша; γ — константа, определяющая темп генерации вакансий; σ — круг с радиусом r_0 ; dS — элемент поверхности. Выражение в круглых скобках мера механических напряжений, выражение в квадратных скобках — концентрация ненарушенного материала $A^{III}B^V$.

Кинетика роста концентрации в центре зародыша описывается дифференциальным уравнением вида:

$$\frac{\partial U_0(t)}{\partial t} = \gamma U_0(t) \left[1 - U_0(t) \right], \qquad (2)$$

с решением:

$$U_{0}(t) = (1 + c \exp(-\gamma t))^{-1},$$

$$U_{0}(t)|_{t=0} = (1 + c)^{-1} = (\pi r_{0}^{2})^{-1}.$$
(3)

После достижения единичной концентрации в центре зародыша ($\gamma \cdot t >> 1$) для приближенного описания решений уравнения (1) можно использовать кусочно-линейные региональные аппроксимации (см. рис. 1).

В переходной области:

$$U(r,t) \approx U_0(t) \left[\frac{1}{2} - k(t)(r - \xi(t)) \right],$$

$$k(t) = \frac{1}{\Delta(t)},$$

$$I(r,t) \approx U_0(t) \left[\frac{1}{2} - k_I(t)(r - \xi(t)) \right],$$

$$k_I(t) = \frac{1}{\Delta(t) + 2r},$$
(5)

где $\zeta(t)$ — центр зоны реакции, $\Delta(t)$ — ширина зоны реакции.

Подставляя аппроксимации (4), (5) в уравнение (1) и уравнивая коэффициенты при одинаковых степенях ($r - \xi(t)$), можно получить уравнения:

$$\frac{dk(t)}{dt} = -\frac{\gamma \cdot r_0 \cdot k^2(t)}{1 + 2r_0 k(t)}, \ k(t) \cdot \frac{\xi(t)}{dt} = \frac{\gamma}{4}$$
(6)

с начальными условиями $\xi(t)|_{t=0} = r$, $k(t)|_{t=0} = 1/r_0$, описывающие кинетику движения фронта зародыша и рост ширины переходной области.

Типичные зависимости $\xi(t)$ и границ переходного слоя представлены на рис. 2.

Имея кинетику движения фронта уединенного зародыша, можно рассчитать плотность вероятности $f(\xi)$ и функцию распределения $F(\xi)$ зародышей по их радиусам к моменту времени τ . Положим, что зародыши генерируются с постоянной

Рис. 2. Зависимости $\xi(t)$ (кривая 1) и границ переходного слоя (*кривые 2, 3*). $r_0 = 17$ нм, $\gamma = 0,007$ с⁻¹, начальная ширина переходного слоя $\Delta = 20$ нм, $\tau = 5$ мин

скоростью на свободной поверхности подложки, а поверхность, занятая зародышами, на начальной стадии мала и коалесценция отсутствует. Тогда:

$$F(r) = \int_{0}^{r} f(\xi) d\xi = \frac{t}{\tau}, \ f(\xi) = -\frac{\alpha S_{0}}{N(\tau) \cdot \frac{d\xi}{dt}|_{(\tau-t)}}, \quad (7)$$

где α — темп генерации зародышей на единице поверхности, S_0 — площадь, $N(\tau)$ — число зародышей на единице поверхности, $\frac{d\xi}{dt}|_{(\tau-t)}$ — скорость движения фронта зародышей, сгенерированных в момент t, к моменту τ , τ — время процесса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Термостимулированное гетеровалентное замещение анионов в решетке $A^{III}B^{\vee}$ на халькоген проводилось в эвакуированном квазизамкнутом объеме [7] с механическим сдвиговым устройством, позволяющим контролировать время процесса с точностью не хуже 20 секунд (время остывания держателя подложки) и заданным парциальным давлением паров халькогена ($P \approx 1,3$ Па, температура подложки T = 623 K).

Микрофотографии (рис. 3, 4) поверхности Ga₂Se₃ получены в растровом электронном микроскопе JSM-840 в режиме вторичной электронной эмиссии по топографическому контрасту от поверхности. На рис. 5 приведена гистограмма, рассчитанная по экспериментальной микрофотографии, и функция распределения зародышей по радиусам. Обратная к последней функция отображает кинетику образования и роста зародышей. Соответствующая кривая нанесена сплошной линией. Экстраполяция экспериментальной функции распределения от точки перегиба к значению F = 0 дает критическое значение радиуса зародыша равное 17 нм, что хорошо согласуется с радиусом когерентности кристаллических решеток GaAs и Ga₂Se₃, составляющим 14 нм. Дальнейшая экстраполяция той же зависимости к оси r = 0 дает оценку времени образования уединенного зародыша (с единичной концентрацией в круге радиуса r_0) $t_0 \approx 1/\gamma \approx 300$ с. Оценки концентрации зародышей по микрофотографиям позволяют указать темп генерации зародышей $\alpha = (0.3 \div 0.4) \cdot 10^{11} \text{ m}^{-2} \cdot \text{c}^{-1}$.

Рис. 3. Микрофотография поверхности пленки Ga_2Se_3 на поверхности GaAs. Парциальное давление паров халькогена 1,3 Па, температура подложки T = 623 K, время обработки в квазизамкнутом объеме 300 с

Рис. 4. Микрофотография поверхности пленки Ga_2Se_3 на поверхности GaAs. Парциальное давление паров халькогена 1,3 Па, температура подложки T = 623 K, время 2400 с

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 6 приведена гистограмма распределения зародышей по радиусам для больших времен процесса (~2400 с). Явно выражен двумодовый характер распределения, что связано с коалесценцией зародышей. Если по концентрации определить средний размер, соответствующий покрытию контактирующими зародышами $<r> = (0.5 \div 0.6) \cdot 10^{-7}$ м, он близок к математическому ожиданию радиуса, рассчитанному по гистограмме $M(r) = 0.46 \cdot 10^{-7}$ м (рис. 6). Оценка темпа генерации зародышей для указанного технологического режима также хорошо согласуется с приведенным выше значением. Оценки масштабов неоднородностей поверхности и их концентраций согласуются также с результатами измерений релеевского рассеяния от поверхностей пленок Ga₂Se₃, полученных на подложках GaAs, и данными туннельной микроскопии [6]. Аналогичные экспериментальные результаты, не приведенные в работе, получены и для других гетеросистем $A_2^{III}C_3^{VI} - A^{III}B^{V}$.

ЗАКЛЮЧЕНИЕ

Таким образом, учитывая, что механические напряжения, возникающие в результате незначительного несоответствия параметров кристаллических решеток в гетеросистемах, стимулируют генерацию анионных вакансий на фронте зароды-

Рис. 5. Гистограмма P(r) - 1, Функция распределения по радиусам F(r) - 2, $\zeta^{-1}(t) - 3$. $r_0 = 17$ нм, $\gamma = 0,007$ с⁻¹, $\tau = 5$ мин.

Рис. 6. Гистограмма распределений зародышей по радиусам для больших времен процесса, $\tau \approx 40$ мин.

шей, удается объяснить основные экспериментальные результаты, полученные в работе.

Работа выполнена в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2013 годы» по гос. контракту № 16.516.11.6084 от 08.07.2011.

СПИСОК ЛИТЕРАТУРЫ

1. *Сысоев Б. И., Антюшин В. Ф., Стрыгин В. Д. и др. //* Журнал технической физики. 1986. № 5. С. 913—915.

2. Сысоев Б. И., Буданов А. В., Стрыгин В. Д. Формирование гетероперехода Ga_2S_3 — GaAs методом гетеровалентного замещения мышьяка на серу. // В сб.

Безрядин Николай Николаевич — д.ф.-мат.н., профессор, заведующий кафедрой физики, Воронежский государственный университет инженерных технологий; тел.: (960) 1240579, e-mail: phys@vgta.vrn.ru

Буданов Александр Владимирович — к .ф.-мат.н., доцент кафедры физики, Воронежский государственный университет инженерных технологий; тел.: (903) 8527719, e-mail:budanova9@gmail.com

Стрыгин Владимир Дмитриевич — д.ф.мат.-н., профессор кафедры физики, Воронежский государственный университет инженерных технологий; тел.: (909) 2106999, e-mail: phys@vgta.vrn.ru

Руднев Евгений Владимирович — к.ф.-мат.н., доцент кафедры физики твердого тела и наноструктур, Воронежский государственный университет; тел.: (951) 8764844, e-mail: rudneff@mail.ru

Агапов Борис Львович — к.ф.-мат.н., доцент кафедры физики, Воронежский государственный университет инженерных технологий; тел.: (915) 5866418, e-mail: b.agapov2010@yandex.ru Полупроводники и гетеропереходы. 1987. Таллин, С. 32—34.

3. *Postnikov V. S., Sysoev B. I., Budanov A. V., et al.* // Phisica Status Solidi (a). 1988. V. 109. P. 463–467.

4. *Сысоев Б. И., Безрядин Н. Н., Буданов А. В. и др. //* Микроэлектроника. 1990. Т. 19. Вып. 6. С. 591—594.

5. Безрядин Н. Н., Буданов А. В., Татохин Е. А. и др. // Неорганические материалы. 2000. Т. 36. № 9. С. 1037—1041.

6. Антюшин В. Ф., Буданов А. В., Татохин Е. А. и др. // Письма в ЖТФ. 2002. Т. 28. Вып. 7. С. 68—72.

7. Безрядин Н. Н., Буданов А. В., Татохин Е. А. и др. // Приборы и техника эксперимента. 1998. № 5. С. 150—152.

8. Бессолов В. Н., Лебедев М. В. // Физика и техника полупроводников. 1998. Т. 32. В. 11. С. 1281—1299.

Bezryadin Nikolay N. — grand PhD (Phys.-Math.), professor, head of the Physics chair, Voronezh State University of Engineering Technologies; tel.: (960) 1240579, e-mail: phys@vgta.vrn.ru

Budanov Aleksandr V. — PhD (Phys.-Math.), associate professor of the Physics chair, Voronezh State University of Engineering Technologies; tel.: (903) 8527719, e-mail: budanova9@gmail.com

Strygin Vladimir D. — grand PhD (Phys.-Math.), professor of the Physics chair, Voronezh State University of Engineering Technologies; tel.: (909) 2106999, e-mail: phys@vgta.vrn.ru

Rudnev Evgeniy V. — PhD (Phys.-Math.), associate professor, Solid State Physic and Nanostructures chair, Voronezh State University; tel.: (951) 8764844, e-mail: rudneff@mail.ru

Agapov Boris L. — PhD (Phys.-Math.), associate professor of the Physics chair, Voronezh State University of Engineering Technologies; tel.: (915) 5866418, e-mail: b. agapov2010@yandex.ru