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Abstract 
We present the results of the study of the structure and surface morphology of InxGa1–xAs thin films on a GaAs substrate. 
Thin films were obtained by magnetron sputtering from a specially formed In0.45Ga0.55As target in an argon atmosphere.
The obtained samples of thin films were studied by Raman scattering, atomic force microscopy, scanning electron microscopy, 
and energy-dispersive X-ray spectroscopy. It was shown that the grains of the films obtained at a substrate temperature 
below 600 °C were not faceted and were formed through the coalescence of grains with a size of 30–65 nm. At a substrate 
temperature of 600 °C, films consisted of submicron grains with a visible faceting.
It was determined that the average grain size increased and the root-mean-square roughness of thin films decreased due 
to an increase in the substrate temperature. Thin films obtained at a substrate temperature of 600 °C possessed the best 
structural properties.
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1. Introduction 
Semiconductor compounds A3B5 are widely 

used materials that are highly important in 
photovoltaics and optoelectronics. Today, among 
the most common methods for obtaining thin 
films and heterostructures of A3B5 compounds 

are the following: molecular beam epitaxy, metal 
organic chemical vapour deposition, ion-beam 
sputtering, and impulse laser deposition [15]. 
Magnetron sputtering is also used to obtain thin 
films of A3B5 compounds. Thin films of GaSb, 
AlxGa1–xN, InxAl1–xN, GaAs1–yNy, InxGa1–xN, and 
InxGa1–xAs on various substrates were obtained 
using this method [612]. InxGa1–xAs solid solution 
is widely used in modern optoelectronics [13], but 
the preparation of thin films using magnetron 
sputtering, although being highly relevant, still 
poses some challenges. They are mainly related 
to the fact that the effect of magnetron sputtering 
parameters on the properties of InxGa1–xAs thin 
films have not been thoroughly studied. In some 
works researchers either used the method of 
co‑sputtering from high purity GaAs and In 
targets [14], or alternated the layers of GaAs and 
In, respectively. Although this method has certain 
advantages, it significantly complicates the 
process of magnetron sputtering. It is reasonable 
to use the targets with a set composition of the 
InxGa1–xAs solid solution the preparation of which 
was described in [5].

The goal  of  this  work was to  grow 
InxGa1–xAs thin films using magnetron sputtering 
and to study their structural properties and 
surface morphology.

2. Experimental 
In this study, we reported the preparation of 

InxGa1–xAs thin films on GaAs (100) substrates 
using magnetron sputtering from a target with 
a calculated composition of In0.45Ga0.55As. The 
target was formed by sintering GaAs and InAs 
powders in the pure hydrogen atmosphere at 
a temperature of 700 °C for 120 minutes. Thin 
films of InxGa1–xAs were deposited on GaAs (100) 
using a РМ1-60/1-02-02 IT magnetron in an argon 
atmosphere at a pressure of 8 Pa. The distance 
from the target to the substrate was 100  mm, 
the power of target sputtering was 1.8  W/cm2. 
The duration of deposition was 60 minutes for 
all samples, and the temperature of the substrate 

varied from 400 to 600 °C. All thin film samples 
were 0.42 μm thick.

Micrographs of  the surface and the 
composition were analysed using a scanning 
electron microscope MIRA3-LMH with a 
AZtecEnergy Standard/X-max20(standard) system 
that determines the elemental composition. 
The thickness of the layer was determined 
by micrographs of cleavages using contrast 
topography (SE detector). Structural properties 
were studied using Raman scattering on an inVia 
Raman Microscope (Renishaw) spectrometer 
with a laser wavelength of 514  nm at a room 
temperature. The surface morphology of thin 
films was studied on a Ntegra Aura atomic force 
microscope (AFM).

3. Results and discussion 
Figs. 1 and 2 show SEM images of the surface 

of InxGa1–xAs thin films on GaAs grown at a 
temperature of the substrate 400 and 600  °C. 
The presented images show that the surface of 
both films consists of grains that become faceted 
when the substrate temperature increases up 
to 600  °C. There were also microdrops on the 
surface of all samples of thin films (Fig. 1b). The 
size of the microdrops was not more than 2 μm, 
and their density was approximately 0.06 μm–2 
for thin films obtained at 400  °C. There were 
almost no microdrops on thin films obtained 
at 500 and 600 °C. According to the presented 
results, a non-classical mechanism of crystal 
growth was observed for thin films obtained at 
400 °C, which means that oriented attachment of 
small crystal grains occurred in the surface of a 
larger grain [15–16]. The surface of the films was 
very rough, and there were grains with the size of 
260 μm that were not faceted and had interfaces 
that were not clearly visible. When the substrate 
temperature increased up to 500 °C, there were 
a greater number of larger grains (up to 320 μm) 
with a poorly visible faceting. There were a great 
number of homogeneous multifaceted grains on 
the surface of a film grown at 600 °C. These grains 
were no more than 560 μm in size. It is obvious 
that the structural properties of films increase 
with the growth of the size of grains.

Energy dispersive analysis showed that 
the composition of the films grown at 400 and 
500  °C is similar to that of In0.32Ga0.68As, while 
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the composition of the film grown at 600 °C had 
a greater content of indium, In0.43Ga0.57As. This 
can probably be explained by the fact that the 
content of indium in a thin film decreased due to 
the segregation of indium at a lower temperature 
of a substrate. 

To study the surface of thin films more 
thoroughly, we performed an AFM study of the 

surface morphology (Fig. 3) and determined root-
mean-square roughness (RMS) of the surface. It 
was shown that when the substrate temperatures 
increased from 400 to 600 °C, RMS of thin films 
decreased from 32.62 to 26.75 μm, respectively.

The effect of the substrate temperature on 
the structural properties of InxGa1–xAs thin films 
was also studied by Raman spectra (Fig. 4). Two 

a                                                                                                  b
Fig. 1. SEM image of the surface of a thin InxGa1–xAs film on a GaAs substrate grown by magnetron sputtering 
at a temperature of 400 °C in the secondary electron detection mode at 10 kV, 64 kV (a), and 20 kV (b)

a                                                                                                  b
Fig. 2. SEM image of the surface (a) and cleavage (b) of a thin InxGa1–xAs film on a GaAs substrate grown by 
magnetron sputtering at a temperature of 600 °C
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high-intensity transverse (TO) phonon modes 
related to InAs and GaAs can be identified on 
the spectra in the frequency intervals of 219–
223 cm–1 and 245–257 cm–1 respectively. It should 
be noted that in case of the film grown at 400 °C, 
we observed a longitudinal (LO) optical mode 
of InAs on the spectra located at the frequency 
of 223 cm–1 as well as a low–intensity GaAs (LO) 
mode of  287 cm–1. The region in the range of 110– 
130 cm–1 can be associated with the presence of 
microdrops on the surface of films. According to 
the rules of selection, both LO and TO phonon 
modes must be allowed on Raman spectra for 
a perfect crystal [17]. The thin films grown at 
500 and 600 °C obviously have the most perfect 
structure as InAs (TO) and GaAs (TO) modes are 
dominant in their spectra. A displacement in the 
position of an InAs (TO) phonon mode regarding 
the position of the frequency of an InAs (TO) 
mode for the voluminous InAs [14] (221  cm–1) 
for 2 cm–1 was observed only for the films grown 
at 400 and 500 °C, which is typical for thin films 
with a decreased content of In [1821].

4. Conclusions
Thus, we grew InxGa1–xAs thin films on a 

GaAs substrate using magnetron sputtering. 
Using scanning electron microscopy and energy 
dispersion analysis, it was shown that InxGa1–xAs 
thin films obtained at the substrate temperature 
of 600 °C had the most similar composition to 
that of a sputtered target. The comparison of 
SEM images of the surface of InxGa1–xAs thin films 
on GaAs showed that the substrate temperature 

had a great effect on the surface morphology and 
structure of a film. The results of the study of 
Raman scattering spectra showed that InxGa1–xAs 
thin films obtained at the substrate temperature 
of 600  °C had the best structural properties. 
The presented experimental data showed that 
magnetron sputtering is a promising method that 
can be used for growing InxGa1–xAs thin films on 
GaAs.
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