УДК 621.315.592:531.992.2

ВЫСОКОСИММЕТРИЧНЫЕ КУБИЧЕСКИЕ МОДИФИКАЦИИ In₂Se₃ И Ga₂Se₃, ПОЛУЧЕННЫЕ ПРИ ВЗАИМОДЕЙСТВИИ ПОДЛОЖЕК InAs И GaAs С СЕЛЕНОМ

© 2012 А. В. Буданов¹, Е. А. Татохин¹, В. Д. Стрыгин¹, Е. В. Руднев²

¹ Воронежский государственный университет инженерных технологий, пр. Революции 19, 394036 Воронеж, Россия ² Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия

Аннотация. Методами электронографии, сканирующей электронной микроскопии и рентгеноспектрального микроанализа исследованы модификации Ga₂Se₃ и In₂Se₃, полученные методом гетеровалентного замещения в процессе термического отжига монокристаллических подложек арсенидов галлия и индия в парах селена в квазизамкнутом объеме. Впервые было обнаружено существование кубических фаз In₂Se₃ ($a_0 = 1,1243$ нм и $a_0 = 1,6890$ нм) и Ga₂Se₃ ($a_0 = 1,0893$ нм и $a_0 = 1,6293$ нм).

Ключевые слова: высокосимметричные кубические модификации, сканирующая электронная микроскопия, рентгеноспектральный микроанализ.

введение

Двойные дефектные полновалентные полупроводники, кристаллизующиеся в алмазоподобной структуре и относящиеся к классу соединений $A^{III}_{2}B^{VI}_{3}$, обладают рядом уникальных свойств, таких как большая ширина запрещенной зоны (от 1,0 до 4,1 эВ), малая теплопроводность, низкая подвижность носителей тока и, как следствие, невысокая электропроводность, а также слабая зависимость их физических свойств от концентрации примеси, что делает перспективным их использование в микро- и оптоэлектронике [1—3]. В последнее десятилетие особое значение эти соединения приобрели, как пассивирующие и изолирующие покрытия для полупроводников $A^{III}B^{V}$ [4—7].

В работах [8, 9] было предложено получать слои In_2Se_3 и Ga_2Se_3 методом гетеровалентного замещения (ГВЗ) атомов мышьяка на атомы селена при отжиге монокристаллических подложек из арсенида индия и арсенида галлия в парах селена. В результате эндотаксиального процесса ГВЗ на поверхности подложек формировались слои In_2Se_3 и Ga_2Se_3 со структурой сфалерита со стохастическим распределением стехиометрических вакансий.

Существование кубической модификации Ga_2Se_3 с дефектной неупорядоченной структурой сфалерита ($a_0 = 0,5429$ нм) является известным фактом [1, 2, 10]. Однако в работе [11] было по-

казано, что при формировании слоев Ga₂Se₃ методом ГВЗ на подложках из GaAs период кристаллической решетки оказывался несколько большим, чем у объемных образцов, описанных в литературе. В то же время в отношении In₂Se₃ считалось, что он не может кристаллизоваться в структуре сфалерита или вюрцита с катионными вакансиями из-за малых размеров тетраэдрических пустот, в которых не могут разместиться все атомы In, и что это соединение должно иметь низкосимметричную структуру [12]. Однако в работе [8] было показано, что особенность реакции ГВЗ, когда формирование второй фазы происходит на полярных плоскостях, непосредственно в матрице подложки ионноковалентного кристалла InAs со значительной долей ионности [1], позволяет получать высокосимметричные кубические модификации In₂Se₃, не характерные для объемных образцов. Кроме того, именно ориентирующим влиянием полярных плоскостей подложек из арсенида галлия можно объяснить и тот факт, что период кристаллической решетки слоев Ga₂Se₃, полученных в работе [11], оказывался несколько большим, чем период такой же решетки в объемных образцах.

Целью данной работы является синтез и исследование новых кристаллических модификаций соединений In₂Se₃ и Ga₂Se₃, полученных при отжиге монокристаллических подложек из InAs и GaAs в парах селена.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данной работе слои In₂Se₃ и Ga₂Se₃ формировались на монокристаллических подложках InAs (111), InAs (100), GaAs (111) и GaAs (100) при отжиге в парах селена. Анализ элементного состава проводился методом рентгеноспектрального микроанализа (РСМА) с точностью до 0,2 вес. % на энергодисперсионных спектрометрах JXA-840 с приставкой Link AN 10000 и Jeol JSM 6380 LV с приставкой INCA-250. Фазовый анализ полученных гетероструктур проводился методом электронографии на просвет и на отражение в просвечивающем электронном микроскопе Н-800. Фотометрирование электронограмм проводилось с использованием микрофотометра МФ-4. Анализ морфологии поверхности полученных образцов и их поперечных сколов проводился методом сканирующей электронной микроскопии на приборах JXM-840 и JSM 6380 LV.

Перед проведением процесса ГВЗ монокристаллические подложки подвергались отмывке и химикодинамическому полированию по технологии, изложенной в работах [8, 9]. Процесс термического отжига подложек в парах селена проводился в реакционной камере типа квазизамкнутого объема, конструкция которой описана в работах [8, 9, 13].

Для подложек из арсенида индия технологические режимы процесса были следующие: давление паров селена над образцами составляло $p_{\rm Se} = 1,3$ Па (температура источника селена при этом поддерживалась равной 513 К); температура подложки ($T_{\rm n}$) варьировалась в диапазоне (630÷710) К. Было установлено, что на изображениях поперечных сколов гетеросистем, сформированных на подложках InAs с ориентацией (100) и (111) в интервале температур подложки $T_n = (630 \div 670)$ К за время $t = (10 \div 15)$ мин, граница раздела слой подложка не наблюдалась. Тем не менее, по данным РСМА на поверхности InAs присутствовала вторая фаза со стехиометрией In₂Se₃.

Фазовый анализ, проведенный по электронограммам (рис. 1 *а* и *б*) пленок In_2Se_3 , сформированных в этом режиме на подложках InAs (111), показал, что они имеют кубическую кристаллическую решетку, период которой составляет $a_0 = 1,1243$ нм (табл. 1). Причем, в случае монокристаллических слоев (рис. 1 *а*) обнаруживается, что направление роста пленки соответствует ориентации подложки. В то же время на подложках InAs (100) в этом же температурном интервале формируются слои с такой же кристаллической структурой, но сильным двойникованием в плоскости (100), возникающим в процессе роста пленки (рис. 1 *в*). Такая кристаллическая структура In_2Se_3 ранее никем не наблюдалась.

Исследования поперечных сколов образцов, полученных при $T_{\pi} = (670 \div 710)$ К за время $t \sim 15$ мин, показали, что на поверхности InAs (100) образуются слои In₂Se₃ (по данным PCMA) толщиной ~ 1 мкм.

На подложках InAs (111) в этих условиях формируются слои толщиной ~ 0,7 мкм. Электронограммы (рис. 2 a—e) от этих образцов свидетельствовали о том, что формировались как монокристаллические пленки, дающие при дифракции

Рис. 1. Электронограммы от гетероструктур In_2Se_3 — InAs (111) (*а* и б) и In_2Se_3 — InAs (100) (*в*), полученных при $T_n = (630 \div 670)$ К, $p_{Se} = 1,3$ Па

d_{hkl} , нм	<i>I</i> / <i>I</i> ₀ , %	hkl	
0,6469	20	111	
0,3970	40	220	
0,3383	63	311	
0,3238	27	222	
0,2165	80	511	
0,2082	18	520	
0,1988	100	440	
0,1715	55	533	
0,1695	18	622	
0,1359	5	820	
0,1328	3	822	
0,1230	4	842	
0,1151	4	844	
0,1083	5	1022	
0,0915	2	1222	

Таблица 1. Значения межплоскостных расстояний (d_{hkl}) для In₂Se₃, полученного на поверхности подложек InAs (111) при их отжиге ($T_n = (630 \div 670)$ K) в парах селена (дифракция на просвет)

электронов системы рефлексов, отвечающих направлению слоя <111> (рис. 2 δ), так и поликристаллические слои (рис. 2 s). Фазовый анализ сформированных слоев, проведенный по электронограммам, показал, что пленки имеют кубическую кристаллическую модификацию, период которой составляет $a_0 = 1,6890$ нм (табл. 2). Такая структура для соединения In₂Se₃ ранее не наблюдалась.

На поверхностях GaAs (111) и GaAs (100), обработанных в K3O при температуре подложки $T_n = 773$ К и давлении паров селена $p_{Se} = 4,2$ Па и $p_{Se} = 42$ Па (температура источника селена при этом составляла 553 К и 613 К соответственно), элементный состав кристаллизующихся пленок по данным РСМА соответствовал стехиометрии соединения Ga₂Se₃.

При $T_n = 773$ К и $p_{Se} = 42$ Па за время t = 20 мин на поверхности GaAs (111) и GaAs (100) формируются слои Ga₂Se₃ с кубической кристаллической решеткой, период которой $a_0 = 1,0893$ нм (табл. 3). За такое же время при $T_n = 773$ К и $p_{Se} = 412$ Па на подложках GaAs (111) и GaAs (100) формировались пленки Ga₂Se₃, имеющие кубическую кристалли-

Рис. 2. Электронограммы гетероструктур In_2Se_3 — InAs (100) (*a*) и In_2Se_3 — InAs (111) (б и *в*), полученных при $T_n = (630 \div 670)$ К, $p_{Se} = 1,3$ Па

Таблица 2. Значение межплоскостных расстояний
(d_{hkl}) для In ₂ Se ₃ , полученного на поверхности подложек
InAs (111) при отжиге ($T_{\pi} = (670 \div 710)$ K) в парах
селена (дифракция на просвет)

$d_{\scriptscriptstyle hkl}$, нм	I/I ₀ , %	hkl	
0,9728	2	111	
0,5957	40	220	
0,5080	4	311	
03768	3	420	
0,3249	100	511	
0,2982	4	440	
0,2848	15	531	
0,2812	10	600	
0,2542	7	622	
0,2260	8	642	
0,2195	12	731	
0,2044	7	820	
0,1992	85	822	
0,1701	30	933	
0,1479	4	955	
0,1373	3	1064	
0,1201	2	1086	

ческую модификацию с параметром решетки $a_0 = 1,6293$ нм (табл. 4). Следует отметить, что Ga₂Se₃ с такими кристаллическими решетками получен впервые.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные в работе кристаллические модификации In₂Se₃ и Ga₂Se₃ по характеру последовательности межплоскостных расстояний и распределению интенсивностей рефлексов (табл. 1-4), на наш взгляд, идентичны известным из литературы дефектным структурам с упорядоченными вакансиями, а именно, β -In₂S₃ ($a_0 = 1,0734$ нм) [14] и In_2Te_3 ($a_0 = 1,8486$ нм) [15]. Кроме того, обнаруженная в работе модификация In_2Se_3 ($a_0 = 1,1243$ нм) имеет период идентичности, удвоенный от параметра решетки In₂Se₃ с дефектной неупорядоченной структурой сфалерита ($a_0 = 0,56$ нм), описанной в работе [8]. То же справедливо и в отношении модификации Ga₂Se₃ ($a_0 = 1,0893$ нм), для которой период идентичности удвоен от параметра решетки неупорядоченной сфалеритной фазы Ga₂Se₃ $(a_0 = 0,5429 \text{ нм})$ [10]. На наш взгляд, это также является косвенным подтверждением факта упорядочения вакансий в этих кристаллических структурах, поскольку для известной дефектной упорядоченной структуры на базе β-In₂S₃ типа шпинели период идентичности удвоен от параметра решетки неупорядоченной сфалеритной фазы того

Таблица 3. Значение межплоскостных расстояний (d_{hkl}) для Ga₂Se₃, полученного на поверхности подложек GaAs (111) и GaAs (100) при отжиге ($T_n = 773$ K) в парах селена ($p_{Se} = 4,2$ Па) (дифракция на отражение)

$d_{\scriptscriptstyle hkl}$, нм	I/I ₀ , %	hkl	$d_{\scriptscriptstyle hkl}$, нм	<i>I</i> / <i>I</i> ₀ , %	hkl
0,6279	30	111	0,1984	7	521
0,5430	7	200	0,1925	100	440
0,4440	7	211	0,1869	8	530
0,3845	40	220	0,1838	34	531
0,3277	67	311	0,1815	5	600
0,3135	25	222	0,1786	5	610
0,2724	50	400	0,1770	4	611
0,2638	10	410	0,1720	20	620
0,2491	20	331	0,1682	8	541
0,2374	8	421	0,1665	55	533
0,2224	37	422	0,1641	18	622
0,2099	75	511	0,1568	47	444
0,2025	18	520	0,1530	17	551

$d_{\scriptscriptstyle hkl}$, нм	<i>I</i> / <i>I</i> ₀ , %	hkl	$d_{\scriptscriptstyle hkl}$, нм	<i>I</i> / <i>I</i> ₀ , %	hkl
0,9404	3	111	0,1424	2	955
0,5759	4	220	0,1377	2	1062
0,4911	4	311	0,1358	7	1200
0,3643	3	420	0,1321	3	1064
0,3135	100	511	0,1308	4	975
0,2879	4	440	0,1273	3	886
0,2754	10	531	0,1246	17	993
0,2715	7	600	0,1228	2	1244
0,2456	10	622	0,1218	2	977
0,2177	8	642	0,1152	2	1086
0,2121	9	731	0,1144	2	1191
0,1976	7	820	0,1119	2	1282
0,1919	100	822	0,1108	15	1266
0,1822	2	840	0,1081	3	1195
0,1788	4	753	0,1060	2	10106
0,1637	30	933	0,1046	8	999
0,1597	3	862	0,1034	3	12102
0,1568	3	666	0,1029	2	1197
0,1512	2	864	0,1011	2	1480

Таблица 4. Значение межплоскостных расстояний (d_{hkl}) для Ga₂Se₃, полученного на поверхности подложек GaAs (111) и GaAs (100) при отжиге ($T_n = 773$ K) в парах селена ($p_{Se} = 42$ Па) (дифракция на отражение)

же соединения ($a_0 = 0,5358$ нм) [16]. В свою очередь модификации In₂Se₃ ($a_0 = 1,6890$ нм) и Ga₂Se₃ ($a_0 = 1,6293$ нм) имеют периоды идентичности, утроенные от соответствующих сфалеритных структур с неупорядоченными вакансиями [8—10]. Данный факт позволил нам предположить, что рассматриваемые кристаллические модификации аналогичны структуре In₂Te₃ ($a_0 = 1,8486$ нм) [15], которая имеет период идентичности, утроенный от параметра решетки неупорядоченной сфалеритной фазы того же соединения ($a_0 = 0,6163$ нм) [1, 2], и интерпретируется как дефектный сфалерит с упорядоченными стехиометрическими вакансиями.

ЗАКЛЮЧЕНИЕ

Полученные в данной работе кристаллические кубические модификации In_2Se_3 и Ga_2Se_3 ранее в литературе не описывались. На наш взгляд, фор-

мирование таких фаз возможно только на полярных плоскостях (111) и (100) соединений, кристаллизующихся в структуре типа цинковой обманки. По всей видимости, это объясняется особенностью упаковки атомов в таких структурах и высокой долей ионности связей. Именно ориентирующее влияние полярных плоскостей InAs и GaAs позволяет сохранять в слоях In_2Se_3 и Ga₂Se₃ кристаллические структуры с большими периодами идентичности. Поэтому такие кристаллические модификации In_2Se_3 и Ga₂Se₃ могут существовать только в виде тонких пленок.

Работа выполнена в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2013 годы» по гос. контракту № 16.516.11.6098 от 08.07.2011. ВЫСОКОСИММЕТРИЧНЫЕ КУБИЧЕСКИЕ МОДИФИКАЦИИ In₂Se₃ И Ga₂Se₃, ПОЛУЧЕННЫЕ...

СПИСОК ЛИТЕРАТУРЫ

1. Горюнова Н. А. Сложные алмазоподобные полупроводники. М.: Сов. Радио, 1968. 222 с.

2. Абрикосов Н. Г., Банкина В. Ф., Порецкая Л. В. и др. Полупроводниковые халькогениды и сплавы на их основе. М.: Наука, 1975. 220 с.

3. *Угай Я. А.* Введение в химию полупроводников. М.: Высш. Шк. 1975, 302 с.

4. Сысоев Б. И., Антюшин В. Ф., Стрыгин В. Д., Моргунов В. Н. // ФТП. 1986. Т. 56. № 5. С. 913—915.

5. *Postnikov V. S., Sysoev B. I., Budanov A.V., et al.* // Phys. Stat. Sol. 1988. (a). V. 109. P. 467–483.

6. Сысоев Б. И., Безрядин Н. Н., Котов Г. И. и др. // ФТП. 1993. Т. 27. В. 1. С. 131—135.

7. Бессолов В. Н., Лебедев М. В. // ФТП. 1998. Т. 32. № 11. С. 1281—1299.

8. *Безрядин Н. Н., Буданов А. В., Агапов Б. Л., и др.* // Неорг. Материалы. 2000. Т. 36. № 9. С. 1037—1041.

op. // Newton Square, PA 19073, USA, card № 5—731.

Буданов Александр Владимирович — доцент кафедры физики, Воронежский государственный университет инженерных технологий; тел.: (903) 8527719, e-mail: budanova9@gmail.com

Татохин Евгений Анатольевич — доцент кафедры физики, Воронежский государственный университет инженерных технологий; e-mail: phys@vgta.vrn.ru

Стрыгин Владимир Дмитриевич — профессор кафедры физики, Воронежский государственный университет инженерных технологий; тел.: (909) 2106999, e-mail: phys@vgta.vrn.ru

Руднев Евгений Владимирович — доцент кафедры физики твердого тела и наноструктур, Воронежский государственный университет, тел.: (951) 8764844, e-mail: rudneff@mail.ru

Budanov Aleksandr V. — associate professor of department of Physics, Voronezh State University of Engineering Technology; tel.: (903) 8527719, e-mail: budanova9@gmail. com

9. Сысоев Б. И., Стрыгин В. Д., Чурсина Е. И. и др. // Неорг. материалы. 1991. Т. 27. № 8. С. 1583—1585.

10. JCPDS-ICDD, 1995, PDF-2 Sets 1-45 database,

11. Агапов Б. Л., Безрядин Н. Н., Сыноров Ю. В. и

12. Hahn H., Klinger W. // Zs. Anerg. Chem. 1949.

13. Безрядин Н. Н., Буданов А. В., Татохин Е. А. и

14. JCPDS-ICDD, 1995, PDF-2 Sets 1-45 database,

15. JCPDS-ICDD, 1995, PDF-2 Sets 1-45 database,

16. JCPDS-ICDD, 1995, PDF-2 Sets 1-45 database,

др. // Поверхность. Рентгеновские, синхронные и ней-

Newton Square, PA 19073, USA, card № 5-724.

тронные исследования. 2007. № 12. С. 62-65.

Newton Square, PA 19073, USA, card № 32-456.

Newton Square, PA 19073, USA, card № 32-1488.

№ 97. P. 2606—2618.

др. // ПТЭ. 1998. № 5. С. 1—3.

Tatokhin Evgeniy A. — associate professor of department of Physics, Voronezh State University of Engineering Technology; e-mail: phys@vgta.vrn.ru

Strygin Vladimir D. — professor of department of Physics, Voronezh State University of Engineering Technology; tel.: (909) 2106999, e-mail: phys@vgta.vrn.ru

Rudnev Evgeniy V. — associate professor of department of Solid State Physics and Nanostructures, Voronezh State University; tel.: (951) 8764844, e-mail: rudneff@mail.ru