УДК 539.21

ВОДОРОДОПРОНИЦАЕМОСТЬ ФОЛЬГИ СПЛАВОВ Pd — Cu, Pd — Ru И Pd — In — Ru, ПОЛУЧЕННОЙ МАГНЕТРОННЫМ РАСПЫЛЕНИЕМ

© 2012 В. М. Иевлев^{1,2}, Н. Р. Рошан², Е. К. Белоногов^{1,3}, С. Б. Кущев³, С. В. Канныкин¹, А. А. Максименко¹, А. И. Донцов¹, Ю. И. Глазунова¹

¹Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия ² Учреждение РАН ИМЕТ им. А. А. Байкова, Ленинский просп., 49, 119991 Москва, Россия ³Воронежский государственный технический университет, Московский просп., 14, 394026 Воронеж, Россия

Поступила в редакцию 07.11.2012 г.

Аннотация. Методом магнетронного распыления на поверхности гетероструктуры SiO₂/Si при 300 К и 700 К выращены тонкие (до 7 мкм) образцы мембранной фольги сплавов Pd — Cu, Pd — Ru и Pd — In — Ru. Температурная зависимость водородопроницаемости исходной фольги исследованных сплавов имеет необратимый характер вследствие структурных изменений, происходящих при нагреве; достигнутый уровень водородопроницаемости остается практически неизменным при охлаждении. Водородопроницаемость конденсированной фольги (КФ) сплава Pd — Cu (β -фаза) почти на порядок величины больше, чем у КФ Pd (эффект менее плотной кристаллической решетки), в 5—7 раз больше, чем для КФ сплава Pd-Ru и фольги сплава Pd-Cu, полученной прокаткой.

Ключевые слова: мембранная фольга, магнетронное распыление, рентгеновская дифрактометрия, водородопроницаемость.

ВВЕДЕНИЕ

Основные подходы к повышению эффективности элементов глубокой очистки водорода базируются на поиске соответствующего состава сплавов на основе Pd, обеспечивающих высокую водородопроницаемость, селективность, и на уменьшении толщины селективного слоя, поскольку от нее напрямую зависит производительность. К мембранным сплавам (МС) предъявляют ряд требований: низкая склонность к дилатации при насыщении водородом, высокие пластичность и прочность, коррозионная стойкость при T = 570— 970 К [1-3]. Показано, что в разной мере этим требованиям удовлетворяет широкий набор мембранных сплавов [4], в частности, Pd — Cu, Pd -Ru, Pd — In — Ru, Pd — Ү. Согласно диаграмме состояния [5] в сплаве (масс. %) Pd — 40 %Cu происходит упорядочение твердого раствора с образованием β -фазы (решетка CsCl, a = 0,2966 нм), в котором в связи с менее плотной кристаллической решеткой по сравнению с ГЦК решеткой α-афазы (а = 0,3767 нм) предполагается высокая водородопроницаемость. Для сплава Pd — 6 %Ru характерно сочетание свойств прочности, пластичности и коррозионной стойкости. В связи с технологическими сложностями получения фольги МС толщиной менее 30 мкм методом прокатки [4] в настоящей работе сделана попытка создания компактной ультратонкой (1—7 мкм) фольги МС методом магнетронного распыления (МР) мишеней из перечисленных сплавов, поскольку этот метод наиболее полно воспроизводит в конденсате элементный состав исходного сплава.

МЕТОДИКА ЭКСПЕРИМЕНТА

Конденсаты толщиной до 7 мкм получали методом МР мишеней состава: Pd — 6 % Ru, Pd — 40 % Cu и Pd — 6 % In — 0,5 %Ru (в масс. %) на модернизированной установке УВН-75М при давление рабочего газа (Ar) 10^{-1} Па, (исходный вакуум рабочей камере 5×10^{-4} Па) В интервале мощности 120—350 Вт плазменного разряда скорость конденсации ($\dot{\omega}_{\kappa}$) была от 0,4 до 2 нм/с соответственно. Выбор температур подложки (T_{II}) обусловлен режимами предстоящих испытаний и возможностью определить влияние зеренной структуры на величину удельной водородопроницаемости фольги. Конденсацию проводили на не подогреваемую подложку ($T_{\rm n}$ от 300 К) и при $T_{\rm n}$ = 700 К, в качестве подложек использовали термически оксидирован-

ные полированные пластины монокристаллического кремния с толщиной оксида до 600 нм.

Фазовый состав и текстуру освобожденной от подложки фольги исследовали методом рентгеновской дифрактометрии. Исследование водородопроницаемости образцов тонкой фольги в интервале температур 300—640 К было проведено на созданном лабораторном стенде.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены дифрактограммы образцов, сконденсированных при $T_{\pi} = 300$ (*a*) и 700 К (δ), из которых следует, что в первом случае формируется однофазная фольга упорядоченного твердого раствора (β -фаза), во втором — двухфазная (β и α -фазы) с преобладанием первой фазы. Фазовый состав фольги сохраняется при пятикратном изменении скорости конденсации. Сопоставление результатов рентгеновской дифрактометрии приповерхностной области фольги и области межфазной границы с подложкой показало, что по мере роста происходило усиление аксиальной текстуры <111> α -фазы и <112> β -фаза. Это отражает градиентную зеренную структуру конденсированной фольги с более высокой дисперсностью в области межфазной границы.

На рис. 2 приведены рентгеновские дифрактограммы для фольги (~ 4 мкм) сплава Pd — Ru, сконденсированной при 300 и 700 К. В обоих случаях и при изменении скорости конденсации формируется однофазный твердый раствор с большой долей аксиальной текстуры роста <111>, свой-

Рис. 1. Рентгеновские дифрактограммы фольги сплава Pd — Cu, конденсированной на поверхность гетероструктуры SiO₂/Si: $a - T_{II} = 300$ K, $\dot{\omega}_{\kappa} = 2,06$ нм/с; $\delta - T_{II} = 700$ K, $\dot{\omega}_{\kappa} = 1,82$ нм/с

Рис. 2. Рентгеновские дифрактограммы фольги сплава Pd — Ru ($\acute{\omega_{\kappa}}$ = 1,4 нм/с): *a* — T_{II} = 300 K; $\acute{\sigma}$ — T_{II} = 700 K

Рис. 3. Рентгеновские дифрактограммы фольги сплава Pd-In-Ru, сконденсированной с $\dot{\omega}_{\kappa} = 1,2$ нм/с на поверхность SiO₂/Si при $T_{II} = 300$ K (*a*) и 700 K (*б*)

ственной конденсации с ГЦК решеткой [6], причем при $T_n = 700$ К (рис. 2 б) текстура менее выражена. Формирование текстуры обусловлено реализацией принципа эволюционной селекции [7]

На рис. 3 приведены фрагменты дифрактограмм фольги сплава Pd — In — Ru (~4 мкм). При обеих температурах формируются твердый раствор с ГЦК решеткой.

Как и для системы Pd — Ru характерно ослабление текстуры <111> с увеличением температуры подложки. Элементный состав фольги соответствует составу мишени. Поскольку параметр кристаллической решетки (a = 0,3882 нм) несколько меньше ожидаемого для состава Pd — 6 % In —

Рис. 4. Температурная зависимость водородопроницаемости фольги Pd (~ 4 мкм, T_{II} = 300 K) и сплава Pd-Cu (~ 4 мкм); T_{II} = 300 K (1, 2); 450 K (3); 550 K (4); 850 K (5, 6); Pd [9] (7).1, 3, 4, 5, 7 — нагрев, 2, 6 — охлаждение

0,5 % Ru (*a* = 0,3903 нм), можно полагать, что часть примеси сегрегированна по границам зерен.

На рис. 4 приведена температурная зависимость водородопроницаемости фольги сплава Pd-Cu, полученной при разных T_п. Для фольги, сконденсированной при Т_п до 450 К, характерна немонотонная зависимость, свойственная образцам с высокодисперсной зеренной структурой и обусловленная сегрегацией водорода на межзеренных границах [8]. При охлаждении образца до 300 К достигнутый уровень водородопроницаемости сохраняется, а при последующих измерениях происходило только слабое монотонное изменение водородопроницаемости с температурой. Следовательно, в процессе первого нагрева фольги до 640 К происходит рекристаллизация высоко дисперсной структуры. Для образцов фольги, полученных при Т_п больше 450 К, уровень водородопроницаемости во время нагрева и охлаждения оставался практически одинаковым, поскольку дисперсность поликристаллической структуры в процессе испытания не изменяется. Сопоставление полученных значений удельной водородопроницаемости конденсированной фольги твердого раствора с упорядоченной структурой (β-фазы) и установленных ранее значений для фольги Pd [9] позволяет сделать вывод о почти десятикратном ее увеличении вследствие образования менее плотной решетки тип CsCl.

Рис. 5 характеризует зависимость водородопроницаемости фольги сплава Pd — Cu от толщины. Фольга толщиной 1 мкм имеет меньшую водородопроницаемость вследствие большей дисперсности, обусловленной тем, что только с этой толщины начинается селективный рост зерен и формирование текстуры $<110>\beta$. С увеличением толщины до 4 мкм происходит увеличение водородопроницаемости от ~16 до $\sim26\times10^{-3}$ см³·мм·см⁻²·c⁻¹· кПа^{-0.5} вследствие увеличения среднего размера зерен (конденсационно-стимулированная рекристаллизация и ростовая селекция). Для фольги толщиной 4 и 7 мкм характерны практически одинаковая зависимость и уровень водородопроницаемости, поскольку в этом интервале толщин не происходит существенного изменения дисперсности структуры вследствие стабилизации латерального размера растущих зерен.

На рис. 6 приведена температурная зависимость водородопроницаемости образцов фольги Pd — Ru, полученных при $T_{\pi} = 300$ К и 700 К. Немотонная зависимсоть для фольги, полученной на ненагретой подложке, отражает структурные изменения связанные с рекристаллизацией при нагреве выше 450 К. Для фольги Pd — Ru не наблюдается спад водородопроницаемости в области 300-400 К, свойственный фольге Pd и Pd — Си. По-видимому, адсорбция атомов Ru на межзеренных границах препятствует сегрегации на них водорода. При охлаждении образца до 350 К достигнутый уровень водородопроницаемости снижается в 1,5 раза. Водородопроницаемость фольги, полученой при $T_{\rm n} = 700$ К, при нагреве монотонно увеличивается в 1,5 раза и сохраняет достигнутый уровень при охлаждении. Из сопоставления зависимостей на рис. 6 и рис. 4 следует, что водородопроницаемость фольги сплава Pd — Cu (β-фаза) в 6—7 раз больше, чем фольги сплава Pd — Ru.

Рис. 7 характеризует изменение водородопроницаемости фольги сплава Pd — In — Ru. Как и для сплава Pd — Ru не происходит спад водородопроницаемости, ее величина для фольги, полученной при $\dot{\omega}_{\kappa} = 0.48$ нм·с⁻¹, в процессе нагрева монотонно увеличивается с 0,9 до $1,5 \times 10^{-3}$ см³·мм·см⁻²·с⁻¹·кПа^{-0.5} и сохраняет достигнутый уровень при охлаждении. Для фольги, полученной с большей скоростью конденсации, свойственна большая водородопроницаемость, что можно объяснить меньшей дисперсностью зерен. Водородопроницаемость фольги сплава Pd-In-Ru незначительно меньше, чем фольги сплава Pd-Ru.

Из таблицы следует общая закономерность — уменьшение водородопроницаемости от Pd — Cu до Pd — In — Ru. Фольги, изготовленные методом

Рис. 5. Зависимость водородопроницаемости фольги сплава Pd — Cu, (*T*_П = 300 K) толщины: 1 (*1*); 2 (*2*); 4 (*3*); 7 мкм (*4*)

Рис. 6. Температурная зависимость водородопроницаемости фольги сплава Pd — Ru (~4 мкм), сконденсированной при $T_n = 300$ K (*кривые 1, 2*) и при $T_n = 700$ K (*кривые 3, 4*); *1, 3* — нагревание, *2, 4* — охлаждение

Рис. 7. Температурная зависимость водородопроницаемости фольги сплава **Pd-In-Ru (~4 мкм), сконденсиро**ванной при $T_n = 700$ К $\dot{\omega}_{\kappa} = 0,48$ нм с⁻¹ (*кривые 1, 2*) и при $T_n = 700$ К $\dot{\omega}_{\kappa} = 1,2$ нм с⁻¹ (*кривые 3, 4*); *1, 3* — нагревание, *2, 4* — охлаждение

В. М. ИЕВЛЕВ, Н. Р. РОШАН, Е. К. БЕЛОНОГОВ И ДР.

Таблица. Водородопроницаемость (p, ×10⁻³ см³·мм·см⁻²·с⁻¹·кПа^{-0.5}) фольги Pd и сплавов Pd — Cu, Pd — Ru, Pd — In — Ru, полученных при T_{II} = 300 К магнетронным распылением (4—5 мкм) и прокаткой (30—100 мкм).

Метод получения	Pd — Cu	Pd — Ru	Pd — In — Ru	Pd
MP	19,41	4,21	2,32	2,01
Прокатка [10, 11]	3,2	2,2	1,6	1,9

прокатки, имеют меньшую водородопроницаемость. Из сопоставления водородопроницаемости исследуемых образцов следует, что система Pd — Си, безусловно, обладает лучшими показателями, как мембранный функциональный материал.

выводы

Температурная зависимость водородопроницаемости исходной фольги исследованных сплавов имеет необратимый характер вследствие структурных изменений, происходящих при нагреве; достигнутый уровень остается практически неизменным при охлаждении. Для фольги сплава Pd — Cu (как и для фольги Pd), сконденсированной при T_{π} до 450 K, характерна немонотонность этой зависимости, проявляющаяся в спаде водородопроницаемости в области 450-500 К, обусловленном сегрегацией водорода в межзеренных границах. Водоропроницаемость фольги сплавов Pd — Ru и Pd — In — Ru увеличивается при нагреве и незначительно уменьшается при охлаждении. Отсутствие спада объясняется адсорбцией атомов Ru на межзеренных границах, препятствующей сегрегации на них водорода.

Удельная водородопроницаемость конденсированной фольги сплава Pd-Cu (β-фаза) примерно в 10 раз превышает водородопроницаемость конденсированной фольги Pd [9], в 4—5 раз — водородопроницаемость конденсированной фольги сплава Pd-Ru и в 6—7 раз — фольги сплава Pd-Cu, полученной прокаткой.

Работа выполнена в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2013 годы» (ГК №16.513.11.3150).

СПИСОК ЛИТЕРАТУРЫ

1. Словецкий Д. И., Чистов Е. М., Рошан Н. Р. // Международный научный журнал «Альтернативная энергетика и экология. 2004. № 1. С. 54—57.

2. Словецкий Д. И., Чистов Е. М. Мембранная очистка водорода в водородной энергетике // Труды Международного симпозиума по водородной энергетике. Москва. Изд-во МЭИ, 2005. С. 175—178.

3. *Савицкий Е. М, Полякова В. П., Рошан Н. Р.* Металловедение платиновых металлов. М.: Металлургия, 1975. 278 с.

4. *Бурханов Г. С., Н. Б. Горина, Бурханов Г. С. и др.* // Рос. хим. ж., (Ж. рос. хим. об-ва им. Д.И. Менделеева). 2006. L. № 4. С. 36—40.

5. Диаграммы состояния двойных металлических систем / под общей редакцией Лякишева. Т. 2. М.: Машиностроение, 1997. 1026 с.

6. *Иевлев В. М.* Тонкие пленки неорганических материалов: механизм роста и структура. Воронеж: ИПЦ ВГУ, 2008. 496 с.

Drift A. V. // Phil. Res. Rep. 1967. V. 22. P. 267—288.
Максимов Е. Г., Панкратов О. А. // Успехи физи-

ческих наук. 1975. Т. 116. Вып. 3. С. 385—412. 9. *Максименко А. А., Белоногов Е. К., Донцов А. И. //* НАНО-2011: IV Всерос. конф. по наноматериалам, 01—04 марта 2011 г., Москва: сб. материалов. 2011. С. 505.

10. Burkhanov G. S., Roshan N. R., Kolchugina N. B., et al. // J. Guandong Non-Ferrous Metals. 2005. V. 15. N_{2} 2—3. P. 409—413.

11. Рошан Н. Р., Мищенко А. П., Парфенова Н. И. и др. В сб.: Сплавы редких металлов с особыми физическими свойствами. Редкоземельные и благородные металлы. М.: Наука, 1983. С. 188—192.

Иевлев Валентин Михайлович — д. ф.-мат.н., профессор, академик РАН, Воронежский государственный университет; тел.: (473) 2208735, e-mail: rnileme@mail.ru

Рошан Наталия Робертовна — к.т.н., Институт металлургии и материаловедения им. А.А. Байкова РАН; тел.: (495) 1357385, e-mail: imet@ultra.imet.ac.ru

Ievlev Valentin M. — Academician of RAS, professor, Voronezh State University; tel.: (473) 2208735, e-mail: rnileme@mail.ru

Roshan Natalia R. — PhD (Eng.), A.A.Baikov Institute of Metallurgy and Materials Science, RAS; tel.: (495) 1357385, e-mail: imet@ultra.imet.ac.ru

Белоногов Евгений Константинович — д.ф.-мат.н., доцент, Воронежский государственный технический университет; тел.: (473) 2467633, e-mail: belonogov@ phis.vorstu.ru

Кущев Сергей Борисович — д.ф.-мат.н., профессор, Воронежский государственный технический университет; тел.: (473) 2467633, e-mail: kushev_sb@mail.ru

Канныкин Сергей Владимирович — к.ф.-мат.н., Воронежский государственный университет; тел.: (473) 2208735; e-mail: svkannykin@gmail.com

Максименко Александр Александрович — к.ф.-мат.н., Воронежский государственный университет; тел.: (473) 2208735; e-mail: maximencoalex@mail.ru

Донцов Алексей Игоревич — ассистент, Воронежский государственный университет; тел.: (473) 2208735; e-mail: DontAlex@mail.ru

Глазунова Юлия Игоревна — студент, Воронежский государственный университет; тел.: (473) 2208356, еmail: rnileme@mail.ru *Belonogov Evgeniy K.* — grand PhD (Phys.-Math.), associate professor, Voronezh State Technical University; tel.: (473) 2467633, e-mail: belonogov@phis.vorstu.ru

Kushev Sergey B. — grand PhD (Phys.-Math.), professor, Voronezh State Technical University; tel.: (473) 2467633, e-mail: kushev_sb@mail.ru

Kannikin Sergey V. — PhD (Phys.-Math.), Voronezh State University; tel.: (473) 2208735, e-mail: svkannykin@gmail.com

Maksimenko Alexander A. — PhD (Phys.-Math.), Voronezh State University; tel.: (473) 2208735; e-mail: maximencoalex@mail.ru

Dontsov A. I. — teacher of Department of Materials and Nanosystems, Voronezh State University; tel.: (473) 2208735; e-mail: DontAlex@mail.ru

Glazunova Yulia I. — student, Voronezh State University; tel.: (473) 2208356, e-mail: rnileme@mail.ru