АДАПТАЦИЯ МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ ФРАКТАЛЬНОГО АНАЛИЗА К ИССЛЕДОВАНИЮ АГРЕГИРОВАННЫХ ЭКОМИЧЕСКИХ ВРЕМЕННЫХ РЯДОВ ДАННЫХ СТРАХОВОЙ КОМПАНИИ!

Ковалева Ксения Александровна¹, канд. экон. наук, доц. Кумратова Альфира Менлигуловна¹, канд. экон. наук, доц. Чикатуева Любовь Анатольевна², д-р экон. наук, проф. Василенко Игорь Иванович¹, канд. с.-х. наук, доц.

Цель: в настоящей статье предлагается комплексный подход к прогнозированию рынка страховых услуг, базирующийся на совместном использовании как классической, так и новой «нелинейной» статистики. *Обсуждение*: предложенные и апробированные авторами методы представлены в виде многокритериальной (двукритериальной) математической модели для оценки трендоустойчивости временных рядов страхования. В качестве первого критерия авторами предложен показатель, отражающий глубину памяти временного ряда в виде нечеткого множества, полученный на базе R/S-анализа, второй критерий – показатель Херста. *Результаты*: применение двукритериального подхода к оценке трендоустойчивости временных рядов позволяет дифференцировать их по показателю трендоустойчивости и подобрать работающие прогнозные модели.

Ключевые слова: страховая компания, статистические показатели, предпрогнозный анализ, R/S-анализ, критерии риска.

DOI: 10.17308/meps.2020.11/2463

Введение

Актуальность данного исследования обусловлена государственной необходимостью создания благоприятных условий для динамичного развития рынка страховых услуг. Страхование, прежде всего, жизни и здоровья

¹ Кубанский государственный аграрный университет, ул. Калинина, 13, Краснодар, Россия, 350044; e-mail: kovaleva.k@edu.kubsau.ru

² Ростовский государственный экономический университет, филиал в г. Черкесске, ул. Красная, 3, Черкесск, Россия, 369000; e-mail: rseu.kchr@mail.ru

 $^{^{\}scriptscriptstyle 1}$ Исследование выполнено при финансовой поддержке РФФИ в рамках проекта 19-010-00415 A

граждан в современных условиях становится достаточно востребованной услугой. Фактически каждый банк пользуется услугами аффилированной страховой компании. Спрос страховых услуг, естественно, определяет предложение, причем маркетинговое разнообразие страховых продуктов позволяет клиенту подобрать продукт с индивидуальными условиями.

Условия сегодняшнего дня — наличие таких факторов, как недостаточно развитые рыночные отношения в сфере страховых услуг, невысокая компетентность кадрового состава, достаточно скупая база доступных статистических данных.

Экономический риск представляет базовое понятие в построении и динамике страхового рынка. Тотальный характер риска, его постоянно меняющиеся составляющие и соответственно динамика требуют постоянной корректировки и развития методов управления рисками в экономике в целом и в страховой деятельности в особенности. Именно неоднозначность проблем управления рисками в страховой деятельности обусловили обращение авторов к изучению этой актуальной темы.

«Структурированная» информация — это информация, полученная о временном ряде через анализ, обобщение, описание. Именно она позволяет аналитику разработать методы и обосновать подходы для получения наиболее точных прогнозных выводов [10]. В статье исследуются значения агрегированных данных временного ряда учета договоров на все виды страхования компании «СТЕРХ». Основной показатель деятельности страховой компании — количество застрахованных клиентов. Авторами исследованы как сами временные ряды (ВР), так и агрегированные ВР: общий ряд, отдельно ВР застрахованных мужчин и женщин. Отметим, что исследование усредненных (типичных) значений для прогнозных выводов не является результативным [1, 2]. Прогнозную информацию определяет, прежде всего, последовательность данных, которая позволяет выявить возможности появления следующего значения во времени.

Методология исследования

Использование методов классической статистики для получения предпрогнозной информации о ВР основывается на расчете таких показателей, как эксцесс, асимметрия и вариация. Эти три основных коэффициента дают многокритериальную оценку устойчивости динамики ВР [5, 6, 7]. Рассмотрим отдельно показатель эксцесса. Визуализация эмпирической функции распределения позволяет выделить три основных области: 1. [МХ-3СКО; МХ+3СКО]; 2. (МХ+3СКО); 3. (МХ+3СКО). Расчетные значения эксцесса на 2- и 3-м интервале позволят выявить наличие «тяжелого хвоста», и от этих числовых значений [8, 12] будут зависеть выбор прогнозной модели и надежность прогноза. Сравнительный анализ полученных характеристик и свойств прогнозируемости исходного временного ряда и его других формаций (приращение и агрегирование) представляет интерес для дальнейшего исследования.

Исходный временной ряд количества застрахованных лиц обозначим через u_i^k , где k=1 — значения ежедневных данных; k=2 — приращения ежедневных данных; k=3 — агрегированные еженедельные данные; k=4 — приращения агрегированных еженедельных данных и i=1,2,...,n (календарный отрезок времени за период с 03.11.2015 — 15.12.2019 гг.). Аналогично BP данных по количеству застрахованных мужчин и женщин обозначим v_i^k и w_i^k соответственно. Таким образом:

 $u_i^{\scriptscriptstyle 1}$ – ежедневные данные по всем застрахованным клиентам;

 $u_{_{i}}^{^{2}}$ – приращения ежедневных данных по всем застрахованным клиентам;

 $u_{i}^{_{3}}$ – агрегированные еженедельные данные всех застрахованных клиентов;

 u_{*}^{4} – приращения агрегированного еженедельного исходного ВР;

 v_{i}^{1} – ежедневные данные по застрахованным мужчинам;

 v_i^2 – приращения ежедневных данных по застрахованным мужчинам;

 $\overline{\mathcal{V}_{i}^{3}}$ – агрегированные еженедельные данные по застрахованным мужчинам;

 $v_{_{i}}^{^{4}}$ — приращения агрегированного недельного ВР застрахованных мужчин;

 w_{i}^{1} – ежедневные данные по застрахованным женщинам;

 w_{i}^{2} – приращения ежедневных данных по застрахованным женщинам;

 $\boldsymbol{W}_{\!\scriptscriptstyle i}^{\!\scriptscriptstyle 3}$ – агрегированные еженедельные данные по застрахованным женщинам;

 $w_{_{i}}^{^{4}}$ — приращения агрегированного недельного ВР застрахованных женщин.

Математическое ожидание, дисперсия или среднеквадратическое отклонение — два основных показателя риска, которые определены нобелевским лауреатом Г. Марковицем. Более поздние исследования подтверждают, что это же утверждение касается и коэффициентов асимметрии $A = \sigma^{-3} \sum_{s=1}^n (W_s - M)^3 P_s \ \, \text{и эксцесса} \,\, E = \sigma^{-4} \sum_{s=1}^n (W_s - M)^4 P_s \, , \, \text{где} \,\, P_s - \text{это вероятность}$ (относительная частота) значения случайной величины, равного W_s , $1 \leq s \leq n$.

Табл. 1 демонстрирует значения рисковых показателей для каждого отдельно исследуемого ВР: исходного ВР; ежедневного количества клиентов мужчин (женщин); рядов приращений.

Таблица 1 Рисковые статистические показатели по количеству заключенных договоров личного страхования для ежедневных временных рядов

Наименование временного ряда	ВР «Основной»	Приращения основного ВР	ВР «Мужчины»	Приращения ВР «Мужчины»	ВР «Женщины»	Приращения ВР «Женщины»
Обозначение ВР Статистические показатели	u_i^1	u_i^2	$oldsymbol{v}_i^1$	v_i^2	w_i^1	W_i^2
MX	13,8	-0,0013	3,7	0,01	10,1	0,001
DX	124,7	65,5	11,44	15,56	69,01	61,91
СКО	11,16	8,09	3,38	3,94	8,3	7,86
V	0,81	0,61	0,91	0,3	0,82	0,6
Α	0,72	-0,13	1	-0,007	0,76	-0,05
Е	3,05	3,82	4,02	4,32	3,11	3,96
E для X < (MX+3CKO)	0	0,51	0	0,54	0	0,45
E [MX-3CKO; MX+3CKO]	2,39	2,85	2,14	2,62	2,43	2,97
E для X > (MX+3CKO)	0,66	0,45	1,87	1,16	0,67	0,54

Исходя из табл. 1, можно сделать следующие выводы:

- в среднем женщины застрахованы больше, чем мужчины, и составляют 73,2 % от всего количества застрахованных клиентов компании;
- у всех исследуемых ежедневных временных рядов коэффициент эксцесса E>3, что свидетельствует о наличии «тяжелого хвоста» и, таким образом, можно предполагать наиболее вероятные ожидания события с большим заключением количества договоров страхования;
- для всех рядов приращений получены отрицательные значения коэффициента асимметрии, что в свою очередь означает наличие больших значений приращений (разности количества договоров от предыдущего периода времени к данному);
- для коэффициента вариации при попарном сравнении статистических показателей имеем следующее: волатильность ряда уменьшается для ряда приращений. Этот факт дает возможность исследователю в дальнейшем работать с ним для получения предпрогнозной информации.

Результаты расчетов статистических показателей для агрегированных еженедельных ВР представлены в табл. 2.

Таблица 2 Рисковые статистические показатели для агрегированных еженедельных временных рядов и временных рядов приращений

Наименование временного ряда	ВР «Основ- ной»	Приращения основного ВР	ВР «Мужчи- ны»	Приращения ВР «Мужчи- ны»	ВР «Женщи- ны»	Приращения ВР «Женщи- ны»
Обозначение временного ряда Статистические показатели	u_{i}^{3}	u_i^4	v_i^3	v_i^4	W_i^3	W_i^4
MX	94,68	-0,14	25,37	-0,09	69,59	-0,058
DX	2834,9	3284,05	240,35	270,28	1518,94	1787,58
СКО	53,2	57,3	15,5	16,44	38,9	42,27
V	0,56	0,38	0,61	0,18	0,56	0,72
Α	0,54	-0,18	0,67	-0,24	0,5	-0,13
Е	3,3	2,65	3,39	2,92	3,15	2,66
Е для X < (MX+3CKO)	0	00	0	0	0	0
E [MX-3CKO; MX+3CKO]	2,23	2,65	2,41	2,92	2,17	2,66
E для X > (MX+3CKO)	1,07	0	0,98	0	0,98	0

Анализ расчетных показателей табл. 2 позволяет сделать следующие выводы:

- в отличие от временных рядов ежедневных данных застрахованных лиц у агрегированных еженедельных ВР отсутствуют «тяжелые хвосты» у рядов приращений, что свидетельствует о сглаживании данных;
 - значение коэффициента вариации не превышает 72 %;
- диапазон значений коэффициента эксцесса составляет интервал [2.65; 3.4], что определяет принадлежность агрегированных еженедельных ВР к нормальному закону распределения.

Учитывая наличие «тяжелых хвостов» у временных рядов приращений, авторы предлагают обратиться к методам нелинейной динамики для дальнейшего исследования и выбора прогнозных моделей, которые достаточно хорошо себя зарекомендовали как при работе с малыми выборками, так и с большими данными [3, 4, 8, 12].

Подробное описание алгоритма работы последовательного R/S-анализа представлено в источниках [8, 10, 12].

Обсуждение результатов

На рис. 1 представлена авторская разработка «R/S-анализ» [11], в котором заложен алгоритм работы последовательного R/S-анализа.

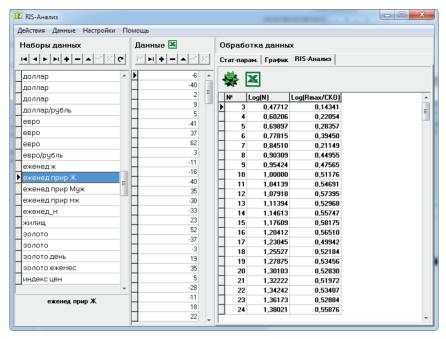


Рис. 1. Интерфейс программы «R/S-анализ» (фрагмент)

Далее рис. 2 демонстрирует результаты работы инструментального средства «R/S-анализ».

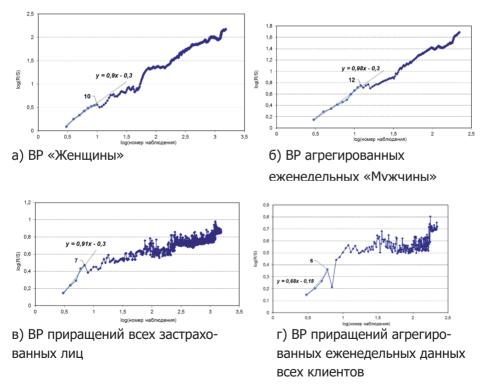


Рис. 2. R/S-траектории модельных временных рядов

Уравнение регрессии, полученное при построении тренда R/S-траектории, дает дополнительную возможность получения предпрогнозной информации с точки зрения исследования исходного процесса в динамике. В табл. 3 представлены результаты работы алгоритма последовательного R/S-анализа [8, 11].

Таблица 3 Глубина памяти (точки срыва с R/S-траектории)

Наименование временного ряда	Ежедневные данные					Агрегированные еженедельные данные						
Обозначение ВР Показатели последовательного R/S-анализа	u_i^1	u_i^2	v_i^1	v_i^2	w_i^1	W_i^2	u_i^3	u_i^4	v_i^3	v_i^4	W_i^3	W_i^4
Точка срыва глу- бины памяти	10	7	11	5	10	7	12	6	12	4	6	6
Значение показателя Херста (Н)	0,78	0,3	0,81	0,28	0,75	0,25	0,77	0,35	0,82	0,35	0,74	0,35

Исходя из табл. 3, можно сделать следующие выводы:

- для рядов приращений исследуемых ВР значение глубины памяти варьируется в диапазоне от 4 до 7; для исходных ВР в интервале от 6 до 12. Это означает, что ряды приращений менее трендоустойчивы [5, 8];
- величина показателя Херста для рядов приращений относится к «розовому шуму», для исходных BP «черному шуму» [10].

Таким образом, предложенные и апробированные методы представлены в виде многокритериальной (двукритериальной) математической модели для оценки трендоустойчивости временных рядов страхования. В качестве первого критерия авторами предложен показатель, отражающий глубину памяти временного ряда в виде нечеткого множества, полученный на базе R/S-анализа, второй критерий — показатель Херста. Применение двукритериальго подхода к оценке трендоустойчивости временных рядов позволяет дифференцировать их по показателю трендоустойчивости и подобрать работающие прогнозные модели.

Используя механизм работы алгоритма последовательного R/S-анализа важен получаемый синергетический эффект от исследования сложных социально-экономических процессов в разрезе результатов триады: исходного временного ряда, ряда его приращений и агрегированных данных.

Экономико-математическая модель позволяет улучшить качество управления рисками в страховой деятельности, а также выявила специфику факторов риска личного и социального страхования. Положения, развиваемые в статье, являются основой для дальнейшего исследования, разработки и адаптации экономико-математических прогнозных моделей, полезных в

планировании деятельности страховой компании, и, как следствие, разработчикам информационно-аналитических систем для поддержки принятия управленческих решений.

Список источников

- 1. Ковалева К.А., Ефанова Н.В. Применение методов нелинейной динамики к оценке рисков деятельности страховых компаний // Современная экономика: проблемы и решения, 2019, no. 12 (120), с. 31-39.
- 2. Ковалева К.А., Яхонтова И.М. Теория исследования и разработки методов и моделей прогнозирования временных рядов с приращением в страховании // Новые технологии, 2019, по. 4, с. 239-248.
- 3. Кричевский М.Л. *Интеллектуальные методы в менеджменте*. Санкт-Петербург, Питер, 2005.
- 4. Кумратова А.М. Концептуальная основа получения и исследования максимального времени прогноза с заранее заданной точностью // Современная экономика: проблемы и решения, 2017, no. 6 (90), c. 23-31.
- 5. Кумратова А.М., Попова Е.В., Курносова Н.С., Попова М.И. Снижение экономического риска на базе предпрогнозного анализа // Современная экономика: проблемы и решения, 2015, по. 3 (63), с. 18-28.
- 6. Кумратова А.М., Попова Е.В., Савинская Д.Н., Курносова Н.С. Комплексная методика анализа экономических временных рядов методами нелинейной динамики // Современная экономика:

- проблемы и решения, 2015, no. 8 (68), c. 35-43.
- 7. Кумратова А.М., Попова Е.В., Третьякова Н.В. Методы многокритериальной оптимизации и классической статистики для оценки риск-эктремальных значений // Известия Кубанского государственного университета. Естественные науки, 2014, по. 1, с. 55-60.
- 8. Перепелица В.А., Попова Е.В., Комиссарова К.А. *Моделирование деятельности страховых компаний методами нелинейной динамики*: монография (Научное издание). Краснодар, КубГАУ, 2007.
- 9. Перепелица В.А., Тамбиева Д.А., Комиссарова К.А. Исследование R/S-траектории одного временного ряда страхования // Исследовано в России, 2004, no. 248, c. 2663.
- 10. Петерс Э. *Хаос и порядок на рынках капитала*. Москва, Мир, 2000.
- 11. Янгишиева А.М. Альфа-фрактал // Свидетельство о регистрации программы для ЭВМ RU 2003611093, 08.05.2003. Заявка № 2003610565 от 13.03.2003.
- 12. Янгишиева А.М. Моделирование экономических рисков методами нелинейной динамики (на материалах Карачаево-Черкесской Республики). Автореферат дис. ... кандидата экон. наук. СГУ. Ставрополь, 2005.

ADAPTATION OF MATHEMATICAL METHODS AND MODELS OF FRACTAL ANALYSIS TO THE STUDY OF AGGREGATED ECOMIC TIME SERIES OF INSURANCE COMPANY DATA

Kovaleva Kseniya Aleksandrovna¹, Cand. Sc. (Econ.), Assoc. Prof. Kumratova Al'fira Menligulovna¹, Cand. Sc. (Econ.), Assoc. Prof. Chikatueva Lyubov' Anatol'evna², Dr. Sc. (Econ.), Full. Prof. Vasilenko Igor' Ivanovich¹, Cand. Sc. (Agr.), Assoc. Prof.

- ¹ Kuban State Agrarian University, Kalinina st., 13, Krasnodar, Russia, 350044; e-mail: kovaleva.k@edu.kubsau.ru
- ² Rostov State University of Economics, Cherkessk branch, Krasnaya st., 3, Cherkessk, Russia, 369000; e-mail: rseu.kchr@mail.ru

Purpose: this article offers a comprehensive approach to forecasting the insurance market based on the joint use of both classical and new «nonlinear» statistics. Discussion: the methods proposed and tested by the authors are presented as a multi-criteria (two-criteria) mathematical model for assessing the trend stability of insurance time series. As the first criterion, the authors proposed an indicator that reflects the memory depth of a time series in the form of a fuzzy set, obtained on the basis of R/S analysis, and the second criterion is the Hurst indicator. Results: using a two-criteria approach to assessing the trend stability of time series allows you to differentiate them by the indicator of trend stability and select working forecast models.

Keywords: insurance company, statistical indicators, pre-forecast analysis, R/S-analysis, risk criteria.

References

- 1. Kovaleva K.A., Efanova N.V. Application of non-linear dynamics methods to risk assessment of insurance companies. *Modern economy: problems and solutions*, 2019, no. 12 (120), pp. 31-39.
- 2. Kovaleva K.A., Yahontova I.M. Theory of research and development of methods and models for forecasting time series in increments in insurance. *New technologies*, 2019, no. 4, pp. 239-248.
- 3. Krichevskij M.L. Intellectual methods in management. Sankt-Peterburg, Piter, 2005.
 - 4. Kumratova A.M. Conceptual basis for

- obtaining and researching the maximum forecast time with a predetermined accuracy. *Modern economics: problems and solutions*, 2017, no. 6 (90), pp. 23-31. (In Russ.)
- 5. Kumratova A.M, Popova E.V., Kurnosova N.S., Popova M.I. Reducing the economic risk on the basis of a predictive analysis. *Modern economics: problems and solutions*, 2015, no. 3 (63), pp. 18-28. (In Russ.)
- 6. Kumratova A.M., Popova E.V., Savinskaya D.N., Kurnosova N.S. Complex method of analysis of economic time series

- by non-linear dynamics methods. *Modern economics: problems and solutions*, 2015, no. 8 (68), pp. 35-43. (In Russ.)
- 7. Kumratova A.M., Popova E.V., Tret'yakova N.V. Methods of multi-criteria optimization and classical statistics to assess risk under extreme values. *Tidings of KubSU. Natural Science*, 2014. no. 1(3), pp. 55-60. (In Russ.)
- 8. Perepelica V.A., Popova E.V., Komissarova K.A. *Modeling the activities of insurance companies using non-linear dynamics*: monograph. Krasnodar, KubSAU, 2007.
- 9. Perepelica V.A., Tambieva D.A., Komis-

- sarova K.A. Study of the R/S-trajectory of one temporary series of insurance. *Investigated in Russia*, 2004, no. 248, pp. 2663.
- 10. Peters E. Chaos and order in the capital markets. Moscow, Mir, 2000. (In Russ.)
- 11. Yangishieva A.M. Alpha-fractal. Certificate of registration of the program for computers RU 2003611093, 08.05.2003. Application No. 2003610565 from 13.03.2003. (In Russ.)
- 12. Yangishieva A.M. Modeling the economic risks of nonlinear dynamics methods. SGU, Stavropol', 2005. (In Russ.)