ФОРМИРОВАНИЕ МЕХАНИЗМА МИНИМИЗАЦИИ ЗАТРАТ РЕГИОНАЛЬНЫХ ПРЕДПРИЯТИЙ НА ПРОИЗВОДСТВЕННЫЕ РЕСУРСЫ С УЧЕТОМ ТЕХНОЛОГИЧЕСКИХ ОГРАНИЧЕНИЙ

Жуланов Евгений Евгеньевич,

кандидат экономических наук, доцент, заведующий кафедрой экономики и организации промышленного производства Пермского национального исследовательского политехнического университета; zeepstu@yandex.ru

В статье предложен инновационный способ определения комбинации производственных ресурсов, обеспечивающий минимум затрат предприятия в условиях технологических ограничений на объемы их использования и региональной дифференциации их цен. В основу оптимизации положены степенная производственная функция, метод Лагранжа, а также разработанный авторский механизм учета технологических ограничений при оценке возможности взаимозамещения ресурсов. Кроме того, в статье представлены результаты апробации предложенного подхода на примере предприятий рынка железобетонных конструкций города Перми.

Ключевые слова: производственная функция, оптимизация, локальный рынок, предприятие.

Как известно, в любом промышленном производстве используемые ресурсы могут частично заменять друг друга без ущерба для выполнения производственной программы. Это касается, прежде всего, основных материалов, из которых производится товар, топлива, энергии, труда и основного капитала. Ужесточение конкурентной среды на отраслевых рынках ставит перед промышленными предприятиями актуальную задачу выбора такой комбинации ресурсов, которая бы обеспечивала, с одной стороны, заданный объем производства, а с другой — минимальные затраты. Однако при ее решении необходимо учитывать несколько важных ограничений. Во-первых, — это пределы замещения ресурсов друг другом, определяемые технологией производства. Во-вторых — это уровень региональных цен, сложившихся на производственные ресурсы, который дифференцирован для предприятий, расположенных в разных

регионах. Данная дифференциация объясняется региональными различиями в природно-климатических условиях и в оснащении полезными ископаемыми. В регионах с северным климатом наблюдаются повышенные затраты на более мощную технику, оплату труда, топливо и энергию. В результате в этих регионах себестоимость и цена товара оказывается больше, чем в регионах, обладающих теплым южным климатом. Региональная дифференциация в оснащении полезными ископаемыми определяет индивидуальные особенности структуры промышленного производства, спроса и предложения товаров в регионе, что также увеличивает межрегиональную разницу в ценах.

Таким образом, выбор комбинации ресурсов при одних и тех же технологических ограничениях в каждом регионе будет индивидуален в связи с особенностями региональной рыночной конъюнктуры.

Вопросу моделирования потребности в производственных ресурсах посвящен целый ряд научных трудов, предусматривающих использование как линейных, так и степенных производственных функций. Однако и те и другие имеют определенные недостатки в процессе минимизации затрат. Линейные функции не учитывают в достаточной мере возможность взаимозамещения производственных ресурсов. Степенные же либо сложны в определении своих параметров, например, функция CES с постоянной эластичностью замещения [3, с. 424], либо предусматривают совершенное взаимозамещение одного ресурса другим, что полностью противоречит действительности, например, функция Кобба-Дугласа [2, с. 214]. Однако достоинством последней функции является относительная простота в практическом определении ее параметров. Исходя из этого, приняв за основу ее тип, для построения механизма определения комбинации ресурсов, минимизирующей издержки предприятия, была выбрана степенная мультипликативная функция вида:

$$X = A \cdot \prod_{i=1}^{n} x_i^{c_i} \,, \tag{1}$$

где A — коэффициент отдачи от масштаба производства; c_i — коэффициент эластичности производства товара по i-му ресурсу; x_i — количество i-го ресурса, используемого для производства товара; X — объем производства товара, n — количество производственных ресурсов.

Для формирования данного механизма использовался метод Лагранжа [1, с. 162]. Была задана целевая функция на минимум производственных затрат предприятия с учетом ограничения по объему производства:

$$Z = p_1 \cdot x_1 + p_2 \cdot x_2 + \dots + p_n \cdot x_n + \lambda \left(A \cdot x_1^{c_1} \cdot x_2^{c_2} \cdot \dots \cdot x_n^{c_n} \right) \to \min,$$
 (2)

где λ – множитель Лагранжа, p_i – цена i-го ресурса.

На основе функции (2) была построена система уравнений:

$$\begin{cases} \frac{\partial Z}{\partial x_i} = p_i + \lambda \cdot A \cdot c_i \cdot x_i^{c_i - 1} \cdot \prod_{\substack{l=1\\l \neq i}}^n x_l^{c_l} = 0\\ \frac{\partial Z}{\partial \lambda} = A \cdot \prod_{i=1}^n x_i^{c_i} - X = 0. \end{cases}$$
(3)

После выражения λ из первых n уравнений системы (3) они были приравнены друг к другу. Полученные равенства дали возможность выразить зависимость объема каждого i-го ресурса — x_i через объемы других ресурсов. Поочередная подстановка преобразованных выражений в последнее уравнение системы (3) позволила получить механизм определения оптимального объема закупки каждого ресурса, исходя из сложившейся комбинации эластичностей объема производства — c_i и рыночных цен на ресурсы:

$$x_{ij} = \left(\frac{X_j}{A_j}\right)^{1/\sum_{i=1}^{n} c_{ij}} \cdot \prod_{\substack{l=1\\l \neq i}}^{n} \left(\frac{c_{lj}}{p_l} \cdot \frac{p_i}{c_{ij}}\right)^{\left(-c_{lj}/\sum_{i=1}^{n} c_{ij}\right)}, \quad j = \overline{1, n}, \quad i = \overline{1, n}.$$
(4)

Однако, как уже было отмечено, производственные ресурсы могут ограниченно заменять друг друга в силу особенностей технологии производства и натурально-вещественных свойств товара. Следовательно, появляется необходимость в ограничении пропорций взаимозамещения ресурсов. Для этого в модель вводится предельная норма технологического взаимодополнения i-го ресурса ресурсом l, которая характеризует соотношение предельного продукта двух ресурсов для производства одного и того же количества товара:

 $\mathcal{E}_{i,l} = \frac{c_i \cdot x_l}{c_l \cdot x_i} \,, \tag{5}$

т.е. норма ε_i , l характеризует пропорцию потребления ресурса l в дополнение к единице i-го ресурса для производства единицы товара. При этом затраты на ресурс i и l должны обеспечивать одинаковый предельный продукт: $c_i \cdot x_l - p_i$

$$\frac{c_i \cdot x_l}{c_l \cdot x_i} = \frac{p_i}{p_l} \,. \tag{6}$$

Следовательно, технологические пропорции потребления ресурсов позволяют определить технологически обоснованные цены. Для их определения по каждому ресурсу предлагается рассчитывать размер предельного продукта на один рубль рыночной цены:

$$\varphi_i = \frac{c_i}{x_i \cdot p_i}, \quad i = \overline{1, n}. \tag{7}$$

Из полученных значений φ выберем рыночную цену — p_{φ} , соответствующую наименьшему из φ . Далее предлагается определять технологические цены, скорректированные с учетом коэффициента, технологически допустимого взаимозамещения ресурсов — d:

$$p_j^t = p_{\varphi} \cdot \mathcal{E}_{\varphi,j} \cdot (1-d), \quad j = \overline{1,n}.$$
 (8)

Выбор именно такой цены $-P_{\varphi}$ обоснован тем, что при подстановке технологических цен в формулу (4) обеспечивается полное соответствие расчетных значений x_{φ} фактическим, т.е. технологическим ограничениям. Затем

выполняется расчет x_i по формуле (4). Если рыночная цена окажется выше технологической, то в формулу (4) подставляется рыночная цена и наоборот.

Ввиду недоступности статистической информации о производственных затратах отдельных предприятий, в силу действия Закона «О коммерческой тайне», рассмотрим применение предложенной методики на примере общих данных по объему производства и потребления ресурсов предприятиями рынка железобетонных конструкций, расположенных в городе Перми. Для расчетов были использованы доступные статистические данные Пермьстата за $2010 \, \text{г.,}$ которые представлены в табл. $1^{1, 2, 3, 4, 5}$.

Таблица 1

Νō		Единица	Количество	Цена,	
п/п	Наименование ресурса	измере- ния	ресурса	в руб./ед.	Примечание
1	Труд	человек	2676	254622	(годовой фонд оплаты труда одного работника)
2	Услуги грузовых перевозок	тонн-км	8095922	15,41	-
3	Услуги водоснабжения	M^3	13770	16,13	-
4	Услуги водоотведения	M^3	23641	10,48	-
5	Услуги теплоснабжения	Гкал	6853	851,96	-
6	Электроэнергия	кВт*ч	1167220	2,2	-
7	Газ	M^3	41472000	2,95	-
8	Цемент	тонны	164959	2493	-
9	Металл	тонны	11940	22850	-
10	Щебень	тонны	207449	515	-
11	Песок	тонны	465861	230,37	-
12	Керамзит	M^3	16676	708,11	-
13	Бензин и дизельное топливо	тонны	1051	23110	-
14	Картон и бумага	тонны	9	24217,07	-
15	Средства связи	шт.	45	533,85	-
16	Основные фонды	руб.	2735837991	0,08	(средняя норма амортизации 8%)
17	Прочие ресурсы	руб.	97899187	1	-

¹ Об использовании ресурсов топлива и теплоэнергии хозяйствующих субъектов Пермского края на производственные нужды и отпуск населению в 2010 году. Информационно-аналитическая записка // Пермьстат. – Пермь, 2011. – 24 с.

² Производство промышленной продукции в натуральном выражении по полному кругу производителей, включая малые предприятия и индивидуальных предпринимателей за 2010 г. по городу Перми / Пермьстат. — Пермь, 2011.

³ Сведения о затратах на производство и продажу товаров, продукции, работ, услуг за январь-декабрь 2011 г.: статистический бюллетень / Пермьстат. – Пермь, 2011. – 75 с.

 $^{^4}$ Цены на рынке производителей промышленных товаров Прикамья за I квартал 2011 г.: статистический бюллетень / Пермьстат. – Пермь, 2011. – 19 с.

 $^{^5}$ Численность, оплата труда работников по организациям Пермского края, не относящимся к субъектам малого предпринимательства (хозяйственные виды деятельности) за январьдекабрь 2011 г.: стат. бюлл. / Пермьстат. — Пермь, 2012. — 65 с.

Учитывая то, что за 2010 г. предприятиями города Перми было произведено 333520 м³ железобетонных конструкций, путем преобразования степенной производственной функции в логарифмическое выражение были определены степенные показатели эластичности функции производства железобетонных конструкций по используемым ресурсам:

$$X = x_1^{0.0384} \cdot x_2^{0.0774} \cdot x_2^{0.0464} \cdot x_4^{0.049} \cdot x_5^{0.043} \cdot x_6^{0.068} \cdot x_7^{0.0853} \cdot x_8^{0.0854} \cdot x_9^{0.0457} \cdot x_{10}^{0.0597} \cdot x_{11}^{0.0697} \cdot x_{12}^{0.0673} \cdot x_{12}^{0.0685} \cdot x_{13}^{0.0388} \cdot x_{14}^{0.0107} \cdot x_{15}^{0.0186} \cdot x_{16}^{0.0895} \cdot x_{17}^{0.0895}$$

где $x_{_{I}}$ — численность работников; $x_{_{2}}$ — количество услуг грузоперевозок; $x_{_{3}}$ — объем услуг водоснабжения; $x_{_{4}}$ — объем услуг водоотведения; $x_{_{5}}$ — объем услуг теплоснабжения; $x_{_{6}}$ — расход электроэнергии для технологических нужд; $x_{_{7}}$ — потребление природного газа; $x_{_{8}}$ — масса цемента; $x_{_{9}}$ — масса металла (арматуры); $x_{_{10}}$ — масса щебня; $x_{_{11}}$ — масса песка; $x_{_{12}}$ — объем керамзита; $x_{_{13}}$ — масса дизельного топлива и бензина; $x_{_{14}}$ — масса бумаги, израсходованной на производственные и общезаводские нужды; $x_{_{15}}$ — количество средств связи, приобретенных для производственных нужд; $x_{_{16}}$ — суммарная стоимость основных средств производственного назначения; $x_{_{17}}$ — суммарные затраты на прочие ресурсы и услуги для производства.

В целях упрощения расчетов параметр A был принят равным 1.

После определения степенных показателей производственной функции становится возможным рассчитать нормы технологического взаимодополнения ресурсов ε_i , l по формуле (5). Сделаем пример расчета взаимодополнения численности работников и основных фондов предприятия:

$$\varepsilon_{1,16} = \frac{c_1 \cdot x_{16}}{c_{16} \cdot x_1} = \frac{0,0384 \cdot 2735837991}{0,1057 \cdot 2676} = 371314,45.$$

Расчет остальных норм – $\varepsilon_{_{i,\,l}}$ представлен в табл. 2.

На следующем этапе по каждому ресурсу был определен размер предельного продукта на один рубль рыночной цены — φ по формуле (7) Рассмотрим пример расчета для трудового ресурса:

$$\varphi_1 = \frac{c_1}{x_1 \cdot p_1} = \frac{0,0384}{2676 \cdot 254622} = 0,000000000005635$$

Вычисленные значения φ для других ресурсов представлены в табл. 3. Как видно из данной таблицы, наименьшее значение φ приобретает для ресурса «труд». Исходя из этого, можно вычислить размеры технологических цен, которые представлены в табл.4. Рассмотрим методику их расчета по формуле (8) на примере ресурса «основные фонды»:

$$p_{16}^t = p_{\varphi} \cdot \mathcal{E}_{\varphi,16} \cdot (1-d) = 254622 \cdot 0,00000269 \cdot (1-0,1) = 0,618 \approx 0,62 \text{ py6}.$$

Коэффициент технологически допустимого взаимозамещения ресурсов в рассматриваемом примере был установлен на уровне 10%.

На завершающем этапе проводилось сравнение рыночных и технологически обоснованных цен. Результаты данного анализа представлены в табл.5. На основе выбора и подстановки в формулу (4) наибольших значений цен по каждому ресурсу были определены новые объемы их закупки, обеспечи-

Таблица 2

Нормы технологического взаимодополнения ресурсов

$\mathcal{E}_{i,\ l}$	$\mathcal{E}_{i,\ I}$	$\mathcal{E}_{i,\;2}$	$\mathcal{E}_{i,\;3}$	$\mathcal{E}_{i,\ 4}$	$\mathcal{E}_{i,\;5}$	$\mathcal{E}_{i,\ \delta}$	$\mathcal{E}_{i,\ 7}$., ⊗	$\mathcal{E}_{i,\ g}$	$\mathcal{E}_{i,\ I0}$	$\mathcal{E}_{i,\; II}$	$\mathcal{E}_{i,\ l2}$	$\mathcal{E}_{i,\;B}$	$\mathcal{E}_{i,\ 14}$	$\mathcal{E}_{i\ I5}$	$\mathcal{E}_{i,\ 16}$	$\mathcal{E}_{i,\ 17}$
$\mathcal{E}_{l,\ l}$	1	0,0007	0,2347	0,1444	0,437	0,0041	0,0001	0,0247	0,2666	0,02	0,0095	0,1977	2,25	83	28,45	0,00000269	0,0001
$\mathcal{E}_{2,\ l}$	1501	1	352,24	216,81	655,94	60′9	0,2153	37,07	400,16	30,04	14,26	296,71	3370,4	124534	42710	0,0040	0,0957
$\mathcal{E}_{3,\ l}$	4,26	0,0028	1	0,6155	1,86	0,0173	9000'0	0,1052	1,136	0,0853	0,0405	0,84	9,57	353,55	121,25	0,000011	0,0003
$\mathcal{E}_{4,\ l}$	6,92	0,0046	1,63	1	3,03	0,0281	0,001	0,171	1,85	0,1385	0,0658	1,37	15,55	574,39	197	0,000019	0,0004
$\mathcal{E}_{5,\ l}$	2,29	0,0015	0,537	0,3305	1	0,0093	0,0003	0,0565	0,6101	0,0458	0,0217	0,4523	5,14	189,86	65,11	0,000006	0,0001
$ \mathcal{E}_{6,\ l} ^{2}$	246,41	0,1642	52,83	35,59	107,68	1	0,0353	60′9	62'69	4,93	2,34	48,71	553,28	20444	7011,33	0,0007	0,0157
$\mathcal{E}_{7,\ l}$ (6973	4,65	1636,3	1007,2	3047,2	28,3	1	172,19	1859	139,53	66,24	1378,4	15657	578521	198409	0,0188	0,4444
$\mathcal{E}_{8,\ l}$	40,5	0,027	9,50	2,85	17,7	0,1643	0,0058	1	10,8	0,8103	0,3847	8,01	60,93	3359,81	1152,28	0,0001	0,0026
$\mathcal{E}_{g,\ l}$	3,75	0,0025	0,8803	0,5418	1,64	0,0152	0,0005	0,0926	1	0,0751	0,0356	0,7415	8,42	311,21	106,73	0,00001	0,0002
$ \mathcal{E}_{I0,\ I} ^{-4}$	49,97	0,0333	11,73	7,2183	21,84	0,2028	0,0072	1,234	13,32	1	0,4747	88′6	112,21	4146,14	1421,95	0,0001	0,0032
	105,37	0,0701	24,7	15,21	46	0,4272	0,0151	2,6	28,06	2,11	1	20,81	236,37	8733,7	2995,29	0,0003	0,0067
	2,06	0,0034	1,19	0,7307	2,21	0,0205	0,0007	0,1249	1,35	0,1012	0,0481	1	11,36	419,72	143,95	0,000014	0,0003
	0,45	0,0003	0,1105	0,0643	0,1946	0,0018	0,0001	0,011	0,1187	6800'0	0,0042	0880′0	1	36,95	12,67	0,000001	0,0000284
	0,0121	0,000008 0,0028		0,0017	0,0053	0,00005	0,000002	0,0003	0,0032	0,0002	0,0001	0,0024	0,0271	1	0,343	0,000000032	0,0000008
	0,0351	0,000023 0,0082		0,0051	0,0154	0,0001	0,000005	6000'0	0,0094	0,0007	0,0003	6900'0	68/0′0	2,92	1	0,00000095 0,00000022	0,0000022
$\mathcal{E}_{I_{6,\ I}}$ 3.	371314	247,38	87136	53633	162263	1506,9	53,25	9169,1	68686	7430	3527	73399	833744	30806566	10565371	1	23,66
$\left \mathcal{E}_{_{I7,\;I}} ight 1$	15692	10,45	3682	2267	6857	63,68	2,25	387,45	4183	314	149,07	3102	35235	1301910	446501	0,0423	1

вающие минимальные затраты на производство железобетонных конструкций при установленной норме технологически допустимого взаимозамещения производственных ресурсов -d на уровне 10%. Расчет нового объема i-го ресурса может быть рассмотрен на примере определения потребности в численности работников:

$$\begin{split} x_i &= \left(\frac{X}{A}\right)^{1/\sum\limits_{i=1}^n c_i} \cdot \prod\limits_{l=1}^n \left(\frac{c_l}{p_l} \cdot \frac{p_i}{c_l}\right)^{\left(-c_l/\sum\limits_{i=1}^n c_i\right)} = \left(\frac{333520}{1}\right)^{1/0,9402} \cdot \left(\frac{0,0774}{152,67} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0774}{0,9402}} \cdot \left(\frac{0,0774}{152,67} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0774}{0,9402}} \cdot \left(\frac{0,049}{33100,27} \cdot \frac{254622}{0,0384}\right)^{\frac{0,049}{0,9402}} \cdot \left(\frac{0,043}{100142,11} \cdot \frac{254622}{0,0384}\right)^{\frac{0,043}{0,9402}} \cdot \left(\frac{0,068}{930} \cdot \frac{254622}{0,0384}\right)^{\frac{0,068}{0,9402}} \cdot \left(\frac{0,0853}{32,86} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0853}{0,9402}} \cdot \left(\frac{0,0584}{5658,82} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0584}{0,9402}} \cdot \left(\frac{0,0635}{2176,92} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0635}{0,9402}} \cdot \left(\frac{0,0635}{2176,92} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0635}{0,9402}} \cdot \left(\frac{0,0473}{45298,64} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0473}{0,9402}} \cdot \left(\frac{0,0473}{0,9402} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0473}{0,9402}} \cdot \left(\frac{0,0107}{0,9402} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0107}{0,9402}} \cdot \left(\frac{0,0107}{19012551,53} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0107}{0,9402}} \cdot \left(\frac{0,0186}{6520514,27} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0895}{0,9402}} \cdot \left(\frac{0,0895}{0,9402} \cdot \frac{254622}{0,0384}\right)^{\frac{0,0895}{0,9402}} = 2419 \quad (\textit{\textit{\textit{u}e}n.}) \, . \end{split}$$

Как видно, в результате проделанных оптимизационных расчетов потребность в персонале сократилась до 2419 человек. Чтобы оценить экономию (перерасход) ресурсов в технологически допустимых пределах, можно использовать формулу:

$$\mathfrak{I}_{i} = (Q_{i,\phi} - Q_{i,o}) \cdot p_{i}, \tag{9}$$

где $Q_{_{i,\phi}}$ и $Q_{_{i,o}}$ – количество потребления i-го ресурса, соответственно до и после минимизации расходов.

Экономия на персонале в результате оптимизации затрат на труд составит:

$$\Im = (2676 - 2419) \cdot 254622 = 65492735 (py \delta.)$$

Аналогичные расчеты новых объемов потребления ресурсов и экономия (перерасход), образующаяся в результате этого, представлена в табл. 6.

Таблица 3 Размер предельного продукта на один рубль рыночной цены ресурсов, используемых в производстве железобетонных конструкций

	•				• •
NΩ Π/Π	Наименование ресурса	φ	Nº N°	Наименование ресурса	φ
1	Труд	0,000000000056	10	Щебень	0,00000000557
2	Услуги грузо- вых перевозок	0,000000000620	11	Песок	0,000000000592
3	Услуги водо- снабжения	0,000000208739	12	Керамзит	0,000000004005
4	Услуги водоот- ведения	0,000000197749	13	Бензин и дизель- ное топливо	0,00000001394
5	Услуги тепло- снабжения	0,000000007359	14	Картон и бумага	0,000000049154
6	Электроэнергия	0,000000026467	15	Средства связи	0,000000764728
7	Газ	0,000000000697	16	Основные фонды	0,000000000483
8	Цемент	0,00000000142	17	Прочие ресурсы	0,000000000914
9	Металл	0,00000000167			

Таблица 4 Результаты расчета технологически обоснованных цен

NΩ Π/Π	Наименование ресурса	Цена, руб.	NΩ Π/Π	Наименование ресурса	Цена, руб.
1	Труд	229160,08	10	Щебень	4585,60
2	Услуги грузо- вых перевозок	152,67	11	Песок	2176,92
3	Услуги водо- снабжения	53776,75	12	Керамзит	45298,64
4	Услуги водоот- ведения	33100,27	13	Бензин и дизельное топливо	514552,66
5	Услуги тепло- снабжения	100142,11	14	Картон и бумага	19012551,53
6	Электроэнер- гия	930,00	15	Средства связи	6520514,27
7	Газ	32,86	16	Основные фонды	0,62
8	Цемент	5658,82	17	Прочие ресурсы	14,60
9	Металл	61092,19			

Таблица 5 Выбор цены для определения наименее затратной комбинации ресурсов

Nº п/п	Наименование ресурса	Рыночная цена	Знак сравнения	Технологически обоснованная цена	Знак след- ствия	Выбор цены для расчета
1	Труд	254622	>	229160,08	=>	254622
2	Услуги грузовых перевозок	15,41	<	152,67	=>	152,67
3	Услуги водоснабжения	16,13	<	53776,75	=>	53776,75
4	Услуги водоотведения	10,48	<	33100,27	=>	33100,27
5	Услуги теплоснабжения	851,96	<	100142,11	=>	100142,11
6	Электроэнергия	2,2	<	930,00	=>	930,00
7	Газ	2,95	<	32,86	=>	32,86
8	Цемент	2493	<	5658,82	=>	5658,82
9	Металл	22850	<	61092,19	=>	61092,19
10	Щебень	515	<	4585,60	=>	4585,60
11	Песок	230,37	<	2176,92	=>	2176,92
12	Керамзит	708,11	<	45298,64	=>	45298,64
13	Бензин и дизельное топливо	23110	<	514552,66	=>	514552,66
14	Картон и бумага	24217,07	<	19012551,53	=>	19012551,53
15	Средства связи	533,85	<	6520514,27	=>	6520514,27
16	Основные фонды	0,08	<	0,62	=>	0,62
17	Прочие ресурсы	1	<	14,60	=>	14,60

Таблица 6 Объемы потребления производственных ресурсов до и после минимизации затрат предприятий и размер образующейся экономии

Nº	Наименование	Количеств	во ресурса	Рыночная	Экономия
п/п	ресурса	Qi,φ	Qi,o	цена	(перерасход)
1	Труд	2676	2419	254622	65492736
2	Услуги грузовых перевозок	8095922	8130831	15,41	(537944)
3	Услуги водоснабжения	13770	13830	16,13	(958)
4	Услуги водоотведения	23641	23743	10,48	(1068)
5	Услуги теплоснабжения	6853	6883	851,96	(25176)
6	Электроэнергия	1167220	1172253	2,2	(11072)
7	Газ	41472000	41650823	2,95	(527528)
8	Цемент	164959	165670	2493	(1773237)
9	Металл	11940	11992	22850	(1176412)
10	Щебень	207449	208344	515	(460668)
11	Песок	465861	467869	230,37	(462754)
12	Керамзит	16676	16748	708,11	(50917)
13	Бензин и дизельное топливо	1051	1055	23110	(104689)

NΘ	Наименование	Количеств	ество ресурса Рыночна		Экономия
п/п	ресурса	Qi,φ	Qi,o	цена	(перерасход)
14	Картон и бумага	9	9	24217,07	(936)
15	Средства связи	45	46	533,85	(105)
16	Основные фонды	2735837991	2747634644	0,08	(943732)
17	Прочие ресурсы	97899187	98321318	1	(422131)
Итого	экономия от минимиза	ации затрат			58993408

Таким образом, как видно из табл. 6, экономия образуется за счет сокращения персонала, по остальным статьям будет наблюдаться увеличение расходов. Однако, несмотря на это, в целом затраты предприятий, производящих железобетонные конструкции в городе Перми, сократятся на 58993 тыс. руб.

Список источников

- 1. Просветов, Г.И. Математические методы и модели в экономике: задачи и решения: учеб.-прак. пособие [текст] / Г.И. Просветов. М.: Альфа-Пресс, 2008. 344 с.
- 2. Черемных, Ю.Н. Микроэкономика. Продвинутый уровень: учеб. [текст] / Ю.Н. Черемных. М.: ИНФРА-М, 2008. 844 с.
- 3. Экономико-математический энциклопедический словарь [текст] / Гл. ред. В.И. Данилов-Данильян. М.: ИНФРА-М, 2003. 668 с.

FORMATION OF THE COST MINIMIZATION OF REGIONAL ENTERPRISES MECHANISM ON PRODUCTION RESOURCES TAKING INTO ACCOUNT TECHNOLOGICAL LIMITS

Zhulanov Evgeny Evgenyevich,

Ph. D. of Economics, Associate Professor, Head of Economy and organizations of industrial production department, Perm National Research Polytechnic University; zeepstu@yandex.ru

The innovative method to determine the combination of productive resources, providing a minimum of expenses of the enterprise in conditions of technological limitations on the volume of their use and regional differentiation of prices in the article is offered. Power production function, Lagrange's method, and also the developed author's mechanism of the accounting of technological restrictions are the basis for optimization at an assessment of possibility of mutually replacement of resources. Besides, approbation results of the offered approach are presented in article on the example of the enterprises of ferroconcrete designs market of the city of Perm.

Keywords: production function, optimization, local market, enterprise.