ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ

УДК 519.3

Статья представлена дочерью А. И. Каплинского Nadia Udler

О ПОСТРОЕНИИ БЫСТРО СХОДЯЩИХСЯ МЕТОДОВ НЕГЛАДКОЙ ОПТИМИЗАЦИИ МНОГОСЛОЙНОГО ПЕРСЕПТРОНА

А. И. Каплинский, А. М. Песин

Воронежский государственный университет

Поступила в редакцию 01.12.2018 г.

Аннотация. В статье предлагается подход к построению поисковых методов, обладающих высокой скоростью сходимости, для оптимизации критерия качества настройки многослойного персептрона. Рассматриваемая задача имеет непосредственное отношение к построению искусственных нейронных сетей и разработке нейрокомпьютеров.

Ключевые слова: персептрон, условие локального улучшения, потенциал.

Annotation. The paper proposes an approach to the construction of search methods with a high convergence rate to optimize the quality criterion of setting a multilayer perceptron. The considered problem is directly related to the building of artificial neural networks and the development of neural computers.

Keywords: perceptron, condition of local improvement, potential.

ВВЕДЕНИЕ

В работах [1-5] предложены и исследованы методы оптимизации скалярных негладких и многоэкстремальных функций векторного аргумента. В [7] данный подход развивается для построения быстро сходящихся методов негладкой и нелокальной оптимизации. В [6, 8] изучались вопросы выхода оптимизируемой функции из области локального экстремума. В настоящей работе предложенный подход используется для решения задачи идентификации на примере оптимизации многослойного персептрона [12]. Задача оптимизации многослойного персептрона имеет непосредственное отношение к построению вычислительных схем, названных искусственными нейросетями [9, 10, 12], и построению вычислительных устройств, названных нейрокомпьютерами [9, 10, 12].

1. ПОСТАНОВКА И АНАЛИЗ ЗАДАЧИ

Пусть требуется минимизировать скалярную, возможно негладкую и многоэкстремальную функцию $\Phi[Y]$ векторного аргумента $Y, n \ge 1, Y \in \mathbb{R}^n$. Функция $\Phi[Y]$ является критерием качества настройки многослойного персептрона [12].

Векторы входов Y_N имеют следующий вид:

$$Y_N = f[W_N Y_{N-1}],$$

где $N \ge 1$, $f = (f_1, ..., f_n)$, $f_i(i = \overline{1,n})$ – нелинейные сигмоидные отображения [10, 12]. Здесь $W_N(N \ge 1)$ – это числовые матрицы размерности $n \times n$, которые выбираются с целью решения следующей задачи оптимизации

$$\Phi[f[W_N Y_{N-1}]] \to \min_{(W_N, W_{N-1}, \dots, W_0)}.$$
 (1)

Введем обозначение $z_N = W_N Y_{N-1}$, где $N \ge 1$. Тогда настраиваемая модель со структурой многослойного персептрона имеет вид

$$\Phi[f(z_N)] \to \Phi[Y_N] \min_{(W_N, W_{N-1}, \dots, W_0)}.$$
 (2)

[©] Каплинский А. И., Песин А. М., 2018

В частном случае можно рассматривать минимизацию среднеквадратического критерия качества вида

$$\Phi[Y_N] \to M[Y_N - Y^*]^2 \min_{(W_N, W_{N-1}, \dots, W_0)},$$

где матрицы W_N настраиваемой модели (2) могут выбираться стохастическими [11].

Задача (1)–(2) может рассматриваться как задача идентификации заданного вектора входов Y^* векторами выходов Y_N настраиваемой модели (2), при этом вектор входов Y^* также может считаться случайным. В данной статье рассматривается задача (1)–(2) применительно к возможно негладкой и многоэкстремальной функции $\Phi[Y]: \mathbb{R}^n \to \mathbb{R}^1$, причем упор делается на построение именно поисковых методов оптимизации. Этот выбор обусловлен тем, что согласно [9, 10, 12], вектор-функция $f = (f_1, ..., f_n)$ состоит из сигмоидных нелинейных одномерных отображений f_i [9, 10, 12]. При использовании методов гладкой оптимизации в случае, например, критерия $\Phi[Y_N] \to M \mid Y_N - Y^* \mid^{\sim}$ с необходимостью участвует производная f_i сигмоидного отображения. Дифференцирование отображений f_i ввиду их структуры приводит к обнулению достаточно больших массивов коэффициентов матриц W_N , что может привести к отсутствию работоспособности настраиваемого многослойного персептрона [9, 10, 12].

2. ПОСТРОЕНИЕ МЕТОДОВ РЕШЕНИЯ ЗАДАЧИ (1)-(2)

Согласно работам [1, 4, 5, 11], построение эффективных на практике методов негладкой оптимизации многоэкстремальных функций заключается в предварительной рандомизации исходной задачи (1)-(2). Для этого рассмотрим матричный линейный стохастический процесс

$$\begin{cases}
W_{N} = W_{N-1} + \varepsilon_{N} \theta_{N} & (N \ge 1), \\
\|M(W_{0})\| < \infty, \|(\theta_{1})\| < \infty, 0 < \varepsilon_{N} < \infty, \\
(\varepsilon_{1} + \varepsilon_{2} + ...) = \infty.
\end{cases}$$
(3)

Согласно введенным ранее обозначениям, имеет место выражение:

$$Z_N = W_N Y_{N-1} + \varepsilon_N \cdot \theta_N \cdot Y_{N-1}. \tag{4}$$

Векторный поисковый случайный процесс (4) приводит к рандомизации следующего критерия оптимизации:

$$F(\varepsilon_N) = \int_{\mathbb{R}^N} \hat{\Phi}[f(z)] p_{Z_N}(z) dz,$$

где $\Phi[f(z)] = \Phi[f(z)] - c_N$, $c_N = \text{const.}$

Задача (1)-(2) преобразуется в следующую задачу:

$$F(\varepsilon_N) \to \min_{(\varepsilon_N)}$$
 (5)

Заметим, что разложение (4) Z_N в сумму двух случайных векторов позволяет полностью обосновать математическую корректность перехода от задачи (1)–(2) к задаче (5) [например, 1, 3, 4].

Предположим, что существует плотность распределения p_{Z_N} случайного вектора Z_N для каждого N = 1, 2, 3, ... Пусть выполняется условие знакоопределенности

$$\hat{\Phi}[f(z)] = \Phi[f(z)] - c_N \ge 0,$$

где $c_{\scriptscriptstyle N}$ – соответствующие константы, такие что $0 < c_N < \infty$, (N = 1, 2, 3, ...).

При заданном на шаге N векторе входов Y_{N-1} должна выбираться из условия (6) матрица $\theta_{\scriptscriptstyle N}$, задающая вектор $\theta_{\scriptscriptstyle N} Y_{\scriptscriptstyle N-1}$ направления движения для решения задач (1)-(2) или (5). Условие невозрастания критерия оптимизации $F(\varepsilon_N)$ на каждом шаге N=1,2,3,... названо условием локального улучшения (УЛУ) [1, 2, 3, 4]. Оно имеет следующий вид:

$$\left. \frac{dF}{d\varepsilon} \right|_{\varepsilon=0} \le 0. \tag{6}$$

Для задач (1)-(2) и (5) УЛУ (6) имеет вид

$$\frac{dF}{d\varepsilon}\bigg|_{\varepsilon=0} \le 0 = \int_{\mathbb{R}^N} \hat{\Phi}[f(z)] \cdot div_Z[p_{W_{N-1}Y_{N-1}}(z) \times \\
\times M(\theta_N Y_{N-1} / W_{N-1} Y_{N-1} = z) dz,$$
(7)

где $M(\theta_{N}Y_{N-1}/W_{N-1}Y_{N-1}=z)$ – вектор условного математического ожидания случайного вектора $\theta_N Y_{N-1}$.

Для дальнейших рассуждений введем обозначение $y_N(z) = M(\theta_N Y_{N-1} / W_{N-1} Y_{N-1} = z).$

С целью выполнения УЛУ (7) выберем вектор-функцию $y_N(z)$ как решение следующего уравнения:

$$div_{Z}[p_{W_{N-1}Y_{N-1}}(z) \cdot y_{N}(z)] =$$

$$= -p_{u_{N}}(z)[\Phi[f(z)] - c_{N}],$$
(8)

при этом параметры c_N , названные константами уровней, выбираются из условия «неразрывности» [4, 5, 11, 8]

$$\int_{R^{N}} div_{Z} [p_{W_{N-1}Y_{N-1}}(z) \cdot y_{N}(z)] dz = 0.$$

В (8) функция $p_{u_{\scriptscriptstyle N}}(z)$ имеет смысл плотности распределения вероятности вспомогательного случайного вектора u_N (N = 1, 2, 3, ...), функция $p_{u_{\scriptscriptstyle N}}(z)$ определяет степень свободы при решении уравнения (8) [3, 5, 1, 8, 11].

При некоторых условиях [1, 2, 3, 4] векторное поле $p_{W_{N-1}Y_{N-1}}(z) \cdot y_N(z)$ можно разложить следующим образом

$$p_{W_{N-1}Y_{N-1}}(z) \cdot y_N(z) = \nabla_z v_N(z) + \chi_N(z).$$
 (9)

Здесь $v_N(z): R^n \to R^1$ для каждого значения N = 1, 2, 3, ... является потенциалом векторного поля $p_{W_{N-1}Y_{N-1}}(z)$, а $\chi_N(z): \mathbb{R}^n \to \mathbb{R}^1$ есть бездивергентная составляющая разложения, то есть $div_Z[\chi_N(z)] = 0$. Составляющая $\chi_N(z)$ определяет степень свободы в (9), причем считается, что $\chi_N(z) = 0$, (N = 1, 2, 3, ...).

Подставляя разложение (9) в уравнение (8), получим уравнение Пуассона на потенциале $v_N(z)$ вила

$$\Delta_Z v_N(z) = -p_{u_N}(z) [\hat{\Phi}[f(z)]], \qquad (10)$$
 где $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}.$

Решение уравнения (10) имеет следующий

$$\nabla v_N(z) = \int_{R^N} E(z, s) \hat{\Phi}[f(s)] \cdot p_{u_N}(s) ds,$$
 (11)

где
$$E(z,s) = \begin{cases} (n-2)^{-1} \cdot \omega_n^{-1} \left| z - s \right|^{2-n}, \, n > 2, \\ \frac{1}{2\pi} \log \left| z - s \right|^{-1}, \, n = 2; \end{cases}$$

$$\omega_n = \frac{2(\sqrt{\pi})^n}{\Gamma(\frac{n}{2})}$$
 – площадь поверхности единич-

ной сферы в R^n .

Таким образом, функция (11) является потенциалом ньютоновского векторного поля (9) [1-4]. С целью ускорения сходимости предлагаемых методов оптимизации в работе [7] развивался подход, связанный с использованием собственных функций линейных операторов. Применим здесь этот подход и получим другой способ выполнения УЛУ (7).

условиях [1-4] векторное $p_{u_N}(z)y_N(z)$ можно представить следующим образом

$$p_{u_N}(z)y_N(z) = \nabla_Z[\varphi_N(z)],$$
 (12)

где

$$\Delta \varphi_N + q_N^2 \varphi_N = = -p_{u_N}(z) [\hat{\Phi}[f(z)]], N = 1, 2, 3,..$$
 (13)

 $0 < q_N < \infty$ – константы.

Потенциал $\varphi_{N}(z)$ является решением уравнения (13) типа Гельмгольца и имеет вид

$$\varphi_N(z) = \int_{\mathbb{R}^N} E_q(z, s) \hat{\Phi}[f(s)] \cdot p_{u_N}(s) ds. \quad (14)$$

В решении (14) ядро $E_q(z,s)$ – это сферически-инвариантное (или фундаментальное) решение уравнения $(\nabla_Z + q_N^2)E_q = 0$ [7, 8].

Функция $E_q(z,s)$ имеет следующий вид: a) для четных n

$$E_{q}(z,s) = |z-s|^{\frac{-(n-2)}{2}} \cdot J_{\frac{-(n-2)}{2}}(q_{N}|z-s|), (15)$$

б) для нечетных
$$n$$

$$\mathrm{E}_q(z,s) = \left|z-s\right|^{\frac{(n-2)}{2}} \cdot J_{\frac{(n-2)}{2}}(q_N \left|z-s\right|).$$

В выражении (15) $J_{-\beta}$ и N_{β} обозначают соответствующие функции Бесселя и Неймана β -го порядка [7, 8].

Таким образом, функция $\varphi_{N}(z)$ (14) является потенциалом векторного поля (12).

3. УСКОРЕНИЕ СХОДИМОСТИ

Выберем функцию $p_{u_N}(z)$ в (13) как решение интегрального уравнения

$$\Phi[f(z)]p_{u_N}(z) =$$

$$= U_N(z) \int_{\mathbb{R}^N} E_q(z, s) \Phi[f(s)] \cdot p_{u_N}(s) ds, \qquad (16)$$

где $U_N(z): \mathbb{R}^n \to \mathbb{R}^1$.

Тогда, учитывая (14), получим следующее равенство

$$\hat{\Phi}[f(z)]p_{u_N}(z)dz = -U_N(z)\varphi_N(z).$$

Тогда уравнение (13) перепишется в виде

$$\Delta \varphi_N + q_N^2 \varphi_N = U_N \varphi_N, N = 1, 2, 3...$$
 (17)

Уравнение (17) при определенном способе выбора констант $q_{\scriptscriptstyle N}$ и функций $U_{\scriptscriptstyle N}$ представляет собой уравнение Шредингера на стационарные состояния системы с «потенциальной энергией» $U_{\scriptscriptstyle N}(z)$.

Выберем теперь функцию $U_N(z)$ на каждом шаге N=1,2,3,... таким образом, чтобы обеспечить ускорение сходимости конструируемых методов оптимизации. Для этого потребуем выполнения «соотношения оптимальности» для функций $\varphi_N(z)$

$$\hat{\Phi}[f(z)] = \varphi_{N}(z). \tag{18}$$

Тогда из формул (14)-(16) получим $U_N(z) = p_{u_N}(z)_N$. Соотношение оптимальности (18) означает, что точки, где расположены экстремумы функции $\Phi[f(z)]$, совпадают с точками расположения экстремумов функции $\varphi_N(z)$ для всех N. Соотношение (18) может выполняться лишь в окрестностях точек, где функция $\Phi[f(z)]$ обладает для этого достаточной гладкостью. В других точках пространства R^{n} соотношение (18) является оптимальным сглаживанием функции $\Phi[f(z)]$ [7]. Таким образом, для ускорения сходимости конструируемых методов оптимизации предлагается выбирать степени свободы $p_{u_N}(z)$ в (14) как решение интегрального уравнения (16) с учетом «соотношения оптимальности» (18).

В результате получим интегральное уравнение Фредгольма для выбора оптимальной функции $p_{\nu}^{*}(s)$

$$\hat{\Phi}[f(z)] = \int_{p^{N}} E_{q}(z,s) \hat{\Phi}[f(s)] p_{u}^{*}(s) ds. \quad (19)$$

Отметим, что получение решения $p_u^*(s)$ уравнения (19) требует привлечения входной информации лишь о значениях оптимизируемой функции $\hat{\Phi}[f(z)]$. Затем функция $p_u^*(s)$ подставляется в (14) и получается оптимальный потенциал $\varphi^*(z)$ вида

$$\varphi^*(z) = -\int_{\mathbb{R}^N} E_q(z, s) \hat{\Phi}[f(s)] p_u^*(s) ds. \quad (20)$$

4. МЕТОДЫ ОПТИМИЗАЦИИ ДЛЯ РЕШЕНИЯ ЗАДАЧИ 1-2

Многослойный персептрон (2) настраивается процессом (3) , где матрицы θ_N , задающие «направления матричного движения», определяются своими условными математи-

ческими ожиданиями $y_N(z)$ (9) или (12) на каждом шаге N=1,2,3...

Из соотношения (9) следует, что

$$y_N(z) = p_{W_{N-1}Y_{N-1}}^{-1}(z)\nabla_z v_N(z),$$

где $v_N(z)$ задается формулой (11). Из соотношения (12) следует другое решение

$$y^*(z) = (p_u^*(z))^{-1} \nabla_z \varphi^*(z),$$

где функция $p_u^*(z)$ является решением уравнения (19), а функция $\phi^*(z)$ задается формулой (20). Решение $y^*(z)$ используется с целью получения методов оптимизации, обладающих быстрой сходимостью [7, 8].

Настройка констант уровня c_N проводится в соответствии с условием «неразрывности» и имеет следующий вид [4, 5, 11]

$$\begin{cases} c_{N} = \int_{\mathbb{R}^{N}} \hat{\Phi}[f(s)] p_{u_{N}}(s) ds = M[\hat{\Phi}(f(u_{N}))], \\ c^{*} = \int_{\mathbb{R}^{N}} \hat{\Phi}[f(s)] p_{u}^{*}(z) ds = M[\hat{\Phi}(f(u))], \\ N = 1, 2, 3... \end{cases}$$
(21)

Уравнения «типа регрессии» (21) могут быть решены, например, следующим образом

$$\begin{cases} c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{N,K})] \} - c_{N,K-1}, \\ c_{K}^{*} = c_{K-1}^{*} + \frac{1}{k} \{ \hat{\Phi}[f(s_{K}^{*})] - c_{K-1}^{*} \}, \end{cases}$$

$$c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{K}^{*})] - c_{K-1}^{*} \},$$

$$c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{N,K}^{*})] - c_{K-1}^{*} \},$$

$$c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{N,K}^{*})] - c_{N,K-1}^{*} \},$$

$$c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{N,K}^{*})] - c_{N,K-1}^{*} \},$$

$$c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{N,K}^{*})] - c_{N,K-1}^{*} \},$$

$$c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{N,K}^{*})] - c_{N,K-1}^{*} \},$$

$$c_{N,K} = c_{N,K} + \frac{1}{k} \{ \hat{\Phi}[f(s_{N,K}^{*})] - c_{N,K-1}^{*} \},$$

где (k=1,2,...), $|c_{1,0}|<\infty$, $|c_0|<\infty$. В формулах (22) через $c_{N,K}$ и c_K^* обозначены оценки констант уровня c_N и c^* соответственно, через $s_{N,K}$ и s_K^* обозначены реализации случайных векторов u_N и u^* с плотностями распределений $p_{u_N}(s)$ и $p_u^*(s)$, k=1,2,... для каждого N.

Аппроксимируем условное математическое ожидание одной реализацией соответствующего случайного вектора

$$y_{\scriptscriptstyle N}(z) = M[\theta_{\scriptscriptstyle N} Y_{\scriptscriptstyle N-1} \, / \, W_{\scriptscriptstyle N-1} Y_{\scriptscriptstyle N-1} = z\,] \approx \theta_{\scriptscriptstyle N} Y_{\scriptscriptstyle N-1}.$$
 Тогда

$$\theta_N Y_{N-1} \approx \nabla_z v_N(z) p_{W_{N-1} Y_{N-1}}^{-1}(z),$$
 (23)

где $z = W_{N-1}Y_{N-1}$.

Соответственно получим

$$\theta_N^* Y_{N-1} \approx \nabla_z \varphi^*(z) [p_{W_{N-1}^* Y_{N-1}}^{-1}(z)]^{-1},$$
 (24)

где $z = W_{N-1}^* Y_{N-1}$.

Из соотношений (23), (24) получаются ма-

трицы $\theta_{\scriptscriptstyle N}$ и $\theta_{\scriptscriptstyle \scriptscriptstyle N}^*$ вида

$$\begin{cases} \theta_{N} \approx [Y_{N}^{T} Y_{N}]^{-1} [Y_{N}^{T} \nabla_{z} v_{N}(z)] p_{W_{N-1} Y_{N-1}}^{-1}(z), \\ \theta_{N}^{*} \approx [Y_{N}^{T} Y_{N}]^{-1} [Y_{N}^{T} \nabla_{z} \varphi^{*}(z)] (p_{W_{N-1}^{*} Y_{N-1}}^{-1}(z))^{-1}. \end{cases} (25)$$

Таким образом, получены следующие формулы, позволяющие организовать оптимизационную процедуру

a)
$$W_N = W_{N-1} + \varepsilon_N [Y_N^T Y_N]^{-1} \times$$

 $\times [Y_N^T \nabla_z v_N(z)] p_{W_{N-1} Y_{N-1}}^{-1}(z),$ (26)

где $z=W_{N-1}Y_{N-1},\ Y_i=f(W_{i-1}Y_{i-1}),\ (i=1,2,3,...);$ $\left\|M(W_1)\right\|<\infty;$ потенциал $v_N(z)$ задается формулой (11),

мулой (11),
$$\nabla_z v_N(z) = \int_{\mathbb{R}^N} p_{u_N}(s) \nabla_z E(z,s) [\Phi(f(s)) - c_N] ds;$$

 c_N определяется процедурой (22);

6)
$$W_{N}^{*} = W_{N-1}^{*} + \varepsilon_{N} [Y_{N}^{T} Y_{N}]^{-1} \times$$

 $\times [Y_{N}^{T} \nabla_{z} \varphi^{*}(z^{*})] p_{W_{N-1}^{*} Y_{N-1}}^{-1}(z^{*}),$ (27)

где $z^* = W_{N-1}^* Y_{N-1}, Y_i = f(W_i^* Y_{i-1})$ (i = 1, 2, 3, ...); $\|M(W_i^*)\| < \infty;$ оптимальный потенциал $\varphi^*(z)$ задан формулой (20);

задан формулой (20);
$$\nabla_z \varphi^*(z) = \int_{R^N} \nabla_z E_q(z,s) p_u^*(s) [\hat{\Phi}(f(s)) - c^*] ds;$$

 c^* определяется процедурой (22).

Выбор числовой последовательности \mathcal{E}_N в рамках условий процедуры (3) может производиться различными способами [4, 5, 3, 11].

В качестве примера в [11] был предложен следующий способ

$$\varepsilon_{N+1} = \begin{cases} \varepsilon_N \gamma_1, & \text{если } \hat{\Phi}(f(z_N)) < \hat{\Phi}(f(z_{N-1})), \\ \varepsilon_N \gamma_2, & \text{если } \hat{\Phi}(f(z_N)) \ge \hat{\Phi}(f(z_{N-1})), \end{cases}$$

где $0 < \gamma_1 < 1; \ 0 < \gamma_2 < 1; \ \gamma_1$ выбирается эмпирически; γ_2 выбирается с учетом γ_1 из соотношения $\ln \gamma_2 = \lambda \ln \gamma_1$, где $\lambda < 0$.

Последовательность ε_N должна с необходимостью удовлетворять (3).

Условия сходимости и другие свойства методов оптимизации типа (26), (27) рассматривались в работах [7, 11, 8, 6].

ЗАКЛЮЧЕНИЕ

Основными преимуществами предлагаемых методов оптимизации (26), (27) перед традиционными, согласно [7, 11, 5, 8, 6, 4], являются их возможности, связанные с заменой

функции $\hat{\Phi}$ на потенциалы v и φ . Это позволило сконструировать градиентные методы (26) и (27) в негладкой задаче оптимизации (1)–(2). Здесь оптимальная настройка многослойного персептрона в смысле решения заосуществляется процессом перестройки матриц $W_{\scriptscriptstyle N}$ и $W_{\scriptscriptstyle N}^*$. Остальные соотношения являются необходимыми для построения таких матричных процессов. Структура многослойного персептрона (2) входит в (26) и (27) через аргументы z и z^* и плотности распределения $p_{W_{N-1}Y_{N-1}}(z)$ и $p_{W_{N-1}Y_{N-1}}^*(z)$. Поскольку при построении (27) использовалось соотношение оптимальности (18), то возможно достижение высокой скорости сходимости оценок (27) к своим предельным значениям.

В методах (26) и (27) не используется градиент функции $\hat{\Phi}$, поэтому по отношению к ней они являются поисковыми методами оптимизации. Для подхода, развитого в работах [3, 4, 5, 6, 7, 8, 11], характерно, что предлагаемые методы негладкой и нелокальной оптимизации могут использовать лишь информацию о значениях оптимизируемой функции $\hat{\Phi}$. Таким же свойством обладают и методы (26) и (27). Эти обстоятельства лишают предлагаемые методы недостатков, связанных с дифференцированием сигмоидных отображений и обнулением больших массивов матриц W_N , (n=1,2,3,...).

СПИСОК ЛИТЕРАТУРЫ

- 1. Каплинский, А. И. Об одном способе построения рандомизированных алгоритмов оптимизации / А. И. Каплинский, А. Е. Лимарев // Вопр. кибернетики: Случайный поиск в задачах оптимизации, 1978. М. С.13–17.
- 2. *Каплинский*, *А. И.* Построение рандомизированных алгоритмов оптимизации / А. И. Каплинский, А. Е. Лимарев, Г. Д. Чернышова // Проблемы случайного поиска. Рига: Изд-во Зинатне, 1980. Вып. 8. С. 63–91.
- 3. *Каплинский*, *А. И.* Об одном способе построения рандомизированных алгоритмов / А. И. Каплинский, А. М. Песин. М.: Из-во Автоматика и телемеханика, 1982. № 12. С. 65–75.
 - 4. Каплинский, А. И. Вариационный под-

ход к построению нелокальных алгоритмов оптимизации: препринт / А. И. Каплинский, А. И. Пропой. – М.: ВНИИСИ, 1986.

- 5. *Каплинский, А. И.* О градиентной основе нелокального поиска, использующего теорию потенциала / А. И. Каплинский, А. И. Пропой // Задачи и методы оптимального моделирования. М.: ВНИИСИ, 1989.
- 6. Каплинский, А. И. Нелокальные алгоритмы поиска оптимальных решений / А. И. Каплинский, А. М. Песин // Оптимизация и моделирование в автоматизированных системах, 1991. Воронеж : Изд-во Воронеж. политехн. ин-та. С. 18–26.
- 7. *Песин*, *А*. *М*. Построение новых методов оптимизации на основе уравнений квантовой механики и математической физики / А. М. Песин. Деп. ВИМИ, 28 февраля 1991 г., №ДО8340. 30 с.
 - 8. Каплинский, А. И. О методах нелокаль-

Каплинский А. И. – канд. техн. наук, доцент, доцент кафедры технической кибернетики и автоматического регулирования факультета ПММ Воронежского государственного университета.

Песин А. М. – канд. техн. наук, доцент, доцент кафедры технической кибернетики и автоматического регулирования факультета ПММ Воронежского государственного университета.

ного поиска / А. И. Каплинский, А. М. Песин, А. И. Пропой // Модели и методы оптимизации. – М. : ВНИИСИ, 1991. – Вып. 13. – С. 35–46.

- 9. Cybenko, G. Approximation by superpositions of a sigmoidal functions. Univ. of Illinois, 1988.
- 10. Физика за рубежом // Сборн. статей. Серия «А». М.: Мир, 1991.
- 11. *Каплинский*, *А. И.* Конструирование вычислительных алгоритмов нелокального поиска, использующих теорию потенциала / А. И. Каплинский, А. И. Пропой // препринт. М.: ВНИИСИ, 1990. 29 с.
- 12. *Hunt*, *K. J.* Neural networks for control systems A Survey / K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J. Gawthrop // Automatica, 1992. Vol. 28, No 6. P. 1083–1112.

Kaplinskyi A. I. – Ph.D., Associate Professor, Department of Technical Cybernetics and Automatic Regulation, Voronezh State University.

Pesin A. M. – Ph.D., Associate Professor, Department of Technical Cybernetics and Automatic Regulation, Voronezh State University.