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Annotation. The alarming level of air pollution in urban centres is an urgent threat to human 
health. Its consequences can be measured in terms of health issues experienced by children, an 
increasing numbers of heart and lung diseases, and, most importantly, the number of pollution 
related deaths. That is why a lot of attention has recently been paid to air pollution monitoring 
and prediction modelling. In order to develop prediction models, the study uses Support Vec-
tor Machines (SVM) with linear, polynomial, radial base function, normalised polynomial, and 
Pearson VII function kernels to predict the hourly concentration of pollutants in the air. The 
paper analyses the monitoring dataset of air pollutants and meteorological parameters as input 
variable to predict the concentrations of various air pollutants. The prediction performance of 
the models was assessed by using evaluation metrics, namely the correlation coefficient, root 
mean squared error, relative absolute error, and relative root squared error. To validate the model, 
the accuracy of the predictive algorithm was tested against two widely and commonly applied 
regression approaches called multilayer perceptron and linear regression. Furthermore, back 
check prediction test was performed to examine the consistency of the models. According to 
the results, the Pearson VII function and normalised polynomial kernel yield the most accurate 
results in terms of the correlation coefficient and error values to predict the concentrations of 
atmospheric pollutants as compared to other SVM kernels and traditional prediction models.
Keywords: Support Vector Machines, pollution prediction modelling, Pearson VII universal ker-
nel, normalised polynomial kernel, linear kernel, multilayer perceptron, linear regression.
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INTRODUCTION

According to World Health organization 
(WHO) air pollution is a biggest health risk be-
cause besides killing millions of people every 
year, it shortens the life expectancy as well [1]. In 
view of a report from American Lung Associa-
tion [2], it is concluded that: a) a slight increase of 
10 parts per billion (ppb) in Ozone (O3) mixing 
can cause over 3700 premature deaths; b) the in-
creased concentrations of PM2.5 in air has a seri-
ous concern because, these particles due to their 

tiny size can deposit into the wind pipe and lung 
exchange region called as alveoli, and c) SO2 is 
also an important precursor due to its strong as-
sociation with respiratory diseases [3]. Crossing a 
certain limit, all air pollutants become dangerous 
to human health, however, due to number of rea-
sons atmospheric concentrations of SO2 and NO2 
in particular are considered extremely harmful 
to public health because a short exposure to such 
pollutants can aggravate human respiratory sys-
tem [4]. Therefore, for air quality management 
and effective policy making, besides strict mon-
itoring, the development of accurate prediction 
models is equally essential.
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According to several studies, environmental 
parameters, regional and synoptic meteorology 
can seriously influence air pollutant concentra-
tions [5]. For example the ground level O3 con-
centration over Chicago according to Holloway 
[6] is sensitive to air temperature, wind speed and 
direction, relative humidity, incoming solar radi-
ation, and cloud cover. Various meteorological 
compositions and their interaction with light are 
important e.g. higher ambient temperature and 
solar intensity speed up photochemical reactions 
which lead to the formation of air pollutants, 
likewise wind speed and humidity can directly 
affect air pollutants dispersion [7]. 

Pollution prediction modelling deals with 
the concentration of atmospheric gases and their 
connection with the regional meteorological pa-
rameters for scientific application [8]. It helps in 
measuring the level of air pollution and assesses 
its impact on living beings [9]. Considering the 
strong association of emission sources with air 
pollutants as well as with regional and meteor-
ological parameters, the role of such models is 
indispensable [10]. Because not just they help de-
termining the actual emission sources, but future 
mitigation solutions is the other major contribu-
tion of such models [11].

There are two types of approaches which 
regulate atmospheric concentration of air pollu-
tion: a) Chemical Transport Models (CTMs) and 
b) data driven approaches. CTMs generally deal 
with the emission process, mixing and transpor-
tation of atmospheric gases with respect to the 
regional weather parameters [12]. These models 
are based on multiprocessing techniques which 
use real time and updated emission and meteor-
ological records. However, the implementation of 
such models at times is held by the lack of prima-
ry emission and meteorological data in areas with 
initial boundary conditions [13]. No doubt the 
accuracy achieved by regression based models is 
reasonable, however, several studies revealed that 
non-linear behaviour of air pollutants and other 
influential regional features leads to a complex 
system of pollution especially in regions with 
complex terrain. And traditional deterministic 
models find it difficult to capture this non-line-
ar complex system of air pollution [14]. There-
fore, to deal with these problems, data driven ap-

proaches based on machine learning such as Ar-
tificial Neural Networks (ANN), and SVM seem 
promising for their ability to efficiently overcome 
the issue of non-linearity. These approaches are 
generally based on statistical techniques using 
historical data to make future predictions. These 
models are trained by using emission data, me-
teorological conditions, land use, anthropogenic 
activity etc. [15].

Literature review conducted in the context of 
this study suggest that recent researches in the 
field of environment science based on machine 
learning techniques such as ANNs, SVM etc. 
show a superior predictive performances over 
classic statistical models without knowing the 
chemical mixing, dispersion and transportation 
details of atmospheric gases [16–19]. It further 
revealed that, though traditional machine learn-
ing tools are able to handle non-linearity and 
complexity of emission datasets, however, ANNs 
based algorithms usually fall in traps of overfit-
ting, local minima and best network architec-
ture [20, 21]. Therefore, SVMs based algorithms 
can be used as alternative approaches, for their 
capability to deal with drawbacks of ANNs [22, 
23]. Although these techniques are more efficient 
and reported to have promising performances 
in other research areas for prediction purposes, 
however, a lack of research using SVM based on 
different kernels especially Pearson VII Universal 
and normalized polynomial Kernel Functions in 
the field of atmospheric pollution modelling was 
identified. 

Following the observations, the work com-
prehensively inspects about the performance of 
SVMs under different kernels against the leading 
regression approaches based on classic statistical 
and traditional machine learning algorithms.

1. RESEARCH METHODS
1.1. Study area

Kazakhstan is a growing economy. It gener-
ally relies on natural resource extraction such as 
oil and natural gas. It has a long history of en-
vironmental issues. After 28 years of independ-
ence, air pollution in most cities remains one of 
the major urban problem of the country. During 
recent years, air pollution has become a key focus 
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due to its serious health effects. Due to the direct 
involvement of NO2 and SO2 concentrations in 
Air Quality Index value both are deemed to be 
extremely dangerous for human health. Hence, 
the accurate prediction will help policy makers to 
take precautionary measures and formulate effec-
tive policies in time.

1.2. Data collection and pre-processing

The study makes use of historical atmospher-
ic dataset gathered in Ust-Kamenogorsk — an 
administrative centre located in East Kazakh-
stan where several air quality and meteorologi-
cal monitoring stations are installed. The dataset 
was provided by the Institute of Industrial Ecol-
ogy Ural branch Russian Academy of Science. 
The datasets were recorded at 8 air monitoring 
sites located near Gastello Street (station 1), Del-
egatskaya Street (station 2), Kazakhstan Street 
(station 3), Auezov Avenue (station 4), Pogran-
ichnaya street (station 5), Kuybysheva Street (sta-
tion 6), Mendeleev Street (station 7), and Abay 
Avenue (station 8). These monitoring stations 
measure the concentration of various pollutants 
such as nitrogen dioxide (NO2), carbon monox-
ide (CO), Sulphur dioxide (SO2), hydrochloric 
acid (HCl), Formaldehyde (HCOH) and total hy-
drocarbon amount (CXHY). Since, wind speed 
and wind direction are reported to have a vital 
role in the transportation of pollutants, while 
regional temperature, precipitation and relative 
humidity aid the chemical mixing and dilution 
of air pollutants, therefore under this work me-
teorological records gathered at a meteorological 
station near Astana Agro-technika building were 
also taken into account. It captures wind speed 
(m/s), wind direction (degree), amount of pre-
cipitation (mm/h), ambient temperature (°C), 
relative humidity (%), and atmospheric pressure 
(mm-Hg).

A careful preliminary analysis unearthed sev-
eral important features of the dataset e.g. the con-
centration values of CXHY were very low to be 
considered for pollution modelling, and atmos-
pheric pressure values recorded during the study 
period were more or less static, therefore, for pre-
diction modelling features considered include; 
(1) concentration of SO2; (2) concentration of 

NO2; (3) concentration of CO; (4) concentration 
of HCl; (5) concentration of HCOH; (6) ambient 
temperature; (7) wind speed; (8) wind direction; 
(9) amount of Precipitation; and (10) relative 
humidity, to characterize the hourly concentra-
tions of air pollutants. Moreover it was observed 
that around 9 % meteorological values are miss-
ing, and a number of outliers were found in air 
quality dataset. Which necessitates the thorough 
cleaning of the data. Prior to in-depth cleaning, 
incomplete/missing values with discrepancies 
were carefully replaced, whereas the noisy data 
containing outliers were also removed. After data 
pre-processing a dataset containing 18000 in-
stances were prepared for modelling. Lastly the 
dataset were split into two subsets containing 
80 % – 20 % of instances for training and testing 
purpose respectively.

1.3. Experiment setting

Support vector machines are one of the best 
and widely known data mining tools for solving 
problems related to classification and regression. 
The technique works on a principle of optimizing 
hyperplane in a kernel to maximize the bounda-
ry between two classes. To achieve the maximum 
margin, hyper-parameters (or kernel parameters) 
are need to be selected carefully. These hyper-pa-
rameter the hyperplane/boundary line largely de-
pend on the selection and value of support vectors.

In order to classify non-linear behaviour of a 
data point, SVMs generally adopts a kernel trick. 
Different kernels have different nonlinear map-
ping prospects which implies that SVM perfor-
mances are often hindered by the right choice of 
the kernel. A number of such kernels are com-
monly adopted for regression purposes, however, 
this work only analyses the prediction perfor-
mances of linear, polynomial, normalized poly-
nomial, Gaussian radial basis function (RBF), 
and Pearson VII universal function kernel 
(PUFK) by using the equations (1)–(4) respec-
tively. While the prediction performances of clas-
sifiers were evaluated on the basis of predicted 
and observed concentration value of pollutants 
obtained from test dataset by using evaluation 
measures such as Coefficient of Determination 

2( ),R  Root Mean Squared Error (RMSE), Relative 



8 PROCEEDINGS OF VSU, SERIES: SYSTEMS ANALYSIS AND INFORMATION TECHNOLOGIES, 2020, № 3

A. Masih, A. N. Medvedev

Absolute Error (RAE) and Relative Root Squared 
Error (RRSE) by following equations (5)–(8);
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where ,a b R∈ , d  is the degree of polynomial; 
γ  is the peak height at the center, σ  is the tailing 
factor of the peak and ω  is the Pearson width in 
equations (2)–(5). 
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where iy  and ix  are predicted and observed val-
ues respectively; x  and y  are the averages of tar-
geted and predicted values respectively and n is 
the index number in equations (6)–(9). 

For a fair prediction modelling, an appropri-
ate adjustment of kernel parameters is a key to 
efficient performance of SVM kernels therefore, 
kernel parameters such a degree ( )d  for polyno-
mial kernel, γ  — width selection for RBF kernel 
and optimal selection of σ  and ω  for PUFK, all 
were fairly accustomed by using a technique 
called “grid search” during data training. The 
technique is known to determine the optimal val-
ues for all SVM parameters over a specified search 
range, hence, the study reports the best predic-

tion results achieved under different SVM based 
algorithms. All prediction models were trained 
and tested following a train/test ratio of 80 %–20 
% respectively. While, to evaluate the proficiency 
of the adopted prediction models the experimen-
tal design calculates Correlation Coefficient 2( )R  
and error different error values like RMSE, RAE 
and RRSE. 

Like SVM, study also employs Multilayer 
Perceptron (MLP) because, it is a supervised ma-
chine learning algorithm ranked among the list 
of top current age algorithms used for classifi-
cation and regression purposes. The approach is 
robust having several eye-catching characteristics 
such as big datasets management and generaliza-
tion abilities etc. Therefore, the study is aimed at 
a comprehensive investigation involving the de-
velopment of several SVM based algorithm using 
different kernels. 

The main contributions of the work include; 
(1) the application of SVM using PUFK function 
to predict atmospheric concentration of air pol-
lutants  in Ust-Kamenogorsk region; (2) the pre-
diction performance comparison of SVMs with 
other well-known classic machine learning tools 
such as LR, MLP and SVMs.

2. RESULTS
2.1. Model Evaluation

Different support vector machine kernels have 
successfully applied in a number of fields like tex-
tile, electricity, bioinformatics, and atmospheric 
sciences etc. for various purposes such as regres-
sion analysis, time series prediction, condition 
monitoring, optimal control and fault diagnosis 
[23–27]. However, the review conducted suggest 
that the application of Pearson VII Universal 
function kernel and normalized polynomial ker-
nel in environmental sciences have been limited 
especially for the prediction of air pollutant con-
centrations. Therefore, the work is aimed at as-
sessing the prediction accuracies of SVM kernels, 
PUFK in particular, against other kernels such as 
RBF and polynomial and normalized polynomi-
al kernels as well as the most commonly adopted 
approaches i.e. MLP and LR.

Besides choosing the right pollutants and en-
vironmental factors, to develop a robust predic-
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tion model, the work also considers the fine tun-
ing of all SVM kernel parameters and a careful 
selection of network architecture for MLP prior 
to data modelling. For example, during RBF pa-
rameter optimization 0.01γ =  produced a fine 
accuracy, similarly, SVM with PUFK best per-
formed with 1.2σ =  and 2.01ω =  whereas pol-
ynomial and normalized polynomial kernels 
were assessed at 2d = .

Similarly, for MLP a series of trails were per-
formed to determine the number of neurons in 
hidden layer, while the optimization of MLP was 
carried under 80 % training and 20 % testing data 
points. The initial MLP architecture uses 10 in-
put variables, having 5 neurons in hidden layer, 
learning rate equal to 0.3, moment coefficient of 
0.2 and the number of epochs =500 to predict the 
concentration of gaseous pollutants. 

Table 1. Predictive performances of MLP, LR and SVMs using various kernels
SVM performance under different kernels

MLP LR
Linear Polynomial PUFK RBF Normalized 

polynomial

Station 1

SO2

2R 0.8022 0.9143 0.9767 0.8703 0.9484 0.9557 0.7749

RMSE 0.0164 0.011 0.0059 0.0141 0.0086 0.0094 0.0177
RAE 44.9462 27.7634 17.7485 47.832 26.2675 30.468 48.751
RRSE 60.9271 40.8141 21.87 52.5722 32.1015 31.6128 65.7607

NO2

2R 0.8993 0.8994 0.9544 0.9104 0.9496 0.9388 0.906

RMSE 0.003 0.003 0.002 0.0028 0.0021 0.003 0.0029
RAE 39.072 39.1148 23.4966 36.8143 26.3928 42.0521 40.7934
RRSE 44.3209 41.5676 29.7657 41.4243 31.3837 39.9076 43.1971

Station 3

SO2

2R 0.8993 0.8994 0.9544 0.9104 0.9496 0.9388 0.906

RMSE 0.003 0.003 0.002 0.0028 0.0021 0.003 0.0029
RAE 39.072 39.1148 23.4966 36.8143 26.3928 42.0521 40.7934
RRSE 44.3209 41.5676 29.7657 41.4243 31.3837 39.9076 43.1971

NO2

2R 0.8717 0.8715 0.925 0.8628 0.9278 0.8646 0.889

RMSE 0.0049 0.0049 0.0038 0.005 0.0037 0.005 0.0045
RAE 43.7042 43.7753 35.1922 45.0235 34.0623 45.5328 44.738
RRSE 49.3905 49.4538 37.8584 50.3213 37.1364 50.4308 45.5383

Station 6

SO2

2R 0.7407 0.6267 0.782 0.7567 0.782 0.7718 0.7591

RMSE 0.0098 0.0127 0.0091 0.0096 0.0091 0.0096 0.0095
RAE 52.1616 51.036 42.2638 50.5722 39.3236 53.3295 52.4193
RRSE 67.527 87.1683 62.3441 65.9006 62.8419 66.1719 65.1206

NO2

2R 0.6471 0.7765 0.794 0.6564 0.7832 0.7156 0.7144

RMSE 0.036 0.0304 0.0285 0.0366 0.0292 0.0378 0.0328
RAE 56.8884 45.7197 42.9555 56.0728 46.2838 83.8154 67.0048
RRSE 76.7554 64.8455 60.6465 78.018 62.1944 80.5678 70.0049
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The accuracy performances of all classifiers to 
predict air pollutant concentrations are presented 
in table 1. It is a fact that the prediction perfor-
mance of an algorithm is largely dependent upon 
predictive variables, nonetheless, results com-
piled in table 1 are evident that overall SVM with 
PUFK has clearly achieved better performances 
in terms of high correlation coefficient and low 
error values as compared to other widely adopt-
ed prediction models. It reflects the superiority of 
PUFK to grasp the complex relationship between 
air pollutants and meteorological records to make 
precise future predictions regarding air pollution. 
Normalized polynomial kernel with slightly low 
accuracy has registered the second best perfor-
mance, while the performances of LR, SVM with 
linear and polynomial kernels were mediocre

Considering the practical application of 
PUFK in air pollution modelling, its prediction 
performance was tested using different test data-
sets acquired at 3 different monitoring locations 
to predict two different air pollutants namely 
SO2 and NO2. It is recognizable from the table 1 
that SVM based on PUFK is the only modelling 
approach that is steady with top performances 
regardless the type of pollutant predicted or lo-
cation of the test dataset used. While the perfor-
mance of other algorithms to predict air pollut-
ants remained wobbly with respect to the chang-
ing test dataset. The prediction model using nor-
malized polynomial kernel and MLP have shown 
some notable performances to accurately predict 

the concentration of both the air pollutants at a 
number of occasions for example (1) at station 3, 
the normalized polynomial kernel has achieved 
an accuracy of 96.6 % to predict SO2 that is nearly 
equal to what PUFK has accomplished (97.05 %) 
at this station; (2) normalized polynomial kernel’s 
accuracy to predict NO2 concentrations (92.8 
%) was slightly better than that of PUFK which 
yielded 92.5 % accuracy; (3) whereas at station 
1 normalized polynomial kernel shared almost a 
similar performance like PUFK to measure the 
concentration value of NO2 yet another time; (4) 
and lastly both MLP and normalized polynomi-
al kernel have secured the second and third best 
spots by predicting atmospheric concentration 
values of SO2 with a precision equal to 95.5 % and 
94.5 % respectively. However, the prediction per-
formance of SVM having PUFK kernel remains 
the best with highest correlation coefficient val-
ues that no other algorithm selected under this 
study could achieve at all 3 test data stations.

In order to clearly see the overall performance 
of each model the author draws an average of cor-
relation coefficient value using results obtained 
from 3 test stations to predict the amount of SO2 
and NO2 in air as presented in Fig 1. It shows that 
on average the prediction accuracy attained by 
employing PUFK kernel in support vector ma-
chines is the best to predict SO2 concentrations 
with 2 0.91R =  followed by normalized polyno-
mial kernel with an average 2R  value equal to 
0.90. On the other hand, to predict the exact con-

Fig. 1. Averaged R2 value of 3 test data stations achieved by different prediction models
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centration of NO2 in air, PUFK and normalized 
polynomial kernels have shown an analogous ef-
ficiency with coefficient value 0.89 which is sig-
nificantly better than that of other algorithms se-
lected under this work. Although MLP have also 
shown a character to predict SO2 with a reasona-
ble coefficient of determination value 0.89 that is 
not far behind what PUFK and normalized poly-
nomial kernel have attained, however it fails to 
continue its run to make an equally efficient pre-
diction of NO2 concentrations. Interestingly, to 
predict NO2 concentrations, the average accura-
cies accomplished by polynomial kernel (0.85) is 

better than LR (0.84) and is exactly equal to that 
of MLP accuracy i.e. 0.84.

In addition to accuracy measurements, al-
gorithm performances with respect to three im-
portant error functions called RMSE, RAE, and 
RRSE were also gauged using equations (8), (9) 
and (10). The section analyses the average error 
values of RMSE, RAE and RRSE to predict pol-
lutant concentrations of SO2 and NO2 drawn 
under different algorithms. The data present-
ed in Fig. 2 indicate that, PUFK based predic-
tion model uphold the top spot for having low-
est error values (RMSE = 0.009, RAE = 31.1 %, 

Fig. 2. Averaged RMSE and RAE achieved to predict SO2 and NO2

Fig. 3. Prediction performance of different algorithms with respect to data station records
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RRSE = 39.5 %). Normalized polynomial kernel 
shares an equal RMSE value i.e. 0.009 with PUFK, 
but due to its relatively high RAE and RRSE val-
ues of 33.3 % and 41.9 % respectively as compared 
to PUFK, the kernel earns the second position. 
No doubt the performance chart of MLP present-
ed in Fig. 1 is reasonably good, but Fig. 2 reflects 
that its error values are listed among the bottom 
performers like LR, SVMs with linear, RBF and 
polynomial kernels.

2.2. Back propagation test

Since more attributes in a dataset make it 
more difficult for an algorithm to correctly learn 
the complicated relationship of input and output 
variables. Therefore, In view of back check predic-
tion or self-consistency test the study divides the 
above main dataset of 17,216 instances (acquired 
at 8 pollution monitoring stations) into 5 sub-da-
tasets for 5 different tests using data collected at 
monitoring stations 1, 2, 4, 6, and 8 respectively. 
In other words, besides embracing meteorolog-
ical data, 1st test only uses the data gathered at 
station 1 i.e. 2152 to predict the amount pollut-
ants in air, 2nd test assesses the prediction per-
formance of algorithms based on 2 stations data 
(4304 instances). Similarly, next tests (i.e. 3rd, 4th 
and 5th) train pollution records obtained from 4, 
6 and 8 stations having data instances equal to 
8608, 12912 and 17216 instances respectively, to 
construct prediction models. The test was aimed 
at examining the consistency of MLP, LR, SVM 
based PUFK, RBF, normalized polynomial and 
polynomial kernels to predict the concentration 
of SO2 and NO2 present in air.

It is important to note that, the results pre-
sented in Fig. 3 display the average correlation 
coefficient value obtained to predict NO2 and SO2 
concentrations acquired by different modelling 
schemes. It visibly demonstrates the pure dom-
inance, character, and consistency of SVM algo-
rithm attained by Pearson VII Universal Func-
tion Kernel to predict the atmospheric concen-
tration of air pollutants namely SO2 and NO2 with 
high accuracy, low variance and low error values 
irrespective the size of the dataset. Under simi-
lar circumstances other algorithms have under-
performed. The prediction performance of nor-

malized polynomial kernel is comparatively low 
during first experiment when 1 station’s dataset 
were taken into account, however, the consistent 
upward trend, and smoothness of the curve is an 
answer to why the kernel should be rendered as 
the second best model in this specific experiment 
setting. Although overall SVM with RBF kernel 
hasn’t done well nevertheless the sleekness of its 
curve confirms the stability of the kernel with the 
increased data instances. Fig. 3 also illustrates the 
inability of LR and linear kernel to capture the 
non-linear behavior between input and output 
predictors when size of the data is big. Admitting 
to the fact that the performance of MLP algorithm 
has been average, yet it has shown multiple times 
i.e. table 1, Fig. 1 and 3, that, the algorithm is ca-
pable of attaining a realistically high correlation 
coefficient value irrespective of the type of the 
modelling schemes adopted and varying size of 
the dataset. Contrary to that, it was quite strange 
to see the high enough error values produced by 
MLP algorithm (Fig. 2) due to which it could be 
categorized among the models with worst predic-
tion accuracies such as linear regression, SVMs 
using linear, polynomial, and RBF kernels, hence 
confines its adoption for pragmatic purposes.

CONCLUSIONS

In this work 7 prediction models namely LR, 
MLP, SVMs using PUFK, RBF, linear, polynomial, 
and normalized polynomial kernels were devel-
oped. The study uses air pollutants data of NO2, 
SO2, CO, HCl, and CHOH gathered at 8 different 
monitoring stations and weather-related regional 
parameters such as ambient temperature, wind 
speed, wind direction, amount of precipitation, 
relative humidity, and atmospheric pressure to 
predict the atmospheric concentration of NO2, 
and SO2. The results obtained suggest that overall 
support vector machine using Pearson VII Uni-
versal Function Kernel has the characteristics of 
predicting atmospheric concentration of SO2 and 
NO2 with high accuracy, low error values and low 
overfitting probability. The work also affirms that, 
PUFK can outsmart both classic (LR) as well as 
the state of the art machine learning algorithms 
such as MLP and SVM having polynomial, nor-
malized polynomial and RBF kernels adopted, 



13ВЕСТНИК ВГУ, СЕРИЯ: СИСТЕМНЫЙ АНАЛИЗ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, 2020, № 3

Evaluating the performance of support vector machines based on different kernel methods...

irrespective of data size or type of modelling tech-
nique applied. Normalized polynomial and MLP 
both have shown high accuracies under specific 
conditions but MLP doesn’t qualify to the list of 
best predictors for overtraining and producing a 
significantly high error values. Other notable ob-
servations of the work include the winning per-
formances of normalized polynomial kernel at 
occasions to predict the concentration of NO2 and 
SO2 with high accuracy, and finally the stability of 
RBF and PUFK kernels which remained fascinat-
ingly steady and solid during consistency test.
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