

ОРИГИНАЛЬНЫЕ СТАТЬИ

Научная статья УДК 541.1+628.16 doi: 10.17308/sorpchrom.2022.22/10887

Самоподдерживающиеся процессы умягчения-опреснения подземной солоноватой воды

Андрей Гаральдович Прудковский^{1⊠}, Руслан Хажсетович Хамизов¹, Ирина Владимировна Комарова¹, Надежда Константиновна Галкина¹

¹Институт геохимии и аналитической химии им. В.И. Вернадского Российской Академии наук, Москва, Россия, prudkovsky@gmail.com[⊠]

Аннотация. В работе с помощью численных экспериментов, включающих большое количество взаимосвязанных последовательных циклических процессов сорбции-регенерации на сильнокислотном катионите, смоделирована технологическая схема самоподдерживающегося процесса умягчения-опреснения многокомпонентного раствора, моделирующего состав реальной подземной солоноватой воды. Такие воды, содержащие в качестве макрокомпонентов катионы натрия, калия, кальция и магния, а также хлоридные, сульфатные и бикарбонатные анионы, распространены в природе, например, в подземных источниках Крымского полуострова. Несмотря на слабую солёность, они, тем не менее, не пригодны не только в качестве питьевой, но даже и в качестве технической для полива. В работе рассмотрен дешёвый безреагентный способ очистки подобной воды, в котором в качестве раствора для регенерации сорбционной колонны в каждом цикле используется рассол, оставшийся после опреснения. Наличие сульфатов создаёт дополнительные сложности в проведении процессов ионообменного умягчения и опреснения, так как, во-первых, в исходном растворе образуются молекулярные комплексы сернокислого магния и кальция, а во-вторых, в камерах концентрирования опреснителя может происходить отложение малорастворимых солей сульфата кальция. В связи с этим возникает необходимость удаления сульфатов, что проводится с помощью нанофильтрационных мембран, задерживающих двухзарядные ионы. Концентрат после нанофильтрации может быть использован для производства удобрений, а пермеат подаётся на опреснитель. Кроме того, в работе исследованы режимы опреснения и уточнена зависимость критерия существования самоподдерживающего процесса умягчения-опреснения от концентрации регенерационного раствора, получаемого после опреснителя.

Ключевые слова: самоподдерживающиеся процессы, умягчение, опреснение, катионит, сорбция, регенерация, стационарный режим.

Для цитирования: Прудковский А.Г., Хамизов Р.Х., Комарова И.В., Галкина Н.К. Самоподдерживающиеся процессы умягчения-опреснения подземной солоноватой воды // Сорбционные и хроматографические процессы. 2022. Т. 22, № 6. С. 804-815. https://doi.org/10.17308/sorpchrom.2022.22/10887

Original article

Self-sustaining processes for the softening and desalination of underground brackish water

Andrey G. Prudnikovsky^{1™}, Ruslan Kh. Khamisov¹,

Irina V. Komarova¹, Nadezhda K. Galkina¹

¹Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation, prudkovsky@gmail.com[⊠]

Abstract. This work describes numerical experiments involving a large number of interconnected successive cyclic sorption-regeneration processes on a strongly acidic cation exchanger. These experiments were used to develop a process flow for a self-sustaining process for the softening and desalination of a multicomponent

solution simulating the composition of real underground brackish water. Such water, whose macrocomponents include sodium, potassium, calcium, and magnesium cations, as well as chloride, sulphate, and bicarbonate anions, are common in nature, for example, in the underground springs of the Crimean peninsula. Despite their low salinity, nonetheless, they are not suitable neither for drinking, nor for irrigation. The paper considers a cheap reagent-free method for purifying such water, which uses the brine left after desalination as solution for regenerating the sorption column in each cycle. The presence of sulphates makes ion-exchange softening and desalination processes more challenging, since, firstly, molecular complexes of calcium and magnesium sulphate are formed in the initial solution, and secondly, low-soluble calcium sulphate salts can be deposited in the distiller concentrate compartments. Therefore, it is necessary to remove sulphates with the help of nanofil-tration membranes that retain two-charged ions. The concentrate left after nanofiltration can be used for the production of fertilizers, while the permeate is fed to the destiller. In addition, the paper investigates desalination modes and clarifies the dependence of the presence of the self-sustaining process for softening and desalination on the concentration of the regeneration solution obtained after the destiller.

Keywords: self-sustaining processes, softening, desalination, cation exchanger, sorption, regeneration, stationary mode.

For citation: Prudnikovsky A.G., Khamisov R.Kh., Komarova I.V., Galkina N.K. Self-sustaining processes for the softening and desalination of underground brackish water. *Sorbtsionnye i khromatograficheskie protsessy*. 2022. 22(6): 804-815. (In Russ.). https://doi.org/10.17308/sorpchrom.2022.22/10887

Введение

В настоящей работе на основе математического моделирования взаимосвязанных циклических ионообменных процессов исследована возможность организации стационарных самоподдерживающихся (СМП-процессов) умягчения – опреснения соленых вод. Интерес к подобным процессам связан с поиском технологических возможностей создания систем водоподготовки нового поколения, например, мобильных автономных установок или систем с высокой степенью извлечения пресной воды и концентрирования рассола [1-4]. Такой поиск практически невозможно провести с помощью обычных экспериментов, которые заняли бы много времени и привели бы к больтрудозатратам. В предыдущих ШИМ наших работах, посвященных переработке морской воды [1, 2] и солоноватых подземных вод [3-5], рассмотрены фундаментальные основы самоподдерживающихся процессов с использованием катионообменников различного типа. В настоящей статье приведен расчет условий реализации СМП-процесса для реальной подземной солоноватой воды Крымского региона, состав которой представлен в таблице 1.

Из таблицы 1 следует, что концентрация сульфат ионов в солоноватой воде соизмерима с содержанием их в рассмотренных нами ранее модельных растворах, а состав воды отличается наличием в ней катионов магния и калия, а также аниона бикарбоната. Особенность данной системы заключается в том, что в процессе сорбции наряду с присутствием в растворе ионов магния и кальция присутствуют комплексы CaSO4 и MgSO4.

Такая вода с небольшой вариацией соотношения компонентов является типичной для многих подземных источников, но она напрямую не может быть использована для употребления в пищу или для полива. Важной проблемой является организация наиболее дешёвого способа очистки подобной воды, желательно, без использования вспомогательных реагентов.

На рис.1 предложена схема установки для реализации самоподдерживающего процесса очистки подобной воды. Наличие в подобной воде заметной концентрации сульфат-ионов соизмеримой с содержанием катионов магния и кальция приводит к необходимости учитывать в расчётах существование молекулярных комплексов CaSO4 и MgSO4.

Теоретическая часть

<u>Алгоритм моделирования процессов</u> <u>сорбции.</u> Все особенности современных промышленных ионообменных процессов в настоящее время реализованы в Сорбционные и хроматографические процессы. 2022. Т. 22, № 6. С. 804-815. Sorbtsionnye i khromatograficheskie protsessy. 2022. Vol. 22, No 6. pp. 804-815.

ISSN 1680-0613

Рис. 1. Схема виртуальной установки для численных экспериментов по СМП-процессу. Модули: 1 – Na-катионирования, 2 – нанофильтрации, 3 – опреснения; 4-6 – ёмкости: 4 – умягченной воды, 5 – регенерирующего раствора, 6 – раствора, вытесняемого из слоя катионита. Потоки: I – исходная вода, II – вытесняемый из слоя раствор, III – умягченная вода, IV – опресненная вода, V – концентрат после опреснителя; VI – регенерирующий раствор, VII – сброс, VIII – концентрат нанофильтрации.

Fig. 1. Diagram of the virtual installation for numerical experiments regarding the self-sustaining process. Modules: (1) Na-cationisation, (2) nanofiltration, (3) desalination; (4-6) tanks: (4) for the tempered water, (5) for the regeneration solution, (6) for the solution forced out from the cation exchanger layer. Flows: (I) initial water, (II) solution forced out from the layer, (III) softened water, (IV) desalinated water, (V) concentrate after the destiller; (VI) regeneration solution, (VII) discharge, (VIII) nanofiltration concentrate.

Концентрации ионов	^I Cl ⁻	SO4 ²⁻	HCO3 ⁻	Na^+	Mg^{2+}	Ca^{2+}	$K^{\scriptscriptstyle +}$
моль-экв/дм ³	0.025	0.0195	0.0023	0.0431	0.0002	0.0029	0.0006
моль/дм ³	0.025	0.00975	0.0028	0.0431	0.0001	0.00145	0.0006
<u>г</u> /дм ³	0.886	0.936	0.168	0.9913	0.00243	0.058	0.02346

Таблица 1. Состав реальной солоноватой воды Table 1. Composition of real brackish water

программе послойного счета [5], которая позволяет проводить расчёты технологических циклов, состоящих из стадий сорбции, взрыхления, регенерации и отмывки на многоколоночной системе фильтров в многокомпонентных системах при переменных условиях на входе. Алгоритм расчета СМП-процессов также использует послойную модель для расчёта процесса сорбции и регенерации с определенными вариациями, показанными в работе [6]. Для послойного счёта необходимо выбрать шаг по времени Δt , определяющий величину порции, и шаг по длине колонки Δx , определяющий величину слоя из расчета установления равновесия на каждом шаге. В случае ионообменных сорбентов с сильнокислотными функциональными группами типа КУ-2 и сильноосновными группами типа AB-17, которые традиционно участвуют в наших модельных расчётах, процесс сорбции из слабоконцентрированных растворов как правило управляется внешней диффузией, характерное время установления равновесия можно рассчитать по формуле:

$$\Delta t = \left[0.009\alpha \frac{\nu^{0.53}}{d^{1.47}}\right]^{-1} (\text{сек}), (1)$$

где $v(cm/cek)=W(m^3/h)/(36 \cdot S(m^2))$ – линейная скорость раствора в колонне, d(cm) – диаметр зерен сорбента, α – поправочный коэффициент. Так, например, произведём расчёт характерных пространственно и временных параметров Δx , Δt , необходимых для послойного счёта сорбции в колонне сечения *S*=0.1964 м², для сорбента КУ-2 при объёмной скорости раствора *W*=0.98 м³/час. Тогда линейная скорость

Таблица 2 Коэффициенты K_{Mg} и K_{Ca} образования растворимых сульфатных комплексов вида (R_mSO_4)

Table 2 K_{Mg} and K_{Ca} coefficients of the formation of soluble sulphate complexes of the (R_mSO_4) type

Катион	LgK	<i>К</i> ⁻¹ (моль)
Mg^{2+}	2.36	0.00437
Ca ²⁺	2.31	0.00490

раствора составит v=0.138 см/сек и, учитывая параметры КУ-2, имеем: $\alpha=0.7$; d=0.06; $\beta=0.1386$, $\Delta t=7.234$ сек; $\Delta x=1.0$ см.

Обмен ионов между раствором и неподвижным слоем ионообменника описывается в приближении квазистационарности:

$$\frac{a_k}{c_k} = K_k^{z_k} \left(\frac{a_{Na}}{c_{Na}} \right)^{z_k}, \qquad (2)$$

где *c_k, a_k* – концентрации катионов в жид-кой фазе и в катионите.

Уравнение электронейтральности в катионите с ёмкостью A_0 :

$$\sum_{k=1}^{kcat} z_k a_k = A_0 \tag{3}$$

Для нейтральных растворов в уравнении (3) концентрации ионов водородов и гидроксила $c_{\rm H}=c_{\rm OH}=10^{-7}$ (моль/дм³) можно опустить.

Уравнения для суммарной концентрации катионов Q_k в подвижной и неподвижной фазах на единицу объёма порции жидкой фазы:

$$c_k + \frac{a_k}{v_m} = Q_k \tag{4}$$

где v_m – отношение объёма порции к объёму слоя (при совпадении длины порции и длины слоя $v_m = \varepsilon$), для сорбентов КУ-2 порозность загрузки $\varepsilon = 0.4$.

Из соотношений (2), (4) получаем:

$$c_{k}\left[1+\frac{1}{v_{m}}K_{k}^{z_{k}}\left(\frac{a_{Na}}{c_{Na}}\right)^{z_{k}}\right]=Q_{k}$$
(5)

Система уравнений (2-4) при подстановке (5) сводится в случае катионного обмена к нелинейному уравнению отно-

$$w = \frac{a_{Na}}{a_{Na}}$$

сительно переменной C_{Na} :

$$G(x, y) = \sum_{k=1}^{kcat} z_k \frac{v_m Q_k K_k^{z_k} w^{z_k}}{v_m + K_k^{z_k} w^{z_k}} - A_0 = 0, \quad (6)$$

Решение *w* нелинейного уравнения (6) в случае катионного обмена позволяет найти все концентрации веществ в подвижной и неподвижной фазе. Отмечу, что величина *w* чисто абстрактная вспомогательная переменная, которая работает даже в том случае, когда раствор не содержит ни ионов натрия, ни ионов хлора.

Задача, рассматриваемая в настоящей работе, не позволяет прямо использовать формулу (6) для ионного равновесия между жидкой фазой и сорбентом. Дело в том, что заданный в таблице 1 входной раствор наряду с катионами магния и кальция содержит сульфат-ионы, которые образуют молекулярные комплексы CaSO₄ и MgSO₄, которые конкурируют за катионы с катионитом. Эти комплексы довольно устойчивы, о чем свидетельствуют параметры [7], приведенные в таблице 2.

Для нахождения концентраций комплексов CaSO₄ и MgSO₄ в процессе сорбции обозначим через c_m мольную концентрацию m-ого основания (в нашем случае это концентрация в молях кальция и магния в растворе), через $x_c = c_{m_{SO_4}}$ мольную концентрацию m-ого комплекса, а через $c_{m_{SO_4}}$ – мольную концентрацию сульфата в растворе. Тогда имеем:

$$\frac{x_m}{c_m^{2+} \cdot c_{SO_4}^{2-}} = K_m \left(1 / MOЛb \right)$$
(7)

где $c_m^{2+} = c_m - x_m -$ мольная концентрация заряженных ионов; а $c_{SO_4}^{2-} = c_{SO_4} - \sum_m x_m -$ мольная концентрация заряженных ионов сульфата.

Puc. 2. Схема разделения на нанофильтрационной мембране (фрагмент 2 рис.1) Fig. 2. Nanofiltration membrane-based separation scheme (fragment 2, Fig. 1)

Из (7) получаем систему уравнений относительно *x*_m:

$$x_m K_m^{-1} = (c_m - x_m) \cdot \left(c_{SO_4} - \sum_j x_j \right),$$
 (8)

Складывая уравнения системы (8) и обозначая $z = \sum_{j} x_{j}$, получим квадратное

уравнение относительно z:

$$zK_s^{-1} = \left(\sum_m c_m - z\right) \cdot \left(c_{SO_4} - z\right), \tag{9}$$

где K_s^{-1} некоторое усреднённое значение коэффициентов K_m^{-1} , которое находится методом последовательных приближений:

$$K_{S}^{-1} = \frac{\sum_{m} K_{m}^{-1} x_{m}}{z},$$
 (10)

$$z = \frac{\sum_{m} c_{m} + c_{SO_4} + K_{S}^{-1}}{2} - \frac{\left(\sum_{m} c_{m} + c_{SO_4} + K_{S}^{-1}\right)^2}{2} - C_{SO_5} -$$

$$\sqrt{\left(\frac{z}{2}\right)^{-} c_{SO_4} \sum_m c_m},$$

$$r = \frac{c_m \cdot \left(c_{SO_4} - z\right)}{c_{SO_4} \sum_m c_m},$$
(12)

$$x_m = \frac{c_m (c_{SO_4} - z)}{K_m^{-1} + c_{SO_4} - z} , \qquad (12)$$

По найденным в (12) величинам x_m находим очередное значение величины $z = \sum_j x_j$, которую снова подставляем в

уравнение (9), зацикливая, таким образом, метод последовательных приближений для поиска решений системы уравнений (8). Цикл последовательных приближений продолжается до установления с необходимой точностью усреднённого значения коэффициента K_s^{-1} . В нашем случае процессы сорбции и комплексообразования происходят одновременно, так что систему уравнений (8) необходимо решать совместно с системой уравнений (2-6) методом последовательных приближений: поочерёдно системы уравнений сорбции и комплексообразования пока значения величин комплекса $x_c=c_{m_{SO_4}}$, а также концентрации всех анионов c_m^- , a_m^- и катионов c_m^+ , a_m^+ в растворе и на сорбенте не будут найдены с заданной точностью.

После очистки раствора на катионите от ионов кальция и магния, в умягчённой воде остаются анионы серной кислоты, которые можно отфильтровать с помощью нанофильтрационной мембраны (рис. 2).

НФ–мембрана делит первоначальный поток раствора V_S на поток концентрата V_{KN} и поток пермеата V_{PN} , проходящий сквозь нее. Потоки компонентов раствора управляются соотношениями:

$$V_S = V_{KN} + V_{PN} \qquad (13)$$

$$V_{S}c_{S,i}^{\pm} = V_{KN}c_{KN,i}^{\pm} + V_{PN}c_{PN,i}^{\pm} , \qquad (14)$$

Степень концентрирования на мембране, задаётся параметром Q_N :

$$Q_N = V_{KN} / V_{S}, \qquad (15)$$

Селективность мембраны выражается через степень удерживания заряженных ионов в безразмерных долях:

$$R_{N,i} = \left(c_{S,i}^{\pm} - c_{PN,i}^{\pm}\right) / c_{S,i}^{\pm}$$
(16)

где $C_{S,i}^{\pm}$ – исходная концентрация ионов *i*го компонента в умягченной воде, $c_{PN,i}^{\pm}$ – концентрация ионов компонента в пермеате после нанофильтрации или в виде массового коэффициента селективности: Сорбционные и хроматографические процессы. 2022. Т. 22, № 6. С. 804-815. Sorbtsionnye i khromatograficheskie protsessy. 2022. Vol. 22, No 6. pp. 804-815.

ISSN 1680-0613

$$R_{M,i} = \frac{c_{KN,i}^{\pm} V_{KN}}{c_{S,i}^{\pm} V_{S}}$$
(17)

Предполагается, что негидратированные, а поэтому небольшие по размерам незаряженные комплексы *CaSO*₄ и *MgSO*₄ проходят через нанофильтрационную мембрану свободно.

Соотношения (13-15) позволяют связать между собой альтернативные способы задания селективности НФ–мембраны:

$$R_{M,i} = Q_N + R_{N,i} - Q_N R_{N,i}$$
(18)

В текущем модельном расчете для мембраны заданы следующие характеристики: $Q_N = 0.192$, $R_{M,i} = 0.947$, $R_{N,i} = 0.935$.

С учётом высокой селективности многих НФ-мембран к двухзарядным ионам и практического отсутствия у них селективности к простым однозарядным ионам [8] для концентраций катионов и анионов, задерживаемых наномембраной (кальция, магния и сульфата), получим:

$$c_{PN,i}^{\pm} = c_{S,i}^{\pm} (1 - R_{N,i}),$$

$$c_{KN,i}^{\pm} = \frac{c_{S,i}^{\pm} V_S - c_{PN,i}^{\pm} V_{PN}}{V_{KN}}$$
(19)

В связи с тем, что при катионировании концентрации анионов не изменяются в умягченной воде, поступающей на мембрану, суммарная концентрация ионов кальция и магния много меньше концентрации сульфат-иона, поэтому суммарный заряд двухзарядных ионов, задержанного при фильтрации, будет отрицательным и может быть скомпенсирован только положительными ионами натрия и калия (здесь можно не делать различие между ионами натрия и калия, обозначая концентрацию их суммы, как с_{Na}). При этом следует полагать, что концентрации хлорид иона, свободно проходящих НФ-мембрану, сквозь не меняются $c_{PN,Cl} = c_{KN,Cl} = c_{S,Cl} = c_{0,Cl}$. A концентрации ионов натрия (и калия), компенсирующих отрицательный заряд вещества,

задержанного мембраной и пропущенного сквозь неё, можно найти из соотношений электронейтральности:

 $c_{PN,Na}^+ = c_{S,Cl}^- + 2(c_{PN,So_4}^- - c_{PN,Ca}^+ -$

$$c_{FN,Mg}^{+}), c_{KN,Na}^{+} = c_{S,Cl}^{-} + 2(c_{KN,SO_{4}}^{-} - c_{KN,Ca}^{+} - c_{KN,Ca}^{+})$$
(20)
$$- c_{KN,Mg}^{+})$$

В связи с наличием нанофильтрационной мембраны формулу для критерия $R_{c} = \frac{Q_{R}C_{R}}{2} > 1$

Сса существования самоподдерживающего цикла [6] следует модифицировать:

$$R_{C} = \frac{(1 - Q_{N})Q_{R}C_{R}}{C_{Ca}} > 1, \qquad (21)$$

Альтернативная формула для коэффициента R_C дана в статье [4]: $R_c =$

$$\frac{c_{\Sigma} - R_M c_{0,SO_4} - Q_N c_{0,Cl} - (1 - Q_N)(1 - Q_R) c_{W,Na}}{c_{Ca}} > (21a)$$
1,

где с_Σ=0.0468 моль-экв/дм³ – суммарная концентрация положительных (и отрицательных) ионов во входном растворе, величина Q_N , задана формулой (19) и описывает вклад НФ-мембраны, Q_R – вклад от опреснителя, C_R – концентрация регенерационного раствора. Величина Q_R согласно работе [6] выражается формулой:

$$Q_{R} = \frac{1 - k_{W}}{k_{R} - k_{W}} \equiv \frac{C_{0} - C_{W}}{C_{R} - C_{W}},$$
(22)

В данной задаче С₀ – это сумма всех однозарядных отрицательных ионов задачи, *С*_{*W*} – концентрация этих ионов в очищенной воде, C_R – концентрация этих ионов в регенерационном растворе. В нашем примере, согласно таблице 1 $C_0 = c_{Cl} + c_{CO3} = 0.025 + 0.0028 = 0.0278$ моль/дм³; $C_W=0.005$ моль/дм³; $C_R=1$ моль/дм³; откуда $Q_R = 0.023$. Величина Q_N является заданной характеристикой мембраны; в модельных расчётах использовалось *Q*_N=0.192. Учитывая, что концентрация кальция *с*_{*Ca*}=0.0029 моль-экв/дм³, получим в соответствии с формулой (21): $R_{C}=6.4>1$, а по формуле (21а) получим

Рис. 3. Распределение компонентов по слою катионита после первой сорбции для модельных расчётов без учёта комплексообразования (1 – Mg, 2 – Ca), с учётом комплексообразования (3 – Mg, 4 – Ca).

Fig. 3. Distribution of components over the layer of cation exchanger after the first sorption for model calculations without taking into account complexation processes (1 - Mg, 2 - Ca), with taking into account complexation processes (3 - Mg, 4 - Ca).

 R_C =6.8>1. Формулы (21) и (21а) эквивалентны, но по-разному приблизительно оценивают критерий R_C , точное значение которого можно найти по распечаткам счёта, в данной задаче это значение равно 6.5.

ISSN 1680-0613

Формула для критерия R_A остаётся той же, что и в работе [6]:

$$R_{A} = \frac{A_{0}}{C_{Ca}} = \frac{2}{0.0029} = 690 >> 1$$
(23)

Критерий *R_H* найдём далее по результатам расчётов.

Численный эксперимент

Условия проведения экспериментов выбраны такие же, как при расчетах СМП-процессов для модельных растворов [4]: диаметр слоя катионита в колонне – 0.5 м (площадь сечения – 0.196 м²); высота слоя – 1 м; объем слоя сорбента – 0.196 м³; скорость пропускания растворов на стадиях сорбции – 5 колоночных объемов в час (0.980 м³/час); скорость пропускания растворов на стадиях регенерации – 1 колоночный объем в час (0.196 м³/час). Коэффициенты равновесия (концентрационные константы) обмена на ион натрия:

 Na^+-1 ; K⁺-1.25; $Mg^{2+}-1.417$; Ca²⁺-1.917.

Конец сорбционного процесса определяется по проскоку иона кальция: c_{Ca} =0.000145 моль/дм³. С целью оценки степени влияния сульфатных комплексов на рассматриваемый сорбционный процесс были проведены сравнительные расчёты выходной кривой сорбции без учёта образования сульфатных комплексов и с учётом.

Как следует из рис. 3, учёт комплексообразования изменяет длительность сорбции (на ~20%). С помощью рисунка 3 можно также оценить величину размытия фронта ~17 см. и критерий $R_H=6$, определяющий количество теоретических тарелок.

Таблица 3 Концентрации компонентов в (г/дм³) в растворе после отмывки и её объёмы V_o в (м³). Table 3 Concentrations of components (g/dm³) in the solution after washing and its volumes, V_o , (m³).

table 5 concentrations of components (g and) in the solution after washing and its volumes, v ₀ , (in).										
Номер	Cl	SO_4	HCO_3	Na	Mg	Ca	K	$V_o(M^3)$		
цикла										
1	28.27	2.033	5.358	20.75	0.00061	3.46E-5	0.4296	0.09808		
2	28.32	2.058	5.368	20.75	0.00630	0.00132	0.4905	0.09808		
3	28.33	2.06	5.369	20.75	0.00674	0.00136	0.4989	0.09808		
4	28.33	2.06	5.37	20.75	0.00676	0.00135	0.5	0.09808		
5	28.33	2.06	5.37	20.75	0.00675	0.00135	0.5002	0.09808		

Таблица 4. Концентрации компонентов в (г/дм³) в умягчённом растворе после сорбции и объёмы V_S в (м³).

Table 4. Concentrations of components (g/dm³) in the softened solution after sorption and its volumes, V_s , (m³).

Номер цикла	Cl	SO_4	HCO3	Na	Mg	Ca	K	V_S (M ³)
0	0.8852	0.9349	0.1678	1.062	2.55E-5	1.53E-6	0.02199	74.92
1	0.8864	0.936	0.168	1.061	0.00026	5.92E-5	0.02509	76.15
2	0.8864	0.936	0.168	1.061	0.00028	6.10E-5	0.02551	76.84
3	0.8864	0.936	0.168	1.061	0.00028	6.06E-5	0.02556	76.92
4	0.8864	0.936	0.168	1.061	0.00028	6.06E-5	0.02557	76.92
5	0.8864	0.936	0.168	1.061	0.00028	6.06E-5	0.02558	76.93

Таблица 5. Концентрации компонентов в (г/дм³) в концентрате после нанофильтрации и объёмы концентрата V_{KN} в (м³).

Table 5. Concentrations of components (g/dm³) in the concentrate after nanofiltration and volumes of the concentrate, V_{KN} , (m³).

Номер цикла	Cl	SO_4	HCO3	Na	Mg	Ca	Κ	V_{KN} (M^3)
0	0.8852	4.62	0.168	2.8	5.66E-5	3.55E-6	0.05807	14.38
1	0.8864	4.618	0.168	2.8	0.00058	0.00013	0.06621	14.62
2	0.8864	4.618	0.168	2.8	0.00062	0.00014	0.06732	14.75
3	0.8864	4.618	0.168	2.8	0.00062	0.00014	0.06747	14.76
4	0.8864	4.618	0.168	2.8	0.00062	0.00014	0.06749	14.76
5	0.8864	4.618	0.168	2.8	0.00062	0.00014	0.06749	14.76

Таблица 6. Концентрации компонентов в (г/дм³) в пермеате после нанофильтрации и объёмы пермеата *V*_{PN} в (м³).

Table 6 Concentrations of components (g/dm³) in the permeate after nanofiltration and volumes of the permeate, V_{PN} , (m³).

Номер цикла	Cl	SO_4	НСО3	Na	Mg	Ca	K	V_{PN} (M ³)
0	0.8852	0.06084	0.1678	0.6484	1.81E-5	1.05E-6	0.01342	60.54
1	0.8864	0.06159	0.168	0.6481	0.00018	4.07E-5	0.01532	61.53
2	0.8864	0.06164	0.168	0.648	0.00019	4.19E-5	0.01558	62.09
3	0.8864	0.06164	0.168	0.6479	0.00019	4.16E-5	0.01561	62.15
4	0.8864	0.06164	0.168	0.6479	0.00019	4.16E-5	0.01562	62.16
5	0.8864	0.06164	0.168	0.6479	0.00019	4.16E-5	0.01562	62.16

Поскольку все три критерия R_C =6.4, R_A =650, R_H =6 более единицы, самоподдерживающийся режим возможен, что и подтверждается проделанными модельными счётами с учётом комплексообразования при концентрации регенерационного раствора C_R =1N. Далее, в таблицах 3-9 представлены концентрации веществ после каждого этапа процесса, а также и объёмы раствора в каждом этапе, причём, судя по таблицам, СМП-процесс устанавливается практически со второго цикла.

Обсуждение результатов

Таким образом, в результате модельного счёта нами получено, что процесс по заданной здесь схеме (рис. 1) способен функционировать в самоподдерживающимся режиме без добавления какихлибо добавочных химикатов. При этом на каждые 77.02 м³ входного раствора мы будем получать 14.76 м³ концентрата, пригодного для производства калийных удобрений, и 60.71 м³ технической воды, удовлетворяющей принятым критериям

Таблица 7. Концентрации компонентов в (г/дм³) в опреснённой воде после опреснителя и её объёмы V_W в (м³).

Table 7 Concentrations of components (g/dm³) in the desalinated water after the destiller and its volumes, V_W , (m³).

Номер шикпа	Cl	SO_4	НСО3	Na	Mg	Са	Κ	<i>V_W</i> (M ³)
0	0.157	0.01078	0.02976	0.115	1.43E-6	1.20E-7	0.00238	59.13
1	0.1572	0.01092	0.0298	0.115	1.47E-5	4.65E-6	0.00271	60.1
2	0.1573	0.01093	0.02981	0.115	1.58E-5	4.79E-6	0.00276	60.64
3	0.1573	0.01093	0.02981	0.115	1.58E-5	4.77E-6	0.00277	60.71
4	0.1573	0.01093	0.02981	0.115	1.58E-5	4.76E-6	0.00277	60.71
5	0.1573	0.01093	0.02981	0.115	1.58E-5	4.76E-6	0.00277	60.71

Таблица 8. Концентрации компонентов в ($r/дм^3$) в регенерационном растворе и её объём V_R в (M^3). Table 8. Concentrations of components in (g/dm^3) in the regeneration solution and its volume, V_R , (m^3).

Номер цикла	Cl	SO ₄	HCO3	Na	Mg	Ca	K	V_R (M^3)
0	31.4	2.158	5.952	23	0.00071	4.01E-5	0.4763	1.411
1	31.46	2.186	5.963	23	0.00738	0.00155	0.5438	1.434
2	31.47	2.188	5.965	23	0.00790	0.0016	0.553	1.446
3	31.47	2.189	5.965	23	0.00791	0.00159	0.5543	1.447
4	31.47	2.189	5.965	23	0.00791	0.00158	0.5545	1.448
5	31.47	2.189	5.965	23	0.00791	0.00158	0.5545	1.448

Таблица 9. Концентрации компонентов в (г/дм³) на выходе после регенерации и объём раствора V_V в (м³).

Table 9 Concentrations of components (g/dm³) at the outlet after regeneration and the volume of the solution, V_V , (m³).

Номер	Cl	SO_4	HCO ₃	Na	Mg	Ca	K	$V_R(M^3)$
цикла								
0	29.49	2.081	5.59	17.95	0.1282	3.028	0.363	1.411
1	29.49	2.104	5.59	18.1	0.1133	2.914	0.4037	1.532
2	29.52	2.108	5.595	18.14	0.1144	2.892	0.4139	1.544
3	29.52	2.109	5.596	18.14	0.1145	2.889	0.4153	1.546
4	29.52	2.109	5.596	18.14	0.1145	2.889	0.4155	1.546
5	29.52	2.109	5.596	18.14	0.1145	2.889	0.4155	1.546

Таблица 10 Критерии чистой воды, а также концентрации веществ в (*мг/дм³*) и объёмы растворов, в стационарных циклах самоподдерживающего процесса.

Table 10 Clean water criteria, as well as concentrations of substances in (mg/dm^3) and volumes of solutions, in stationary cycles of the self-sustaining process.

	Cl	SO_4	HCO_3	Na	Mg	Ca	K	$V(M^3)$		
Критерии	200	500	400	200	12	20	20	-		
Вход	886	936	168	991	2.43	5.8	23.46	77.02		
Концентрат	886	4618	168	2802	0.62	0.14	67.49	14.76		
Опресненная вода	157	11	29.8	115	0.0016	0.00048	2.77	60.71		
Выход	29520	2109	5596	18140	115	2889	416	1.55		

чистоты. При этом на каждом цикле получаем полтора кубометра отходов в виде концентрированного раствора натриевых, кальциевых и калийных солей серной и соляной кислоты (таблица 10). Сорбционные и хроматографические процессы. 2022. Т. 22, N_{\odot} 6. С. 804-815. Sorbtsionnye i khromatograficheskie protsessy. 2022. Vol. 22, No 6. pp. 804-815.

ISSN 1680-0613

Рис. 4. Объём умягчённой воды в зависимости от концентрации регенерационного раствора CR=(1,...,0.1) (моль/дм³), N – номера циклов.

Fig. 4. The volume of softened water depending on the concentration of the regeneration solution CR=(1,..,0.1) (mol/dm³), N is the number of cycles.

Таблица 11. Регенерация колонны, равномерно заполненной кальцием, регенерационным раствором с концентрацией C_R (моль-экв/дм³); $V_R(C_R)$ (м³) – необходимый объём регенерации до проскока кальция 0.0001(моль/дм³), $V_{RL}(Y)$ (м³) – линейная по Y⁻¹ аппроксимация регенерационного объёма, $K_R(Y)$ – поправочный коэффициент для критерия R_C .

Table 11. Regeneration of the column filled uniformly with calcium, regeneration solution with a concentration of C_R (mol-eq/dm³); $V_R(C_R)$ (m³) is the required regeneration volume before calcium slip equal to 0.0001 (mol/dm³), $V_{RL}(Y)$ (m³) is linear approximation of the regeneration volume by Y⁻¹; $K_R(Y)$ is the correction factor for the R_C criterion.

C_R	$Y = C_R / A_0$	V_R	V_{RL}	V_{RL}/V_R	$K_R = 0.88Y + 0.12$	R_C	$K_R * R_C$
2.0	1	1.6	1.6	1	1	6.4	6.4
1.5	0.75	2.7	2.1	0.8	0.78	6.4	5
1.0	0.5	5.35	3.2	0.6	0.56	6.4	3.6
0.5	0.25	17.9	6.4	0.36	0.34	6.4	2.2
0.4	0.2	26	8	0.3	0.3	6.4	1.9
0.3	0.15	42	10.7	0.25	0.25	6.5	1.6
0.2	0.1	80	16	0.2	0.2	6.5	1.3

Заметим, что результаты СМП-процесса зависят от концентрации регенера ционного раствора C_R определяемой режимом работы опреснителя. Проведём модельный эксперимент для исследования процесса при уменьшении величины C_R . Как следует из модельных расчётов, объём умягчённой воды в СМП-процессе уменьшается с уменьшением величины C_R , а при $C_R < 0.3$ и вовсе происходит срыв (рис. 4).

Отметим, что критерий R_C , который определяет режим регенерации и должен реагировать на подобное поведение процесса остаётся при этом практически неизменным (см. таблицу 11), откуда следует, что формула (21), созданная для нахождения R_C для концентрированных регенерационных растворов $C_R>1$ нуждается в серьёзной доработке для слабых концентраций $C_R<1$. Причина ошибок

формулы (21) состоит в том, что она основана на линейной зависимости необходимого объёма регенерационного раствора от величины C_R^{-l} , а сорбционные формулы (2-6) для разнозарядных ионов Са и Na – нелинейны, что и проявляется при малых концентрациях C_R .

Для нахождения поправочного коэффициента K_R для критерия R_C при $C_R < A_0$ проведём модельный эксперимент по регенерации нашей колонны, первоначально равномерно заполненной ионами кальция. Окончание регенерации зададим по проскоковой концентрации иона кальция $c_{Ca} < 0.0001$ (моль/дм³). Результаты эксперимента – объёмы регенерационного раствора $V_R(C_R)$, приведены в таблице 11. Для сравнения линейная зависимость $V_{RL}(Y)$, где $Y=C_R/A_0$, также дана в таблице 11. Искомый коэффициент K_R за-

даём в виде отношения $V_{RL}(Y)/V_R(C_R)$, которое можно с достаточной точностью аппроксимировать формулой:

 $K_R = 0.88Y + 0.12$ (24)

Модифицированный таким образом критерий $K_R R_C$., как и положено, уменьшается с уменьшением значения Y, а при $K_R(Y) \cdot R_C < 1.6$ происходит срыв СМПпроцесса.

Заключение

Проведенные численные эксперименты очистки солоноватой воды и анализ полученных результатов показывает осуществимость на практике стационарного циклического самоподдерживающего процесса умягчения-опреснения солоноватой воды с использованием сильнокислотного катионита, в котором регенерация катионита в каждом цикле осуществляется только за счет возвратного рассола, получаемого при опреснении умягченной воды.

Это дает возможность создания систем водоподготовки при СМП переработке

Список литературы

1. Muraviev D.N., Khamizov R.Kh., Tikhonov N.A., J. Gómez Morales, Clean ("Green") Ion Exchange Technologies. IV. Development of Sorbent for Self-sustaining Decalcification of Mineralized Waters // Ind. Eng. Chem. Res. 2004, Vol. 43, no. 8. P. 1868-1874.

2. Tokmachev M.G. Tikhonov N.A., Khamizov R.Kh., Investigation of cyclic self-sustaining ion exchange process for softening water solutions on the basis of mathematical modeling // *React. Funct. Polym.* 2008. Vol. 68, no. 8, P. 1245-1252.

3. Хамизов Р.Х. Комарова И.В. Галкина Н.К., Прудковский А.Г. Самоподдерживающиеся процессы умягчения-опреснения воды. простые двухкомпонентные системы // *Теоретические основы химической техноло*гии. 2020. Т.54, №5. С. 649-660.

4. Хамизов Р.Х., Комарова И.В. Галкина Н.К., Прудковский А.Г. Самоподдерживающиеся процессы умягчения-опреснения солоноватой воды, не требующих привозных реагентов и, соответственно, устройств хранения реагентов и приготовления регенерационных растворов.

На характеристики самоподдерживающихся процессов, а именно, количество циклов до выхода на стационарный режим, а также продолжительность этих циклов на стадиях сорбции и регенерации, оказывают влияние два взаимосвязанных фактора: суммарная концентрация и степень концентрирования рассола.

Рассчитанная величина критерия подтверждает надежность самоподдерживающегося процесса переработки солоноватой воды, что было показано приведенными выше результатами расчета в виде таблиц и рисунков.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

воды. Хлоридно-сульфатные системы // *Теоретические основы химической технологии*. 2022. Т.56, №2. С. 183-196

5. Комарова И.В., Галкина Н.К., Прудковский А.Г., Хамизов Р.Х. Математическое моделирование и расчет процесса деминерализации воды в промышленном фильтре. Сообщение 1. Гидродинамика регенерации и отмывки промышленного фильтра // Сорбционные и хроматографические процессы. 2017. Т.17, №1. С.10-19.

6. Прудковский А.Г., Хамизов Р.Х., Комарова И.В. Критерии существования самоподдерживающихся процессов умягчения и опреснения воды для простой двухкомпонентной системы // Сорбционные и хроматографические процессы. 2022. Т. 22, № 4. С. 377-385.

7. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971, 261 с.

8. Amir Abbas Izadpanah, Asghar Javidnia. The Abilityofa Nanofiltration Membraneto Remove Hardnessand Ionsfrom Diluted Seawater // *Water*. 2012. Vol.4. P.283-294.

References

1. Muraviev D.N., Khamizov R.Kh., Tikhonov N.A., J. Gómez Morales. Clean ("Green") Ion Exchange Technologies. IV. Development of Sorbent for Self-sustaining Decalcification of Mineralized Waters. *Ind. Eng. Chem. Res.* 2004; 43(8); 1868-1874.

2. Tokmachev M.G. Tikhonov N.A., Khamizov R.Kh. Investigation of cyclic selfsustaining ion exchange process for softening water solutions on the basis of mathematical modeling. *React. Funct. Polym.* 2008; 68(8): 1245-1252.

3. Khamizov R.Kh., Komarova I.V., Galkina N.K., Prudkovskii A.G. Self-Sustaining Processes of Water Softening and Desalination: Simple Two-Component Systems. *Theoretical Foundations of Chemical Engineering.* 2020; 54(5): 919-930. (In Russ.)

4. Khamizov R. Kh., Komarova I.V., Galkina N.K., Prudkovskii A.G. Self-Sustaining Water Softening-Desalination Processes: Chloride-Sulfate Systems. *Theoretical Foundations of Chemical Engineering*. 2022; 56(2): 186-199. (In Russ.)

5. Komarova I.V., Galkina N.K., Prudkovskii A.G., Khamizov R.Kh. Mathematical simulation and calculation of the process of water demineralization in industrial filter part 1. Hydrodynamics of regeneration and washing of industrial filter. *Sorbtsionnye I Khromatograficheskie Protsessy*, 2017; 17(1): 10-19. (In Russ.)

6. Prudkovskii A.G., Khamizov R.Kh., Komarova I.V. Existence criteria for selfsustaining processes of water softening and desalation for simple two-component system. *Sorbtsionnye I Khromatograficheskie Protsessy.* 2022; 22(4): 377-385. https://doi.org/10.17308/sorpchrom.2022.22/10564 (In Russ.)

7. Lurie Y.Y. Handbook of analytical chemistry. M., Chemistry, 1971. 261 p. (In Russ.)

8. Amir Abbas Izadpanah, Asghar Javidnia. The Abilityofa Nanofiltration Membraneto Remove Hardnessand Ionsfrom Diluted Seawater. *Water*. 2012; 4: 283-294.

Информация об авторах / Information about the authors

А.Г. Прудковский – д.ф-м.н., ведущий научный сотрудник, лаборатория сорбционных методов, ГЕОХИ РАН, Москва, Россия

Р.Х. Хамизов – д.х.н., чл.корр. РАН, и.о. директора ГЕОХИ РАН, зав. лабораторией сорбционных методов, ГЕОХИ РАН, Москва, Россия

И.В. Комарова – к.х.н., старший научный сотрудник, лаборатория сорбционных методов, ГЕОХИ РАН, Москва, Россия

Н.К. Галкина – к.х.н., старший научный сотрудник, лаборатория сорбционных методов, ГЕОХИ РАН, Москва, Россия A.G. Prudkovskii – Dr.Sci. (Phys/Math.), Leading researcher, Lab of Sorption Methods, GEOKHI RAS, Moscow, Russian Federation, e-mail: prudkovsky@gmail.com

R.Kh. Khamizov – Dr.Sci.(Chem), Correspondent member of RAS, Acting Director of GEOKHI RAS, Head of the Laboratory of Sorption Methods, GEOKHI RAS, Moscow, Russian Federation, email: <u>khamiz@mail.ru</u>

I.V. Komarova – Ph.D. (Chem.), Senior researcher, Lab of Sorption Methods, GEOKHI RAS, Moscow, Russian Federation, e-mail: <u>ivk.geohi@gmail.com</u>

N.K. Galkina – Ph.D. (Chem.), Senior researcher, Lab. of Sorption Methods, GEOKHI RAS, Moscow, Russian Federation, e-mail: <u>nkgaikina@yandex.ru</u>

Статья поступила в редакцию 14.10.2022; одобрена после рецензирования 16.11.2022; принята к публикации 23.11.2022. The article was submitted 14.10.2022; approved after reviewing 16.11.2022;

The article was submitted 14.10.2022; approved after reviewing 16.11.2022; accepted for publication 23.11.2022.