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Abstract. Gas chromatography — mass spectrometry (GC-MS) is a very important method of chemical analy-
sis. GC-MS can be used for non-target chemical analysis and preliminary screening of completely unknown
compounds. Electron ionization mass spectrometry is commonly used in GC-MS. Some information can be
extracted directly from GC-MS data using machine learning methods. There are several previous works in
which machine learning models extract information about the presence or absence of given substructures in a
molecule directly from the electron ionization mass spectrum. Rarely, the additional data such as molecular
weight and retention index are used together with the mass spectrum as input features of such models, however,
no systematic comparison of how the use of such data increases the accuracy of the prediction was previously
conducted. In this work, gradient boosting was used for prediction of the presence or absence of given sub-
structures in a molecule. The following substructures were considered: aromatic ring, S-membered aromatic
ring, 6-membered aromatic ring without heteroatoms (benzene ring), nitrogen-containing aromatic ring, pri-
mary, secondary, and tertiary amino groups, nitrile, hydroxyl, carbonyl, methoxy, methyl, and carboxyl groups.
Three types of additional features were used: molecular weight and neutral loss spectra (molecular weight also
allows for the neutral loss spectra computation), retention index for the non-polar stationary phase, and reten-
tion index for the polar stationary phase. A total of 8 feature sets were considered. In most cases, the molecular
weight and neutral loss spectrum considerably improve the accuracy. Retention indices also allow for further
accuracy increase. For polar functional groups such as carbonyl and hydroxyl, the effect of using retention
indices is maximal. The use of retention indices for two stationary phases allows for the achievement of the
best accuracy. The best accuracy of prediction was achieved for the benzene ring and aromatic ring, the worst
(but still high) accuracy was observed for the secondary amino group. The achieved accuracy was compared
with the previous results. In addition to the classification tasks, the regression tasks were considered. The gra-
dient boosting models that predict the number of aromatic atoms, methyl groups, and benzene rings were de-
veloped. It was observed that the use of additional features considerably improves the accuracy in this case.
Finally, it should be noted that the regression models underestimate the number of occurrences when the num-
ber is high.
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Annoranus. ['azoBas xpomaro-macc-cuekrpomerpusi (I'X-MC) — oueHb Ba)KHBIH METOJ XUMHYECKOI'O aHa-
m3a. [’ X-MC M0>KHO HCIIOIb30BaTh IS HELENEBOTO XMMUUECKOTO aHATIN3a U IIPEIBAPUTEIBHOTO CKPHHUHTA
COBEpILIEHHO HeNM3BeCTHHIX coeauHeHU. B I'X-MC 00BIYHO HCTIONB3yeTCsl Macc-CIIEKTPOMETPHS ¢ HOHU3a-
nyel 35eKTpoHaMu. Bo3mMoxHO H3BiIeueHNe nH(OPMAIMK HEToCpeACTBeHHO 13 JaHHBIX [ X-MC ¢ ucnoms3o-
BaHHEM METO/I0B MAaIIMHHOTO 00y4eHusI. ECTh HECKOIBKO paHee Oy OIMKOBaHHBIX paboT, B KOTOPBIX MOJEIH
MAaIIMHHOTO O0YYCHUSI U3BJICKAIOT HH(POPMAINIO O HATWYWU WM OTCYTCTBUH 33JaHHBIX ITOACTPYKTYP B MO-
JIEKyJIe HETIOCPEACTBEHHO M3 MACC-CHEKTPA JIEKTPOHHON HOHM3AINH. JlOTIOTHUTENbHbBIE TaHHBIE, TAKHE KaK
MOJIEKYJISIpHAs. Macca U UHAEKC YIEep KUBaHUS, U3peaKa UCIIONB3YIOTCS BMECTE C MAacC-CIHEKTPOM B KaueCTBE
BXOJHBIX JAHHBIX AJIS TAaKUX MOJENeH, 0JJHaKO paHee He MPOBOJUIOCH CUCTEMAaTHUYECKOTO0 CPaBHEHUS TOTO,
KaK MCIIOJIb30BaHHE TAaKWX JAaHHBIX IOBBIIIAET TOYHOCTH MpeJcKka3anus. B aToil pabore aist mpeackazaHus
HaJIMYMsI WK OTCYTCTBUSI 33JJaHHBIX MOACTPYKTYP B MOJIEKYJIE UCIIOJIb30BAJICS TPaJUEHTHBINA OyCcTHHT. bbln
PaccMOTPEHB! CIIEAYIOIINE MOACTPYKTYPhI: apOMaTHUECKOE KOJbIIO, S-UJIeHHOe apoMaThdecKoe KOJbIo, 6-
WICHHOE apOMAaTHIECKOE KOJIbIIO 03 reTepoaToMoB (OEH30IbHOE KOJIBII0), a30TCOIEpIKAIIee apOMaTHIECKOe
KOJIBIIO, IEPBUYHBIC, BTOPUIHBIE U TPETUUHBIC AMUHOTPYIIIBI, HUTPWI, THAPOKCHII, KApOOHWII, METOKCH, Me-
THJI ¥ KapOOKCHIIbHBIE TPYNITEL. Vcronb30BaIich TPH THIIA TOTIOTHUTEIBHBIX BXOAHBIX JaHHBIX: MOJICKYJISIp-
Hasi Macca ¥ CIIeKTPbI HeUTPaJIbHBIX MTOTEPh (MOJIEKYIISIpHAst Macca MO3BOJISIET BEIYUCIIATE CIIEKTPBI HEUTpatb-
HBIX TTOTEPb), MHAEKC yAEPKHUBAHUS JUIl HEMOISIPHOW HEMOABMXHOMW (a3bl M MHJCKC YACP)KUBAHUS JJIS TO-
JSPHOW HEMOJBIKHOU (a3bl. Beero OpuTI0 paccMOTpeHO 8 HAOOPOB BXOMHBIX AaHHBIX. B OONBIIMHCTBE CITy-
YyaeB MOJICKYJISIpHAsh Macca M CHEKTP HEUTPaJbHBIX MOTEPbh 3HAYMTENBHO YJIYy4YLIAlOT TOYHOCTH. VIHIEKCHI
YIEpKUBaHHS TaKXKe IO3BOJISIOT JIOTIOJHHUTENLHO MOBBICUTh TOYHOCTh. JiIsl MONSPHBIX (DYyHKIIMOHAJIBHBIX
TPYII, TAKKX KaK KapOOHWII ¥ TUIPOKCHI, 3P(EKT OT UCHOIb30BaHUS HHAEKCOB yJIep)KUBAHNSI MaKCUMaJICH.
Hcnonp30BaHUE HHAEKCOB YAEPKUBAHUS JJIsI IBYX CTAlIMOHAPHBIX (a3 I03BOJISIET JOOUTHCS HAMITyYIlIeH TOY-
HocTH. Hanmyurast TO4HOCTb Mpeicka3aHus JOCTHIHYTa JJ1sl OCH30JIEHOTO M apOMaTHYECKOT0 KOJIell, HauXy -
1m1ast (HO BCe JKe BBICOKas) — JUIsl BTOPHYHOM aMUHOTPpYNIIbL. JJOCTHUrHYTasi TOUHOCTh Oblila CpaBHEHA C Pe3yJib-
TaTaMH K3 mpeaplaymmeii padotel. [Tomumo 3amad knaccuduKauy ObLTH PacCMOTPEHBI PETPECCHOHHBIE 3a-
naun. b pa3pabotaHbl MOJETH Ha OCHOBE T'PaJUEHTHOTO OyCTHHIA, KOTOPBIE PEICKA3BIBAIOT KOJINIECTBO
apOMaTHYECKNX aTOMOB, METWIIBHBIX TPy U OEH30JBbHBIX KOJEL. b0 3aMeueHo, 4To UCTIONb30BaHHE JI0-
TIOJTHUTENIBHBIX BXOAHBIX JaHHBIX 3HAYUTEINILHO MOBBIIIAECT TOYHOCTD M B 3TOM ciiydae. Hakonen, cienyer ot-
METHUTb, YTO PETPECCHOHHBIC MOJIEITN HEIOOIIEHMBAIOT KOINYECTBO BXOXKCHNH, KOT/Ia 3TO YUCIIO BEIHUKO.
KiroueBble c10Ba: Macc-CIEKTPOMETPHsI, Ta30Basi XpoMmarorpadus, HEIEIEBOH aHaIN3, MAINHHOE 00yde-
HUE, IPaANEHTHBIN OYCTHHT.
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software and machine learning approaches

Introduction that facilitate this task. There are many tools

Gas chromatography — mass spectrome-
try (GC-MS) is a widely used analytical
method for both targeted and non-targeted
analysis of complex mixtures of volatile
compounds. It is widely used in industry,
pharmaceutics, environmental analysis [1-
2], and in metabolomics studies [3-4]. The
most widely used approach for non-target
GC-MS analysis is the library search in MS
databases [5], such as the NIST 17 database
[6]. Unfortunately, the majority of organic
molecules are absent in all MS databases,
and standard samples also are not available.
Qualitative screening of such molecules is a
complex task [7-8]. Fortunately, there are

for prediction of mass spectra from the struc-
ture of a molecule [8-10]. There are also
tools for prediction of the presence or ab-
sence of substructures (fragments of a mole-
cule) in a molecule based on the mass spec-
tra [4, 11-16]. There are many such tools
[17-18]. Some of them predict the so-called
“molecular fingerprint” (a long vector of
bits; each bit corresponds to the presence or
absence of a structural feature) [4, 11, 12].
Others predict the presence or absence of
specific fragments and functional groups
that are of most interest to the researcher.
The accuracy of prediction of “molecular
fingerprint” even by the most modern tools
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is not very high. For example, in the work
[11], for approximately half of the bits con-
stituting the fingerprint, the accuracy is less
than 0.9. Such a molecular fingerprint can be
used for automated search in the database of
possible candidates. Many works are de-
voted to prediction of the presence or ab-
sence of common substructures and func-
tional groups. For example, in the work [13],
the presence or absence of several structural
features such as a benzene ring, a dimethyl-
amine group, etc., was predicted. The ob-
served classification accuracy lies in the
range of 76-95 for all considered fragments
(except trimethylsylil groups). Another sim-
ilar work is the well-known work by Var-
muza et al. [14]. Several classifying models
of common substructures were developed.
The majority of such works [13, 14], includ-
ing the MOLGEN-MS software [18], use
only the mass spectrum as a source of fea-
tures (Figure 1A).

In the work [17], the model predicts the
presence or absence for many common func-
tional groups, such as -NH», -OH, =O. In that
work, unlike the majority of other works, the
molecular weight (determined in a mass
spectral experiment) is used for creation of
features. In another work [15], the Golm
Metabolome Database is used for training
and validation, and the authors predict the
presence or absence of many functional
groups with relatively high probability. The
authors use information about the retention
index as an additional feature. The vast ma-
jority of these works provide only binary
classifications: predicting the presence or
absence of fragments, while determining the

number of occurrences can be a valuable
task.

The aims of this work are (I) to study how
the additional use of information about re-
tention (on different stationary phases) and
molecular weight (Figure 1B) together with
the mass spectrum affect the accuracy of pre-
diction, and (II) to consider not only classi-
fication, but also regression models that pre-
dict not only the presence or absence of a
given structural feature but also the number
of such features in a molecule.

Methods

The NIST 17 database was used for train-
ing and validation of developed models.
Molecules containing elements other than H,
B,C,N,O,F,P,S, Cl, Br, I were excluded
from the data sets, as well as molecules with
a molecular weight (MW) of more than 300
and molecules for which the retention index
cannot be predicted using a 1D convolu-
tional neural network (CNN) [19]. Spectra
with peaks with m/z more than 300 and spec-
tra without peaks with m/z less than 50 were
excluded from the data set. The absence of
peaks with m/z less than 50 highly likely
means that the scanning range starts from
high m/z values. Such spectra are not suita-
ble enough for the considered task. The data
set contained 132489 spectra. The initial
data set was split into training, validation,
and test data sets containing 105871, 13367,
and 13251 mass spectra, respectively.

Gradient boosting was used for prediction
of the number and presence of substructures.
The models were trained using the XGBoost
[20] library (version 1.5.1) using our own

A) B) Molecular weight
Spectrum \ Spectrum
Neutral loss ~———
| spectrum

-uL

Substr uct el No
Substructure 2: No
Substructu re3 Yes

Retention mdlces

(2 stationary phases)

Fig. 1. Extraction of information about the structure from the electron ionization mass
spectrum (A) and from all available GC-MS data (B)
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Table 1. Hyperparameters of the XGBoost library used in this work

Parameter Value
Learning rate (eta) 0.01
Minimum loss reduction required for a split (gamma) [0.01
L2 regularization term on weights (lambda) 7
Subsample ratio (subsample) 0.6
Maximum tree depth (maxDepth) 11

Minimum sum of weight needed (minChildWeight) 1

Objective function for classification tasks

Logistic regression for binary
classification (binary:logitraw)

Objective function for regression tasks

Mean squared error (reg:squarederror)

Number of trees (classification tasks)

6000

Tree construction algorithm

Faster histogram algorithm (hist)

program (the Java Programming language
was used). The used hyperparameters are
given in Table 1. For regression tasks, the
early stopping was used: if the accuracy for
a validation set is not improved for 250 iter-
ations, the training is stopped. The following
features were used with the gradient boost-
ing model: mass spectrum (scaled to a range
of 0-1 intensities of peaks for each integer
m/z in the range 1-300), neutral loss spec-
trum (see below), MW (divided by 1000), re-
tention indices (RI) for polar (Rlpolar) and
non-polar (RIyon-polar) Stationary phases (SP),
as well as the difference between RI for po-
lar and non-polar SP (Rlpotar — Rlnon-potar).
The RI values were divided by 1000. The
neutral loss spectrum is interrelated with the
mass spectrum by the following equation:
Iy_p,m <M

N = { 0,n>M D
where I, — intensity of mass spectra corre-
sponding to m/z = n; N, — intensities of the
neutral loss spectrum, M — MW of a mole-
cule.

Because NIST 17 contains information
about RI only for few molecules, RI pre-
dicted using 1D CNN were used as features.
These RI values are close to the experi-
mental ones [19]. For prediction of RI, 1D
CNN with the following hyperparameters
was used: 2 CNN layers with 300 output
channels; 2 fully connected layers (kernel =
6) with 600 and 1 output nodes; rectified lin-

ear activation function was used for all lay-
ers except the linear output layer; early stop-
ping using a validation set was used. More
information about 1D CNN for retention in-
dex prediction is given in our previous work
[19]. The mean and median absolute errors
of prediction were 45.5 and 17.2, respec-
tively, for non-polar SP. For polar SP, these
values were 67.7 and 29.5, respectively. The
error values are given for test sets. As the in-
itial values of the trainable parameters
(weights and biases) of the neural network
for polar SP, the parameters obtained for
non-polar SP were used.

The following accuracy measures were

considered for binary classification tasks:
TP

True positive rate (TPR or recall) = PPN 2)
TP

TP + FP ®)
False positive rate (FPR) = FPiPTN 4)

2-TP
2-TP+FN+FP(5)
(6)

TP + TN
TP + FP + TN + FN
¢ =—(5) TV vilog(y) +

(1 = Y)log(1 —y)(7)
where TN, FN, TP, FP — number of true neg-
ative, false negative, true positive, false pos-
itive predictions; yi, ¥; — prediction and cor-
rect answer for the i-th sample; N — number
of samples, C — binary cross-entropy (CE).
For computation of TN, FN, TP, FP, the float
predictions numbers were rounded up to 0

Precision =

F; score (F;) =

Accuracy =
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Table 2. Additional features that are used together with the raw mass spectrum

Feature set

Additional features

1 2 3 4 5 6 7 |8
MW and neutral loss spectrum - + - + - + S
Rlson-polar - - + + - . + |+
RIpotar - - - - + + + +
RlIotar - Rlnon-polar - - - - - - + |+

Table 3. Area under the receiver operating characteristics curves (ROC-AUC) for various regres-
sion tasks and various sets of features (see Table 2)

Feature set
Substructure
1 2 3 4 5 6 7 8

-NH- 0.915| 0.917| 0.919] 0.922| 0.919] 0.921| 0.921 0.924
Aromatic 5-membered ring 0.909| 0.913] 0.914| 0917 0.913] 0.916| 0.917) 0.920
-CH3 0.953] 0.968| 0.958| 0.973| 0.959| 0.973| 0.960| 0.973
-NH; 0.932] 0.952| 0.937| 0.958 0.938/ 0.956| 0.940/ 0.957
Tertiary sp? nitrogen atom 0.967| 0.968 0.968| 0.969| 0.968 0.969| 0.969, 0.970
Nitrile 0.929) 0.957| 0.928] 0.956/ 0.934| 0.960, 0.940| 0.963
Aromatic nitrogen 0.968| 0.970| 0.971] 0.974) 0.970| 0.972| 0.973] 0.976
-O-CH; 0.972) 0.982| 0.972] 0.982| 0.973) 0.982| 0.974| 0.982
-C(=0)-0O- (carboxyl, ester, or | 0.957| 0.978| 0.959| 0.980| 0.961| 0.980 0.965 0.983
anhydride)
Aromatic ring 0.993] 0.994| 0.995| 0.995| 0.995| 0.995/ 0.995| 0.995
Carbonyl 0.926) 0.943] 0.929| 0.945| 0.932) 0.948| 0.938| 0.952
Hydroxyl 0.903| 0.930] 0.918] 0.942) 0.941 0.960| 0.960| 0.968
Benzene ring (6-membered 0.993| 0.994| 0.995/ 0.995/ 0.995 0.995| 0.995 0.995
aromatic ring without
heteroatoms)

or 1. ROC (Receiver Operating Characteris-

tics) curves were also considered, and the
area under such curves (ROC-AUC) was
used as an additional measure.

For regression tasks, the root mean square
error (RMSE) was used. RMSE was used for
early stopping for regression. The validation
set was used for early stopping, all accuracy
measures given below were calculated for
the test set.

Results and discussion

In order to study how the use of various
features (neutral loss spectrum, RI) affects
the accuracy of prediction of the presence or
absence of a given substructure in a mole-
cule based on the electron ionization mass

spectrum, the series of computational exper-
iments were conducted (see Table 2). For 13
substructures (see Table 3), the gradient
boosting model was trained with 8 sets of
features and the accuracy was evaluated. In
all 8 cases, the intensities corresponding to
m/z 1-300 in the raw mass spectrum were
used as features with or without additional
features. The area under the ROC curve [21]
was considered as the primary accuracy
measure. The XGBoost predictor predicts a
float value in the range [0, 1] instead of a bi-
nary value. This value characterizes the
probability of the presence or absence of the
given fragment. The accuracy measures such
as TPR (recall), precision, FPR (see equa-
tions (2)-(4)) depend on what is considered a
threshold value above which the XGBoost
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Fig. 2. ROC (Receiver Operating Characteristics) curves for classification models that predict
the presence of nitrile (A) and carbonyl (B) groups. The curves denoted as 1-4 correspond to the
feature sets (see Table 2) 1, 2, 4, 8, respectively

Table 4. Accuracy of prediction of the presence or absence of aromatic rings in a molecule from
GC-MS data for different feature sets (see Table 2)

Accuracy measure Feature set
1 2 3 4 5 6 7 8
Recall (TPR) 0.733) 0.824] 0.748 0.832| 0.750, 0.830/ 0.770| 0.848
Precision 0.934/ 0.931] 0.925 0.930/ 0.929] 0.930/ 0.931| 0.933
Fi score 0.821) 0.874| 0.827 0.878| 0.830, 0.877| 0.843| 0.889
Accuracy 0.908 0.931] 0.909/ 0.933| 0.911 0.933] 0.917] 0.938
Binary cross-entropy 0.235| 0.172) 0.229| 0.167| 0.226| 0.167| 0.213] 0.154

prediction is considered as positive. The
ROC-AUC measure [21] does not depend on
the threshold value and characterizes such a
predictor well. The perfect ROC curve
passes through the points (0,0), (0,1), (1,1).
The closer the ROC curve passes to the point
(0,1), the closer it is to the perfect one.

As an example, Figure 2 shows ROC
curves for prediction of the presence or ab-
sence of nitrile and carbonyl groups. Note
that for better readability, the axis range in
Figure 2 is not [0, 1]. Figure 2 clearly shows
that the use of the neutral loss spectrum and
molecular weight as additional features con-
siderably improves the prediction accuracy.
The use of Rlnon-polar as an additional feature
does not greatly improve the accuracy, but
the use of information about RI for two SP
causes an additional growth of the accuracy.
Table 3 demonstrates that for all substruc-
tures, the use of MW and neutral loss spec-
trum considerably improves the accuracy,
and the use of RI for two SP allows for the
achievement of the best accuracy. In some

cases, the use of RI for only one SP gives the
accuracy growth comparable to the use of RI
for two SP (for example, -CH3, -NH>», ben-
zene ring), in other cases, the use of RI for
two SP gives considerably better accuracy
(for example, -OH, aromatic nitrogen). The
complete data are given in Table 3. For other
than ROC-AUC accuracy measures, the sit-
uation is similar. For example, Table 4
shows various accuracy measures for predic-
tion of the presence or absence of aromatic
atoms in a molecule using various feature
sets. The precision is almost constant for
various feature sets, while the recall in-
creases. It means that the overall accuracy
improves. Note that for all accuracy
measures except CE, the value 1.0 corre-
sponds to the perfect model, and for CE, the
value 0.0 corresponds to the perfect model.
In addition to the classification task: the
prediction of the presence or absence of a
given substructure, the regression task was
also considered: the prediction of how many
times a substructure is present in a molecule
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Table 5. Accuracy of prediction of the number of various substructures in a molecule from GC-
MS data using different feature sets (see Table 2)

Feature set
Substructure
1 2 3 4 5 6 7 8
Aromatic atoms 1.93 1.75 | 1.70 | 1.60 | 1.79 1.67 1.66 | 1.57
-CH3; groups 084 | 0.77 | 0.81 | 0.71 | 0.80 | 0.71 0.78 | 0.70
Benzene rings 028 | 027 | 026 | 0.26 | 0.26 | 0.26 | 0.26 | 0.25
25 10
A) B)
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Actual number of occurrences
Fig. 3. Actual vs predicted plots for prediction of the number of aromatic atoms (A) and CH3
groups (B) in a molecule. The boxes show the range containing the half of the predictions,
and the whiskers demonstrate the ranges containing 90% of the predictions

for 3 substructures (see Table 5). In this case,
the effect of additional features is even larger
than for classification tasks. Figure 3 shows
the actual vs predicted plots for prediction of
the number of aromatic atoms and CHj
groups in a molecule. The prediction accu-
racy is quite high for a low number of occur-
rences, however, Figure 3 clearly shows that
in cases when the correct answer is high, this
value is considerably underestimated. As an
additional example, the ROC curve for pre-
diction of the presence or absence of a ben-
zene ring (6-membered ring containing only
carbons) and the actual vs predicted plot for
the number of benzene rings are shown in
Figure 4. Figures 3-4 show the data for the
full set of features.

We also tried to tune the XGBoost hy-
perparameters for each feature set and task
separately and to make such comparisons us-
ing various sets of hyperparameters (other
than given in Table 1). However, the same
patterns are observed for various sets of hy-
perparameters, and the same hyperparame-
ters are nearly optimal for various sets of
features and various tasks. Taking this fact

into account, all comparisons were made us-
ing the same set of hyperparameters. The ac-
curacy of classification was also compared
with the accuracy given in the work of Stein
et al. [17]. Because such measures as recall
and precision depend on the probability
threshold (and as the threshold increases, the
precision increases and the recall decreases),
the comparison was made at the fixed preci-
sion value of 0.9. Table 6 contains such a
comparison. Since the work [17] does not
use information about RI, we considered
only feature sets 1 and 2 (see Table 2) in this
comparison. It can be concluded that the
considered classifiers in most cases have the
same or better accuracy compared with the
described in the work [17]. The worse accu-
racy was observed only for the worst pre-
dicted substructures: non-aromatic nitro-
gens. However, that work [17] uses a much
older version of the NIST library, and this
comparison is not completely correct. The
correct comparison of the machine learning
methods should be made using the same data
set.
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Fig. 4. ROC (Receiver Operating Characteristics) curve and the actual vs predicted plot
for prediction of the presence (A) and number (B) of benzene rings in a molecule

Table 6. Comparison of the classification accuracy achieved in this work with the accuracy from
the work [17]. The values of recall at precision = 0.9 are given

Feature set (this work) Previous results [17]
Substructure 5 : . .
1 (without MW) | 2 (with MW) | Without MW | With MW

Hydroxyl 0.42 0.56 0.40 0.58
Carbonyl 0.72 0.79 0.70 0.76
-C(=0)-0O- (carboxyl, ester, or 0.77 0.86 0.36 0.47

anhydride) ) ) ) )
-NH- 0.13 0.14 0.28 0.28
-NH, 0.23 0.24 0.25 0.40
Aromatic ring 0.997 0.998 0.98 0.99
-O-CH; 0.76 0.84 0.49 0.74

Table 7. Application of models to UDMH transformation products

Structure Methyl | Aromatic ring Number of aromatic rings
NH,
d /i N Absent Present 2
HN:
N/
W W/N\\/N\ Present Present 1
N—~N
/
i I
N\N N Present Absent 0
H/%N/ \

The models developed in this work were
applied to the mass spectra and retention in-
dices of the recently identified transfor-
mation products of unsymmetrical dime-
thylhydrazine (UDMH). These compounds
are not available in mass spectral databases,
and elucidating their structure using only

chromatography and mass spectrometry is a
very difficult task [22]. Table 7 shows the
structures of the three UDMH transfor-
mation products and model predictions for
them. The first compound contains two con-
jugated aromatic rings. Previously, prior to
the publication of work [22] by our team,
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similar transformation products of UDMH
were not known. The models developed in
this work receive the retention indices for
two stationary phases and mass spectra as an
input and make it possible to obtain prelimi-
nary information about the structure and
limit the number of possible candidates. This
is an excellent starting point for further elu-
cidation of the structure [22], for which the
observed experimental data are consistent
with the results of predicting mass spectra
and retention indices. The prediction models
developed in this work will be implemented in
our previously published free and open-source
software [22] that can be obtained by the fol-
lowing link: https://github.com/mtshn/svekla

Conclusions

A model that allows for the prediction of
the presence and number of given substruc-
tures in a molecule based on GC-MS data
was built using the XGBoost library. The use
of additional data besides the electron ioni-
zation mass spectrum allows for the consid-
erable improvement of the prediction accu-
racy. If the molecular weight is known in ad-
dition to the mass spectrum (for example, it
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