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Abstract. Retention indices are widely used in gas chromatography and chromatography-mass spectrometry 

as an additional factor in tentative identification (along with the mass spectrum). Reference data on retention 

indices are available only for a limited number of molecules; in other cases, retention indices predicted by 

mathematical models can be used. Models for predicting retention indices developed prior to 2018 mostly have 

either very low accuracy or a very narrow domain of applicability. However, in recent years, starting from 

2018, the situation has begun to change: the use of deep neural networks and large training sets (mainly differ-

ent versions of the NIST database) made it possible to build both accurate and general-purpose models for 

predicting gas chromatographic retention indices, with the accuracy increasing over time. In recent years, at 

least 7 deep learning-based models for predicting gas chromatographic retention indices have been released in 

the public domain. The authors always declare that their model is more accurate than previous models, how-

ever, in all cases, there are no independent measurements of accuracy. This work aimed to objectively and 

critically compare retention index prediction models and corresponding software using the same retention data 

set that was guaranteed not to intersect with the training sets used by the authors of the models. Seven models 

and corresponding software were considered, including MetExpert (2018), DeepReI (2021), SVEKLA (2021), 

and AIRI (2024). It was shown that for the non-polar stationary phase (ZB-5MS), the accuracy of the newest 

models gradually approaches the accuracy of the reference libraries and is quite high. The newer models are 

indeed more accurate than the older ones. At the same time, for the polar stationary phase (SH-Stabilwax), the 

accuracy (independent data set) is very low and significantly lower than that stated in the original papers de-

voted to the predictive models. For users with limited experience, the process of compiling and running soft-

ware can be challenging, particularly when attempting to do so several years after publication. This is often 

due to incompatibility issues between model files and newer versions of the frameworks. It is not uncommon 

for software authors to discontinue any support of the software after an article has been published in a journal. 
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Аннотация. Индексы удерживания широко используются в газовой хроматографии и хромато-масс-

спектрометрии в качестве дополнительного фактора при предварительной идентификации (наряду с 
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масс-спектром). Справочные данные об индексах удерживания доступны лишь для ограниченного 

числа молекул, в остальных случаях можно использовать предсказанные с помощью математических 

моделей индексы удерживания. Модели для предсказания индексов удерживания, разработанные до 

2018 года, в основном имеют или очень низкую точность, или очень узкую сферу применимости. Од-

нако в последние годы, начиная с 2018 года, ситуация начала меняться: применение глубоких нейрон-

ных сетей и больших обучающих наборов (в основном разные версии базы данных NIST) позволило 

построить одновременно точные и универсальные модели для предсказания газохроматографических 

индексов удерживания, причем точность повышается с течением времени. За последние годы было 

опубликовано в открытом доступе как минимум 7 моделей, основанных на глубоком обучении, для 

предсказания газохроматографических индексов удерживания. Во всех случаях авторы декларируют, 

что точность их модели выше, чем точность предыдущих моделей, однако какие-либо независимые 

измерения точности во всех случаях отсутствуют. Целью данной работы было объективное критиче-

ское сравнение моделей для предсказания индексов удерживания и соответствующего программного 

обеспечения с использованием одного и того же набора данных об удерживании, заведомо не пересе-

кающегося с обучающими наборами, использованными авторами моделей. Было рассмотрено 7 моде-

лей и соответствующих компьютерных программ, в том числе модели MetExpert (2018), DeepReI 

(2021), SVEKLA (2021), AIRI (2024). Показано, что для неполярной неподвижной фазы (ZB-5MS) точ-

ность новейших моделей постепенно приближается к точности референсных библиотек и является 

чрезвычайно высокой. Более новые модели действительно являются более точными, чем более старые. 

В то же время для полярной неподвижной фазы (SH-Stabilwax) точность (независимый набор данных) 

очень низкая и значительно ниже, чем заявлено в оригинальных статьях, посвященных моделям для 

предсказания индексов удерживания. Отдельной проблемой для неопытного пользователя является 

компиляция и запуск программного обеспечения спустя несколько лет после публикации из-за несов-

местимости файлов моделей с новыми версиями фреймворков; авторы обычно не поддерживают ника-

ким образом программное обеспечение после публикации статьи в журнале. 

Ключевые слова: газовая хроматография, индекс удерживания, нейронные сети, машинное обучение. 
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Introduction 

Retention indices (RI) based on n-al-

kanes, i.e., relative retention times, can be 

used in gas chromatography (GC) as an ad-

ditional factor that increases the reliability of 

mass spectrometric (MS) identification [1-

2]. Since a reference value for the RI is not 

available in databases for most of the availa-

ble chemical compounds, the prediction of 

the RI based on the structure of the molecule 

is of great importance. Early studies [3] on 

RI prediction often considered very small 

data sets; all compounds, for which the 

model was built, belonging to one narrow 

class, and such models were difficult to use 

in practice. The first publicly published and 

truly versatile model appeared back in 2007 

[4], but the prediction accuracy was very low 

and such RI were difficult to use for identi-

fication in practice [1]. 

Since 2018, there have been numerous 

publications devoted to the development of 

accurate, general-purpose (suitable for a 

wide variety of chemical compounds) mod-

els for predicting RI based on the structure 

of a molecule [2, 5-14], as well as the prac-

tical application of such models in the anal-

ysis of complex mixtures [15-16], in partic-

ular for the analysis of environmental ob-

jects [15] and in metabolomics [6]. In the 

majority of cases, such works use neural net-

works [2, 5-11] to predict RI. In 2019, our 

team was the first in the world to use deep 

learning to predict RI [2]. Since then, deep 

learning has become the main method for ac-

curate and versatile prediction of gas chro-

matographic RI. 

A variety of neural networks are used for 

RI prediction using deep learning: deep one-

dimensional convolutional neural networks 

(1D CNN) using a string representation of 

the molecule structure (so-called SMILES 

strings [17]) as input [2, 9, 10], deep two-di-

mensional convolutional neural networks 
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(2D CNN) of various types [9, 11], multi-

layer perceptrons (MLP) using molecular 

descriptors (MD) or molecular fingerprints 

(MF) as features [6, 9, 10, 13], graph neural 

networks (GNN) processing the molecular 

graph directly [5, 7, 8]. MF and MD are nu-

merical features characterizing the structure 

of the molecule. An overview of MD is 

given in many previous works [9, 18]. In ad-

dition to neural networks, other techniques 

such as gradient boosting (GB) [9, 12] and 

support vector regression [10, 13, 14] can 

also be used. 

Unfortunately, the authors of many such 

works do not publish ready-to-use software 

and trained parameters of the models in the 

public domain [7, 12-14]. It is impossible to 

apply such models in practice otherwise than 

by reproducing the entire procedure for con-

structing the model as it was done by the au-

thors. In 2018-2024, 7 works were published 

[2, 5, 6, 8-11] devoted to accurate and uni-

versal prediction of RI using models trained 

on large and diverse data sets, in which the 

resulting models and software are published 

in the public domain [2, 5, 6, 9-11] or avail-

able online [8]. The majority of these articles 

focus on standard and semi-standard non-po-

lar phases (polydimethylsiloxane, 5%-phe-

nyl-polydimethylsiloxane), only two of 

them [8, 10] also contain models for predict-

ing RI for standard polar stationary phases 

(polyethylene glycol). 

In most cases, the authors of studies de-

voted to the development of new models for 

predicting RI using machine learning pro-

vide a comparison of their model with previ-

ous ones in their publications. However, the 

comparison is performed using different data 

sets, and it is often difficult to be sure of the 

correctness of such a comparison. The pub-

lished software in most cases [2, 6, 9, 11] is 

not updated and not supported after the pub-

lication of the corresponding article, and a 

compilation years after the initial publication 

may be difficult due to outdated versions of 

the frameworks and libraries used. There are 

often no works independent of the authors of 

the original model that use and critically 

evaluate the accuracy. In other cases [5, 8], 

on the contrary, the current version of the 

corresponding software may differ from that 

described in the journal publication. 

The aim of the present study was to eval-

uate the accuracy and usability of a current 

range of general-purpose models (and corre-

sponding software) for predicting gas chro-

matographic RI using the same independent 

data set. For this purpose, we used a recently 

published data set [19] of the RI of various 

organic compounds for ZB-5MS and SH-

Stabilwax stationary phases. 

Methods 

Data set and accuracy evaluation. The 

data set for the ZB-5MS stationary phase 

was taken from the corresponding repository 

[19]. The data set was divided into two sub-

sets. The first subset contained molecules for 

which RI data for standard or semi-standard 

stationary phases were available in the NIST 

20 database. The second subset consisted of 

molecules for which RI data for standard or 

semi-standard stationary phases were absent 

in the NIST 20 database. The first subset was 

used to assess the accuracy of the RI values 

reported in the NIST 20 database. The sec-

ond subset was used to evaluate the predic-

tion accuracy of machine learning models. 

Since 5 of the 7 machine learning models 

considered were trained using the NIST da-

tabase of different legacy versions (from 

NIST 08 to NIST 20), it was thus ensured for 

these models that the molecules used to as-

sess the accuracy of the models were not part 

of the training data sets used to train these 

models. 

The SH-Stabilwax stationary phase data 

set was divided similarly. In this case, the 

criterion for assigning a molecule to one of 

the subsets was the presence of data for this 

molecule in the NIST 20 database for stand-

ard polar stationary phases. The SMILES 

strings, which encode the structure of the 

molecule, were used without alteration as 

they were provided in the repository [19]. 
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The parameters of the chromatographic 

modes, the description of the experiment, 

and the structural formulas of the molecules 

are given in the repository [19]. 

When determining whether a molecule is 

present in the NIST 20 database, stereoiso-

mers were considered to be the same com-

pound. The accuracy measures were root 

mean square error (RMSE), mean absolute 

error (MAE), median absolute error 

(MdAE), mean percentage error (MPE), me-

dian percentage error (MdPE), and coeffi-

cient of determination (R2). 

Models and software considered. The 

considered machine learning models and the 

designations are presented in table 1. For the 

MetExpert model [6] (version v1), the ar-

chive was downloaded from the correspond-

ing repository [20]. The ANN folder con-

tains the neural network weights and all 

other data necessary for reproducing the 

model. The equations, by which the calcula-

tion should be performed, are contained in 

the MetExpert_Pipeline.xlsb file (in the 

source code of the script). We calculated the 

MD using the command contained in the 

MetExpert_Pipeline.xlsb file, and we imple-

mented further calculations ourselves using 

the neural network parameters given in the 

ANN folder. 

The source code for the JCA19 model 

was taken from the Supplementary Material 

of the corresponding article [2]; for the Ac-

cess model [9], the source code was taken 

from the repository [21]. The source code 

was compiled and executed in accordance 

with the instructions provided with the 

source code. The Java Development Kit 

(version 11.0.23) and Maven (version 3.6.3) 

were used. The SVEKLA [10] software (ver-

sion 0.0.2-alpha1) was downloaded from the 

repository [22] (ready-to-use binaries). The 

graphical user interface (GUI) was not used, 

but command line options were used to eval-

uate the accuracy. The corresponding com-

mand line options are described in the infor-

mation.pdf file in the repository [23]. For the 

Access and SVEKLA models [10], a value 

of 16 was used as the value of the stationary 

phase type for both polar and non-polar sta-

tionary phases. Detailed information on the 

stationary phase codes can be found in the 

Supplementary Materials to the correspond-

ing articles [9, 10]. 

The GCMS-ID [8] model is available on 

the website [24], but the website address has 

changed over the last year and there is no 

Table 1. Publicly available accurate and general-purpose retention index prediction models 

Таблица 1. Общедоступные точные и универсальные модели для предсказания индексов 

удерживания 

Designation Year 
NIST 

version 
Model description Reference 

MetExpert 2018 - Two-layer perceptron, uses MD as input features [6] 

JCA19 2019 NIST 08 Deep 1D CNN using SMILES strings as input [2] 

Access 2020 NIST 17 

Four models that form the ensemble: 1D and 2D 

CNN, deep MLP, GB; SMILES strings, 2D mole-

cule sketches, MD, and MF are used as inputs 

[9] 

DeepReI 2021 NIST 14 Deep 2D CNN using SMILES strings as input [11] 

SVEKLA 2021 NIST 17 

Two models that form the ensemble: 1D CNN and 

deep MLP; SMILES strings, MD, and MF are used 

as inputs 

[10] 

GCMS-ID 2023 NIST 20 Deep attention-based GNN [8] 

AIRI 2024 NIST 23 
Eight attention-based GNN (graph transformers) 

that form the ensemble 
[5] 
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guarantee that it will continue to be availa-

ble. The stationary phase type was selected 

as either "semi-standard non-polar" or 

"standard polar". The AIRI model [5] is im-

plemented in the masskit_ai package (ver-

sion 1.2.2, installed together with masskit, 

version 1.2.2) [25]. The SMILES strings 

were converted to .sdf format using the Open 

Babel utility (version 3.1.1), and then the in-

structions from the NIST website [26] were 

applied. 

The DeepReI model [11] was installed 

according to instructions from the corre-

sponding repository (version not specified). 

The following software versions were used: 

R 4.1.2, TensorFlow 2.0.0, Keras 2.3.1, and 

Python 3.7.16. A conda virtual environment 

was created with the appropriate versions of 

Python and TensorFlow. All web resources 

and repositories were accessed in July-Au-

gust 2024. Unfortunately, in the future, the 

websites and repositories may be removed, 

and the instructions given may no longer 

work with newer versions of operating sys-

tems and software. A more detailed discus-

sion of the persistence of predictive models 

is provided below. All calculations were per-

formed using the Linux Mint operating sys-

tem (version 21). 

Results and discussion 

Qualitative comparison of predictive 

models and related software. Table 2 pre-

sents a qualitative comparison of the predic-

tive models and the corresponding software. 

Each model is accompanied by a computer 

program (script). Some of the models 

(MetExpert [6], SVEKLA [10], DeepReI 

[11], GCMS-ID [8]) are equipped with a 

Table 2. Comparison of retention index prediction models and corresponding software 

Таблица 2. Сравнение моделей для предсказания индексов удерживания и соответствую-

щее программное обеспечение  

 MetExpert JCA19 Access DeepReI SVEKLA GCMS-ID AIRI 

Graphical user 

interface 
Yes No No Yes Yes Yes No 

Source code and 

model are publicly 

available for down-

load 

Yes Yes Yes Yes Yes No Yes 

Batch prediction Possible* Yes Yes Yes Yes No Yes 

Difficulty of instal-

lation and use 
Unclear* Medium Medium Hard Easy Easy Medium 

Ready-to-use bina-

ries or website 

available 

Unclear* No No No Yes Yes No 

Polar stationary 

phases support 
No No No No Yes Yes No 

Non-standard sta-

tionary phases sup-

port 

No No No No Yes No No 

Persistent versions Yes Yes Yes No Yes No In part 

Accuracy** Low Low Medium Low Medium High Highest 

* – The MetExpert package contains a GUI (based on Microsoft Excel), ready-to-use binaries are publicly 

available. However, we were unable to run them and achieve retention index prediction. The predictive 

model can be very easily reimplemented independently, the parameters are published in a convenient form. 

** – Quantitative comparison is given below 



 

Сорбционные и хроматографические процессы. 2024. Т. 24, № 5. С. 711-722. 

Sorbtsionnye i khromatograficheskie protsessy. 2024. Vol. 24, No 5. pp. 711-722. 
 

ISSN 1680-0613_____________________________________________________________ 
 

 

 
 

716 

GUI, while others are run from the command 

line. However, only SVEKLA [10] and 

GCMS-ID [8] have a built-in molecule edi-

tor; for other models, the user is required to 

convert the structures to SMILES strings 

[17] prior to use. For all models except 

GCMS-ID, the weights (trainable parame-

ters) of the neural networks and the source 

codes are available online. Thus, these soft-

ware and models are available for full study 

and use in any way. 

Not all software is equally easy to run and 

use. For example, DeepReI instructions [11] 

contain typos, and a user has to manually in-

stall many dependencies (not all of which are 

mentioned in the instructions) to run and use 

it. But the biggest difficulties for an inexpe-

rienced user are related to the fact that model 

files are not compatible with modern ver-

sions of Keras/TensorFlow, and the required 

versions of frameworks are not compatible 

with modern versions of Python, while 

DeepReI [11] itself is written in R, and Py-

thon dependencies are hidden behind R 

wrappers. In addition, when something goes 

wrong (e.g., the framework cannot load a 

model due to a version mismatch), the 

DeepReI GUI does not show any error mes-

sages, and RI prediction just does not work. 

We were not able to achieve the predic-

tion of RI directly using the MetExpert pack-

age [6, 20] as published. However, the 

model can be easily implemented inde-

pendently by a user with minimal program-

ming skills. Of all the software, only 

SVEKLA [10, 16, 22] has compiled and 

workable binaries that can be downloaded to 

a computer and directly run without compiling. 

The GCMS-ID model [8], while easy to 

use and convenient, has important draw-

backs when used in research. The model is 

not available for download, the prediction is 

server-side, and the user has no control over 

what happens and how well the model used 

matches what is described in the original 

publication [8]. There is no assurance that 

the model will work after a certain amount 

of time. Batch processing is not possible, 

only prediction of one molecule at a time is 

supported. 

The persistence of models is an important 

issue. If a version of the software and model 

is available in an immutable repository (such 

as Figshare [21, 23]), the results will be re-

producible even after a significant amount of 

time. Content from websites such as Github 

[22, 25] or a website owned by model crea-

tors [24, 26] can be removed at any time. 

Calculations made with such a model may 

not be reproducible at any point in time. In a 

situation where authors do not make releases 

with unambiguous version numbers, it may 

not be clear which version the calculation 

was made with. A significant challenge 

when attempting to reproduce results from 

articles published a considerable time ago is 

the obsolescence of dependencies and the 

necessity to utilize older versions. Neverthe-

less, at the time of writing this paper, we 

have successfully run all 7 models. 

Quantitative comparison of accuracy of 

predictive models. In this section, we quan-

titatively compare the RI prediction accu-

racy of the 7 models listed in table 1 for the 

ZB-5MS stationary phase using the pub-

lished data set [19]. This stationary phase is 

a semi-standard stationary phase (5%-phe-

nyl-polymethylsiloxane). For 6 molecules 

(3-(2-methoxyethyl)octan-1-ol, 2-hydroxy-

tyrosine, 6-methyl-2-pyridone, 3,6,9,12-

tetraoxotridecanol, 3,6-dimethylphthaloni-

trile, indole-3-carbinole), all models give an 

error of more than 100 RI units. At the same 

time, the predictions of the models are close 

to each other. It is likely that the data set used 

contains errors, for example, due to misla-

beling of samples. A simultaneous discrep-

ancy between the predictions of a number of 

models and the experimental value may in-

dicate an error in the data set [27].  

However, we have no certainty that it is 

exactly an error in the data. An interesting 

example of how many models can go wrong 

simultaneously is 4-hydroxy-2-methoxyben-

zaldehyde. For this molecule, all but the two 

most recent and most accurate models (AIRI 

[5] and GCMS-ID [8]) give predictions that 
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are 100-200 units lower than the observed 

experimental value. The prediction of the 

two most accurate models coincides with the 

experimentally observed value. We believe 

that both an error in the data set and simulta-

neously equally incorrect predictions of a 

number of models at once are possible. This 

can be caused by an error in the training set, 

e.g., an incorrect RI value for a molecule 

close to the one for which the prediction is 

performed. 

When calculating the accuracy measures, 

6 molecules for which all models give an er-

ror of more than 100 RI units were excluded 

from the calculation. The contribution of 

these molecules to accuracy measures such 

as RMSE and MAE is too large and makes 

the comparison less clear. After excluding 

these 6 molecules from the data set, the ac-

curacy measures were calculated. The re-

sults are summarized in table 3. In addition, 

accuracy measures are provided to compare 

our observed RI with the NIST database (us-

ing a different subset of the data). 

The accuracy of the AIRI model [5] is im-

pressively high. However, this model was 

trained using NIST 23, and some of the mol-

ecules from the set used to assess the accu-

racy may have been present in the training 

set. This makes such a comparison not en-

tirely correct. The GCMS-ID model [8] is 

also highly accurate. The SVEKLA [10] 

model developed at the A.N. Frumkin Insti-

tute of Physical Chemistry and Electrochem-

istry of the Russian Academy of Sciences 

(IPCE RAS) ranks third in accuracy (an en-

semble of MLP and 1D CNN). Fig. 1 shows 

how the accuracy of RI prediction increased 

in 2018-2024. In just 6 years, spectacular ad-

vances have been made in this field through 

the application of deep learning. Our team at 

Table 3. Accuracy of published general-purpose models for predicting retention indices based on 

the structure of a molecule (semi-standard non-polar stationary phase) 

Таблица 3. Точность опубликованных универсальных моделей для предсказания индексов 

удерживания на основе структуры молекулы 

Designation RMSE MAE MdAE MPE, % MdPE, % R2 

MetExpert 242.5 178.6 131.6 14.24 10.14 0.425 

JCA19 101.5 76.8 57.2 5.35 4.42 0.941 

Access (1D CNN) 64.3 50.0 41.2 3.70 2.96 0.968 

Access (2D CNN) 58.7 44.7 32.3 3.38 2.48 0.965 

Access (MLP) 55.4 36.3 21.1 2.59 1.64 0.970 

Access (GB) 90.2 63.0 46.4 4.46 3.94 0.922 

Access (Ensemble) 52.2 37.2 28.5 2.71 2.23 0.975 

DeepReI 147.2 73.7 40.7 5.14 3.46 0.782 

SVEKLA (1D CNN) 70.0 51.4 36.4 3.70 3.15 0.964 

SVEKLA (MLP) 50.6 33.9 22.7 2.41 1.79 0.975 

SVEKLA (Ensemble) 54.8 38.3 25.1 2.73 2.12 0.976 

GCMS-ID 37.0 25.1 17.6 1.97 1.23 0.987 

AIRI 30.9 17.0 10.4 1.35 0.72 0.991 

NIST 20* 56.4 22.9 7.3 1.97 0.66 0.966 

NIST 20 (distant** outliers 

removed)* 
25.0 14.0 6.9 1.35 0.61 0.993 

* - A different subset of experimental retention indices was used. 

** - Discrepancy greater than 150 units. 
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IPCE RAS was the first to apply deep learn-

ing to this task [2]. 

The SVEKLA and Access models are en-

sembles of several models [9, 10]. Table 3 

also provides a comparison of the different 

models included in the ensemble. Interest-

ingly, for this data set, the 1D CNN gives 

much worse accuracy than the MLP, while 

for other data (essential oils, metabolites, 

and NIST subsets) the accuracy of these 

models is comparable [9, 10]. This shows 

that the accuracy and the ratio of the accura-

cies of different models strongly depend on 

the data used: there is no universally the 

most accurate predictive model. 

Fig. 2 shows the cumulative distribution 

of prediction errors for different molecules. 

It is evident that the threshold value of 70 

used in the previous work [16] for rejecting 

false candidates in tentative GC-MS identi-

fication is too low. Even for relatively accu-

rate models, more than 10% of candidates 

will be erroneously rejected. In general, the 

cumulative distribution can be used to select 

a threshold value of the difference between 

predicted and observed RI for rejecting false 

candidates in tentative GC-MS identifica-

tion. 

The authors of each subsequent work de-

voted to the prediction of RI declare that the 

achieved accuracy is higher than in previous 

works. Table 3 and fig. 1-2 show that this is 

generally true upon independent verifica-

tion. The results are generally reproducible. 

Fig. 3 shows the correlations of predicted 

and experimental RI values for different pre-

dictive models. It also shows the correlation 

between the RI values from the repository 

[19] and the RI values from the NIST 20 da-

tabase (another subset of molecules). The 

MetExpert model demonstrates relatively 

low accuracy when applied to these data 

sets. This is due to the fact that it was trained 

not on the NIST database, but on a small data 

set containing metabolites and essential oils 

[6]. For organofluorine compounds, it does 

not give satisfactory predictions; in fig. 3, 

the group of outliers (mainly organofluorine 

compounds) is shown by an ellipse. The ac-

curacy of the model is very dependent on the 

presence of compounds close in structure to 

the predicted compounds in the training data 

set [28]. Fig. 2-3 show all compounds [19], 

including 6 molecules for which all models 

give an error greater than 100 units. 

  
Fig. 1. Accuracy of general-purpose models 

for predicting retention indices published in 

2018-2024, with an indication of the three 

most accurate models 

 

 

Рис. 1. Точность универсальных моделей 

для предсказания индексов удерживания, 

опубликованных в 2018-2024 г. с указа-

нием трех наиболее точных 

 

 

 

 

Fig. 2. Dependence of the fraction f of mole-

cules, for which the absolute error is not 

higher than D, on the value of D for different 

predictive models: 1 – AIRI; 2 – GCMS-ID; 

3 – SVEKLA; 4 – Access; 5 – DeepReI; 

6 – JCA19; 7 – MetExpert 

Рис. 2. Зависимость доли молекул f, для 

которых абсолютная ошибка не превы-

шает D, от величины D для различных мо-

делей 
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The accuracy of the AIRI model [5] (dis-

crepancy values between observed and pre-

dicted RI) is comparable to the accuracy of 

the NIST 20 RI reference database itself, as 

shown in table 3. When comparing the ob-

served RI from the repository [19] with the 

NIST 20 database, a perfect match is also not 

observed. The NIST database is known to 

contain a number of erroneous entries [27]. 

Prediction accuracy for polar stationary 

phases. The RI prediction accuracy for the 

polar stationary phase was estimated in a 

similar manner. Of the 7 models considered, 

only SVEKLA [10] and GCMS-ID [8] have 

the ability to predict RI for the polar station-

ary phase (polyethylene glycol). Fig. 4 

shows the correlation between the RI pre-

dicted by the two models and the observed 

ones. The prediction accuracy is very low, 

and the discrepancy is hundreds of units for 

many molecules. Unfortunately, for the mol-

ecules considered (the structural formulas of 

all molecules are given in the repository 

[19]), none of the available models allow for 

achieving satisfactory accuracy in predicting 

RI for the polar stationary phase. 

 
Fig. 3. Correlation between observed and predicted retention indices (semi-standard non-polar 

stationary phase) for different predictive models; a group of molecules, mainly polyfluoro-substi-

tuted compounds, for which MetExpert gives highly erroneous predictions is highlighted; in the 

case of NIST 20 (last subplot), library values are considered instead of predicted values; data for 

a different set of molecules are considered 

Рис. 3. Корреляция между экспериментальными и предсказанными индексами удержи-

вания для различных моделей; выделена группа молекул, в основном полифторзамещен-

ных соединений, для которых MetExpert дает большие значения ошибки; в случае NIST 20 

(последний график) вместо предсказанных значений рассматриваются библиотечные зна-

чения (данные для другого набора молекул) 

 

 
Fig. 4. Correlation between observed and predicted retention indices (standard polar station-

ary phase) for different predictive models 

Рис. 4. Корреляция между наблюдаемыми и предсказанными индексами удерживания 

(стандартная полярная неподвижная фаза) для различных моделей 
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At the same time, for those molecules for 

which the reference RI value is contained in 

the NIST database, there is a satisfactory 

agreement between the values from the re-

pository [19] and the values from the NIST 

database. It is also evident (fig. 4) that the 

predictions of the two models differ greatly 

from one another. Thus, namely the low ac-

curacy of RI prediction by published models 

for polar stationary phases is observed. The 

corresponding values of the accuracy 

measures are given in table 4. Such low pre-

diction accuracy compared to that stated in 

the publications devoted to the correspond-

ing models is because [28] the molecules, for 

which we performed testing, differ signifi-

cantly in structure from most molecules for 

which the NIST database contains RI data 

for polar stationary phases. 

Conclusions 

In many areas of science, there is cur-

rently [29-30] a so-called “reproducibility 

crisis”: when trying to repeat scientific re-

sults from publications, researchers are 

faced with the fact that the results are not re-

producible. In each case, it is difficult to es-

tablish the reason why this happened: it 

could be a mistake by the one trying to re-

peat, it could be a mistake in the original 

work, or it could be the result of dishonest 

actions by the author of the original work. At 

the same time, this study shows that the ac-

curacy of models for predicting gas chroma-

tographic retention indices really behaves 

exactly as the authors of the relevant papers 

claim: each subsequent model is indeed 

more accurate than the previous ones. While 

the 2018-2021 models had much lower ac-

curacy compared to library retention indices 

(the average absolute error is several times 

higher), the accuracy of the latest models ap-

proaches the accuracy of experimental refer-

ence retention indices. Most likely, in the 

coming years, it will be possible to use the 

predicted retention indices as reference ones 

in most cases, and the growth of the size of 

retention index libraries will be of interest 

only from the point of view of the growth of 

training sets. At the same time, these opti-

mistic remarks apply only to non-polar sta-

tionary phases. The accuracy of the predic-

tion of retention indices for various chemical 

compounds for the polar stationary phase is 

very low, significantly lower than that 

claimed by the authors of the predictive 

models. We believe that the main reason for 

this discrepancy is that the training set is not 

representative and not diverse enough. How-

ever, it is to be hoped that in the near future, 

accurate and free software for predicting re-

tention indices will be available for all sta-

tionary phases. “Raw” predictions of reten-

tion indices using all models considered 

have been added to the repository with ex-

perimental data [19]. 

Table 4. Accuracy of published general-purpose models for predicting retention indices based on 

the structure of a molecule (standard polar stationary phase) 

Таблица 4. Точность опубликованных универсальных моделей для предсказания индексов 

удерживания на основе структуры молекулы (стандартная полярная неподвижная фаза) 

Designation RMSE MAE MdAE MPE, % MdPE, % R2 

SVEKLA (1D CNN) 284.3 211.9 166.9 9.33 7.40 0.791 

SVEKLA (MLP) 240.7 172.0 117.7 7.34 5.75 0.864 

SVEKLA (Ensemble) 250.6 185.4 133.7 8.05 5.89 0.847 

GCMS-ID 329.5 235.5 161.6 9.68 7.53 0.708 

NIST 20* 102.7 35.9 14.3 1.84 0.75 0.960 

NIST 20 (distant** outliers 

removed)* 

34.9 22.3 12.0 1.22 0.70 0.995 

* - A different subset of experimental retention indices was used; ** - Discrepancy greater than 150 units. 
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