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Аннотация. Произведена характеризация ионообменных свойств новой многофункциональной ко-

лонки на основе полистирол-дивинилбензола путем независимого варьирования параметров подвиж-

ной фазы в режиме гидрофильной хроматографии.  Продемонстрировано существенное снижение ани-

онообменной емкости сорбента в исследуемом диапазоне pHw
w  2.85-5.76, вероятно, вызванное нали-

чием в функциональном слое аминогрупп разной степени замещенности, депротонируемых при повы-

шении pH. Для органических кислот разной силы c p𝐾𝑎w
w  1-5 зарегистрированы зависимости факторов 

удерживания от pH, а также определены величины относительных вкладов ионообменного механизма 

в общее удерживание. С ростом pH продемонстрировано снижение времен удерживания анионов и 

кислот с p𝐾𝑎w
w <4 и увеличение для кислот с p𝐾𝑎w

w >4, при этом первые преимущественно удерживались 

по ионообменному механизму во всем диапазоне, в то время как для кислот с p𝐾𝑎w
w >4 вклад ионного 

обмена существенно снижался при повышении концентрации элюирующего иона (90-0%) при pHw
w  

2.85. Показано, что для подобных анионообменников с высокой емкостью состояние аналита, завися-

щее от соотношения pH𝑤
𝑠  подвижной фазы и p𝐾𝑎𝑤

𝑠  соединения, оказывает большее влияние на вид за-

висимости k’−pH, чем изменение заряда сорбента. Оптимальным условием разделения кислот разной 

силы является кислая среда (рН ≤ pKa), обеспечивающая удерживание по совокупности разных меха-

низмов, а также контроль вклада электростатических взаимодействий путем варьирования концентра-

ции элюирующего иона. Подобраны условия высокоэффективного (до 32 000 тт/м) и селективного раз-

деления смеси 5 кислот за 5 мин. Показана возможность разделения ионизируемых соединений на ба-

зовом жидкостном хроматографе с применением новой многофункциональной колонки без привлече-

ния оборудования для ионной хроматографии. 

Ключевые слова: гидрофильная хроматография, ионная хроматография, ионный обмен, ионообмен-

ники, полистирол-дивинилбензол, карбоновые кислоты, смешанный режим ВЭЖХ. 
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Abstract. The ion-exchange features of a new multifunctional polymer column in HILIC mode were examined 

by varying the mobile phase pH and counter ion concentration. A significant decrease in the column anion-

exchange capacity was demonstrated in the range of pHw
w  2.85−5.76 which was attributed to the presence of 

secondary and tertiary amino groups in the functional layer. The k’-pH trends in the corresponding range were 

built for different organic acids ( p𝐾𝑎w
w  1−5) additionally the relative contributions of the ion-exchange to the 

overall retention were determined by eluting ion concentration altering. A decrease in the retention of anions 

and acids with  p𝐾𝑎w
w <4 and an increase for acids with p𝐾𝑎w

w >4 was shown with rising pH. The ion-exchange 

impact in the retention of the latter ones significantly decreased by concentration rise at  pHw
w  2.85, while the 

former being predominantly retained by the ion-exchange mechanism in the entire pH range. For such a high-

capacity anion exchangers, the type of the k’−pH dependence was shown to be mostly determined by the ana-

lyte state, which in its turn depends on the pH𝑤
𝑠  and p𝐾𝑎𝑤

𝑠  values. Mobile phase of рН ≤ pKa was found to be 

the most appropriate for separation of acids, providing retention by different mechanisms and allows practi-

tioners to master electrostatic interactions by varying the concentration of the eluting ion. A mixture of 5 acids 

was entirely separated in five minutes with an efficiency of up to 32 000 plates/m in mixed-mode HPLC. A 

beneficial option of ionizable compounds separation on a novel polymer multifunctional column with no ion 

chromatography equipment being engaged has been shown in this work. 

Keywords: hydrophilic interaction liquid chromatography, ion chromatography, ion exchange, electrostatic 

interactions, anion exchangers, poly (styrene-divinylbenzene), carbon acids, mixed-mode. 
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Введение 

Гидрофильная хроматография (ГИХ) 

представляет собой активно развиваю-

щийся метод одновременного разделения 

и определения полярных гидрофильных 

соединений, к числу которых относятся 

многие биологически активные веще-

ства, компоненты лекарств и их метабо-

литы [1]. Современным направлением 

развития метода ГИХ является примене-

ние в качестве неподвижных фаз ионооб-

менников низкой емкости на основе по-

листирол-дивинил бензола (ПС-ДВБ), ха-

рактеризуемых более широким диапазо-

ном гидролитической устойчивости по 

сравнению с силикагелем. Подобные сор-

бенты способны работать в смешанном 

режиме ВЭЖХ, осуществляя разделение 

соединений разной гидрофильности и за-

ряда в ходе одного анализа [2]. Для этих 

целей гидрофобная полимерная матрица 

может быть эффективно экранирована 

гидрофильными полимерными слоями 

заданной архитектуры, наиболее подхо-

дящими для конкретной аналитической 

задачи [3]. В качестве модификатора, в 

частности, могут быть использованы по-

лиэлектролитные цепочки, обеспечиваю-

щие высокую гидрофильность поверхно-

сти за счет кватернизованного азота в 

структуре функционального слоя [4]. При 
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этом удерживание вещества также может 

осуществляться за счет стэкинг-взаимо-

действий, например, 𝜋 − 𝜋 типа, реализу-

емых между ароматической системой 

аналита и матрицей ПС-ДВБ. Для эффек-

тивной эксплуатации такого сорбента 

необходимо правильно оценивать его 

разделяющую способность в широком 

диапазоне рабочих условий. 

Современным ограничением широ-

кому распространению метода гидро-

фильной хроматографии является слож-

ный механизм удерживания, сочетающий 

распределение, адсорбцию, а также элек-

тростатические взаимодействия [5], соот-

ношение вкладов которых изменяется 

при смене рабочих условий, недоста-

точно описано в литературе и на практике 

значимо сказывается на результатах  хро-

матографического анализа, сопровожда-

ясь сложностями выбора колонки и усло-

вий определения. Существующие на 

настоящий момент способы описания ко-

лонок в ГИХ не предоставляют исчерпы-

вающую информацию о свойствах сор-

бента и доминирующем механизме удер-

живания в разных условиях [6,7]. Для 

расширенной характеризации свойств не-

подвижной фазы был предложен подход, 

основанный на получении зависимостей 

факторов удерживания модельных анали-

тов от независимо варьируемых парамет-

ров подвижной фазы (доли сильного 

элюента, кислотности, концентрации 

элюирующего иона)[8-10]. Структура те-

стовых соединений, используемых для 

описания механизма удерживания, 

должна соответствовать минимальному 

числу реализуемых взаимодействий сор-

бат-сорбент. Полученные зависимости 

факторов удерживания интерпретируют 

в совокупности с применением основных 

физико-химических моделей удержива-

ния. Общее удерживание представляют в 

виде суммы трех компонентов: ионного 

обмена, распределения и адсорбции (1). 

𝑘′ = 𝑘′
ГИХ + 𝑘′

IEX +  𝑘′
𝜋−𝜋 =

𝑘′
(𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛) + 𝐷

𝑉𝑠

𝑉𝑚
 +

𝑏𝐼𝐸𝑋

[M−]
+ 𝑘𝜋−𝜋

′   (1) 

Углубленное изучение электростатиче-

ских взаимодействий в рамках данного 

подхода позволяет установить условия 

разделения заряженных соединений в ре-

жиме ГИХ, что дает преимущества ис-

пользования широко распространенного и 

доступного оборудования для ВЭЖХ без 

необходимости эксплуатации ионохрома-

тографических систем, а также в перспек-

тиве – экспрессного прогнозирования 

условий одновременного определения со-

единений разного заряда в одном анализе. 

Разделение органических кислот пред-

ставляет собой важную аналитическую 

задачу [11-13]. Было продемонстриро-

вано успешное разделение соединений 

данного класса на колонках на основе си-

ликагеля в гидрофильном режиме [14]. 

При этом наилучшая селективность до-

стигалась при условии pH>pKa. Для коло-

нок данного типа уже существуют зави-

симости удерживания от параметров по-

движной фазы, позволяющие подобрать 

условия разделения. В то же время, для 

сорбентов на полимерной основе на 

настоящий момент такие сведения отсут-

ствуют, что ограничивает возможности 

их применения. Целью данной работы яв-

ляется описание ионообменных свойств 

новой многофункциональной колонки на 

основе ПС-ДВБ, а также выбор условий 

разделения смеси органических кислот. 

Экспериментальная часть 

Неподвижная фаза. В данной работе 

использовали сорбент, синтезированный 

согласно [4] путем модифицирования 

аминированного полистирол-диви-

нилбензола, полученного в результате 

восстановительного аминирования про-

дукта реакции Фриделя-Крафтса, поли-

электролитными цепочками, предвари-

тельно синтезированными по реакции 1,4-

бутандиолдиглицидилового эфира и ди-

метиламина (обозначен в [6] как P-DMA 

x3, рис. 1). Параметры исходной матрицы 

ПС-ДВБ − степень сшивки 50%, диаметр 
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зерна 5,5 мкм, удельная площадь поверх-

ности 650 м2/г, диаметр пор 4 нм. Заполне-

ние хроматографической колонки 100 × 4  

мм суспензией 1 г сорбента в 20 мл де-

ионизованной воды проводили под давле-

нием 400 бар аналогично [15]. В качестве 

подвижной фазы использовали 

15 мМ раствор карбоната натрия. 

Подвижная фаза. Для приготовления 

буферных растворов использовали следу-

ющие реактивы: ледяная уксусная кис-

лота ( pKa𝑤
𝑤  4.76), 99.5%; муравьиная кис-

лота ( pKa𝑤
𝑤  3.75), ч.д.а.; гидроксид 

натрия, ч.д.а. (Компонент-Реактив, Рос-

сия). Буферные растворы готовились in 

situ методом титрования 0.5 М раствором 

щелочи необходимого количества кис-

лоты до заданной величины pH𝑤
𝑤 . Реги-

стрировали значения времен удержива-

ния при pH𝑤
𝑤 =2.85 (формиатные буфер-

ные растворы); 4.76 и 5.76 (ацетатные бу-

ферные растворы) при постоянной кон-

центрации элюирующего иона 2.5 мМ в 

подвижной фазе. Измеряли и учитывали 

значения pH𝑤
𝑠 , относящиеся к подвижной 

фазе, а также с помощью уравнений Ген-

дерсона-Хассельбаха и Дебая-Хюккеля 

рассчитывали погрешности их определе-

ния, вызванные варьированием концен-

трации. При pH𝑤
𝑤  2.85 и 5.76 удерживание 

регистрировали при концентрациях элюи-

рующего иона: 1.25; 2.5; 5.0; 7.5; 10.0 мМ 

в подвижной фазе. Для приготовления по-

движной фазы использовали ацетонитрил 

99.9%, (Компонент-Реактив, Россия). Для 

всех экспериментов подвижная фаза со-

стояла из 90% ацетонитрила и 10% буфер-

ного раствора по объему.  

Модельные соединения. В качестве те-

стовых соединений в работе использо-

вали набор органических кислот разной 

силы и гидрофильности и их солей: ани-

оны (тозилат натрия – SPTS, п-стирол-

сульфонат натрия – SPSS), кислоты (2,4-

динитробензойная, салициловая, п-нит-

робензойная, м-нитробензойная, бензой-

ная, п-метилбензойная, п-метоксибензой-

ная, никотиновая, п-аминобензойная, 3,4-

диаминобензойная, фенилаланин, 2,4-ди-

нитрофенол) производства Sigma Aldrich 

(США) и TCI (Япония), со степенью чи-

стоты >99.9%. Времена удерживания 

определяли по вводу пробы индивиду-

ального соединения с концентрацией 100 

мг/дм3 в среде, соответствующей составу 

подвижной фазы. Величины pKa, а также 

параметры гидрофильности logP и logD 

рассчитывали с помощью программы 

ACD/Labs 12.0 (Канада) или платформы 

PubChem (NIH, USA). 

Оборудование. Взятие навесок прово-

дили на весах Explorer Pro («Ohaus 

Corporation», США), с точностью 0.0001 

г. Для отбора аликвот использовали авто-

матические дозаторы LABMATE объе-

мом 10-100, 100-1000 и 1000-5000 мкл 

(«HTL», Польша) с пределом допустимой 

погрешности измерения не более 5%. Из-

мерение рН растворов проводили с помо-

щью рН-метра «рН-420» («Аквилон», 

Россия), откалиброванного по буферным 

растворам с pH𝑤
𝑤  4.01, 6.86, 9.18. Дегаза-

цию растворов осуществляли при по-

мощи ультразвуковой ванны «Сапфир 

6580» («Сапфир», Россия).  

Для проведения экспериментов ис-

пользовали жидкостной хроматограф 

ХРОМАТРОН-1411 производства АО 

«Лабтех», оснащенный четырехканаль-

ным насосом LC-1411QUA, автосампле-

ром с термостатированием проб LC-

1411ASCOL и детектором на диодной 

 
Рис. 1. Схема синтеза сорбента и его ожидаемая структура. 

Fig. 1. Adsorbent synthesis and the expected layer structure. 
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матрице LC-1411DAD; жидкостной хро-

матограф Vanquish Flex с флуоресцент-

ным детектором FLD и диодно-матрич-

ным детектором DAD; жидкостной хро-

матограф Dionex UltiMate 3000, оснащен-

ный термостатируемым автосамплером, 

двухканальным насосом и диодно-мат-

ричным детектором.  Регистрацию и обра-

ботку хроматограмм проводили при по-

мощи ПО Chromeleon 7 (Thermo Fisher 

Scientific, США). Измерение времени 

удерживания осуществляли по хромато-

граммам индивидуальных веществ отно-

сительно воды как маркера мертвого вре-

мени для многофункциональной непо-

движной фазы при скорости потока 

1 см3/мин, температуре колонки 25°С, 

УФ-детектировании при длинах волн 254, 

220, 270 нм. 

Для подтверждения результативности 

синтеза сорбента структуру привитых 

фрагментов изучали методом ГХ-МС с 

термодесорбцией с помощью системы 

Agilent GC (8890)-MS (5977B) (Agilent 

Technologies, США), состоящей из мо-

ноквадрупольного МС-детектора с ис-

точником электронной ионизации, тер-

мостата колонки, охлаждаемого узла 

ввода пробы, термодесорбера (TDU 2), 

автоматической роботизированной си-

стемы ввода пробы (Gerstel, Германия) и 

линии подачи газов (He, 1 см3/мин). Ис-

пользовали две соединенные последова-

тельно колонки HP-5MS 15 м × 0.25 мм, 

0.25 мкм (Agilent Technologies, США), а 

также стеклянные термодесорбционные 

трубки (5 × 0.5 см), кварцевую стекловату 

ч.д.а. (TRAJAN, Австралия). 

Описание механизма удерживания. 

Для заряженных соединений регистриро-

вали зависимости факторов удерживания 

от концентрации элюирующего иона 

[ЭИ] в форме уравнения ионного обмена: 

k’=f(1/[ЭИ]). При экстраполяции на бес-

конечно большую концентрацию ЭИ по-

лучали факторы удерживания, вызван-

ные неэлектростатическими взаимодей-

ствиями (k’ГИХ+𝑘′𝜋−𝜋). Принимая посто-

янными величины k’ГИХ+𝑘′𝜋−𝜋, опреде-

ляли вклады ионного обмена в удержива-

ние соединений для всех величин концен-

трации элюирующего иона. При этом об-

щее удерживание рассматривали как 

сумму (k’ГИХ+ 𝑘′𝜋−𝜋) и k’IEX. 

Обсуждение результатов 

Согласно структуре, предполагаемой 

на основе элементного анализа и ГХ-МС 

с термодесорбцией, а также результатам 

теста Танака для гидрофильных сорбен-

тов [4,6], используемая хроматографиче-

ская колонка характеризуется высокой 

анионообменной селективностью 

(α(AX)=140). С этой величиной согласу-

ется отсутствие удерживания органиче-

ских катионов и сильных оснований 

вследствие их электростатического от-

талкивания, экспериментально наблюда-

емое во всем диапазоне рассматриваемых 

рабочих условий ( pHw
w  2.85-5.76 

( pH𝑤
𝑠  5.5-9.2); [A−] 1.25-10 мМ). Сорбент 

продемонстрировал повышенную гидро-

фильность (k’U=1.5), а также селектив-

ность по отношению к гидроксигруппам 

(α(OH)=1.9), что свидетельствовало об 

эффективном экранировании гидрофоб-

ной матрицы ПС-ДВБ полиэлектролит-

ными цепочками с кватернизованным 

азотом в структуре функционального 

слоя. Эти параметры характеризуют пер-

спективность данной неподвижной фазы 

для разделения кислотных соединений в 

режиме ГИХ. 

Методология. Важным фактором, вли-

яющим как на электростатические взаи-

модействия, так и на гидрофильность не-

подвижной фазы, является pH подвижной 

фазы. Определение кислотности в ГИХ 

осложнено тем, что подвижная фаза со-

держит превалирующую долю апротон-

ного органического растворителя, что 

приводит к снижению силы кислот и осно-

ваний. Наиболее информативным подхо-

дом является использование двух шкал, 

первая из которых pHw
w  относится к чи-

стой воде, а вторая pH𝑤
𝑠   – к водно-органи-
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ческой подвижной фазе конкретного со-

става [16-18]. Зависимость фактора удер-

живания аналита от рН в простейшем 

виде, когда аналит или сорбент нейтрален, 

описывается уравнением, введенным Хор-

ватом и соавт. [19, 20]. В общем виде ре-

альные зависимости являются комбина-

цией графиков соответствующего уравне-

ния и представляют собой, как правило, 

кривые с максимумом, расположенным 

вблизи величины p𝐾𝑎𝑤
𝑠  [21]. 

Зависимость удерживания от концен-

трации элюирующего иона в форме урав-

нения ионного обмена (2) позволяет оце-

нить относительный вклад последнего в 

удерживание ионизируемых аналитов пу-

тем экстраполяции факторов их удержи-

вания на бесконечно большую концентра-

цию элюирующего иона, когда ионный 

обмен подавлен [11, 22, 23]. Угол наклона 

уравнения ионного обмена в логарифми-

ческом виде соответствует отношению за-

рядов аналита и элюирующего иона (3). 

Электростатические взаимодействия мо-

гут оказывать определяющее влияние на 

разделение, возможность их контролиро-

вать позволяет добиться высокой селек-

тивности разделения ионизируемых ана-

литов в смешанном режиме ВЭЖХ. К та-

кому типу задач относится определение 

органических кислот [11, 24, 25]. 

𝑘′ =
𝑉𝑆

𝑉𝑀
𝐾IEX

[−𝑁𝑅3
+]

[𝑀−][𝐻+]
+ 𝑘′

ГИХ,    (2) 

lg 𝑘′
IEX = lg 𝑏𝐼𝐸𝑋 + 𝑎               (3) 

Зависимость удерживания от кислот-

ности подвижной фазы. Варьирование рН 

подвижной фазы производили с исполь-

зованием буферных растворов на основе 

формиата и ацетата аммония с постоян-

ной концентрацией элюирующего иона, 

равной 2.5 мМ в подвижной фазе. Тозил-

(SPTS) и стиролсульфокислоты (SPSS) в 

соответствии с величинами их pKa𝑤
𝑤 ≈−2.8 

находятся в форме анионов во всем ис-

следуемом диапазоне pH подвижной 

фазы. Для данного класса соединений 

наблюдали существенное снижение фак-

торов удерживания при увеличении рН 

элюента, что может быть вызвано сниже-

нием эффективного положительного за-

ряда поверхности сорбента (рис. 2А). Ве-

роятно, это связано с неполным алкили-

рованием аминогрупп сорбента в про-

цессе синтеза, в результате чего в функ-

циональном слое могут присутствовать 

аминогруппы разной степени замещенно-

сти, способные протонироваться при низ-

ких значениях рН подвижной фазы. Соот-

ветственно, при повышении pH происхо-

дит снижение анионообменной емкости 

колонки в результате депротонирования.  

Несмотря на величину logD, наблюдали 

большее удерживание 2,4-динитробен-

зойной кислоты ( pKaw
w =1.4) по сравне-

нию с сульфонатами, при этом зависи-

мость от pH была аналогичной. В то же 

время, для более слабых кислот (п-нитро-

бензойная ( pKaw
w =3.4), м-нитробензойная 

( pKaw
w =3.5) и никотиновая ( pKaw

w =4.8)) 

наблюдали увеличение времен удержива-

ния с повышением рН, что связано, в 

первую очередь, с усилением ионного об-

мена, вызванным увеличением степени 

диссоциации аналита по мере приближе-

ния рН элюента к величине pKa. Равно-

значное удерживание п- и м-нитробен-

зойных кислот отражает отсутствие се-

лективности колонки к структурным изо-

мерам за счет неспецифических электро-

статических взаимодействий. 

Салициловая кислота ( p𝐾𝑎w
w =3.0) и 

2,4-динитрофенол ( p𝐾𝑎w
w =4.0) показали 

аномально высокое удерживание при 

pHw
w  2.85, учитывая величины logD, а 

также пониженный вклад ионного об-

мена по сравнению с сульфонатами и 

нитробензойными кислотами. При повы-

шении pHw
w  до 4.26 регистрировали сни-

жение их факторов удерживания, не-

смотря на ожидаемое увеличение вклада 

ионного обмена, при этом дальнейшего 

изменения удерживания не наблюдали. 

Такая необычная зависимость может 

быть вызвана изменением доминирую-

щего механизма удерживания соедине-

ний в данном диапазоне, осложненным 
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возможностью образования внутримоле-

кулярных водородных связей, ослабляю-

щих как ионный обмен, так и способ-

ность к образованию водородных связей 

с функциональными группами сорбента. 

Лучшие условия разделения кислот 

данной группы ( p𝐾𝑎w
w ≤4) достигались 

при pHw
w =2.85, но времена удерживания 

салициловой и динитробензойной кислот 

при этих условиях достаточно велики 

(более 45 мин), что выражалось в дли-

тельности анализа.  

Для бензойной ( p𝐾𝑎w
w =4.2), п-ме-

тилбензойной ( p𝐾𝑎w
w =4.4) и п-меток-

сибензойной ( p𝐾𝑎w
w =4.5) кислот наблю-

дали увеличение факторов удерживания с 

повышением рН подвижной фазы, что 

связано с усилением ионного обмена, а 

также повышением гидрофильности ана-

лита (logD) вследствие увеличения сте-

пени диссоциации (рис. 2б). При 

pHw
w =2.85 все рассматриваемые кислоты 

практически не диссоциированы и удер-

живаются благодаря неэлектростатиче-

ским взаимодействиям, обусловленным 

взаимодействиями молекулярной формы 

с матрицей и приповерхностными слоями 

– функциональным и адсорбированным 

водным. При этом, селективность их раз-

деления по оставшимся механизмам при 

сходстве структуры низка. Лучшие усло-

вия разрешения кислот данной группы 

(4≤ p𝐾𝑎w
w ≤5) достигнуты при рН, близ-

ком к их pKa ( pHw
w  = 4.26), за счет различ-

ной способности к ионному обмену, а 

также взаимодействиям неэлектростати-

ческой природы. 

 

 

 
Рис. 2. Гистограммы зависимостей фактора удерживания от рН подвижной фазы c относи-

тельным вкладом ионного обмена в удерживание (%) при 2.5 мМ [HCOO−]; А − p𝐾𝑎w
w <4, 

Б − p𝐾𝑎w
w >4. Подвижная фаза: HCOOH/HCOONa pHw

w  = 2.85, ( pHw
s  = 5.5) и 

CH3COOH/CH3COONa pHw
w =5.76 ( pHw

s =9.2); (2.5 мМ [HCOO−]в ПФ) – CH3CN 10:90 об.%; 

скорость потока 1 см3/мин; Т(колонки)=25 С°; УФ-детектирование 254; 220 нм. Параметры 

logD для соединений рассчитаны с помощью программы ACD/Labs 12.0 

для всех значений pHw
w . 

Fig. 2. Retention factor vs. pH histograms with relative ion exchange impact to retention (%) at 

2.5 mM [HCOO−]; А) − p𝐾𝑎w
w <4, Б) − p𝐾𝑎w

w >4. Mobile phase: HCOOH/HCOONa pHw
w  = 2.85, 

( pHw
s  = 5.5) and CH3COOH/CH3COONa pHw

w  = 5.76 ( pHw
s  = 9.2); (2.5 mM [HCOO−] in mobile 

phase) – CH3CN 10:90 vol. %; flow rate 1 ml/min; T(column)=25 C°; UV detection 

at 254; 220 nm. logD values were calculated with the aid of ACD/Labs 12.0 for each 

analyte corresponding to pHw
w  range. 

 



 

Сорбционные и хроматографические процессы. 2025. Т. 25, № 5. С. 675-686. 

Sorbtsionnye i khromatograficheskie protsessy. 2025. Vol. 25, No 5. pp. 675-686. 
 

ISSN 1680-0613_____________________________________________________________ 
 

 

 
 

682 

Частичная диссоциация 3,4-диамино-

бензойной ( p𝐾𝑎w
w =5.0) и 4-аминобензой-

ной ( p𝐾𝑎w
w =4.9) кислот наблюдалась 

только при pHw
w =5.76. При этом реги-

стрировали аномальное увеличение вре-

мени удерживания по сравнению с более 

сильными кислотами, что может быть 

связано со специфическими взаимодей-

ствиями, в частности, образованием ком-

плексного соединения. Вероятно, в дан-

ном случае реализуется сочетание гидро-

фильных, гидрофобных и специфических 

взаимодействий, приводящих в совокуп-

ности с усиливающимся ионным обме-

ном к увеличению удерживания в 7-8 раз, 

что важно принимать во внимание при 

определении соединений данного типа на 

колонках схожей функциональности. 

Аналогичную зависимость фактора удер-

живания от рН продемонстрировал фе-

нилаланин. 

Таким образом, в силу высокой анио-

нообменной емкости сорбента во всем 

диапазоне условий, профиль зависимости 

удерживания от рН элюента определяется 

в первую очередь состоянием аналита, в 

то время как изменение состояния функ-

ционального слоя сорбента влияет на ве-

личину изменения фактора удерживания. 

Механизм удерживания кислотных соеди-

нений на данной колонке является ком-

плексным. Кроме ионного обмена, а также 

удерживания за счет распределения в при-

поверхностный водный слой, диполь-ди-

польных взаимодействий, водородных 

связей имеет место взаимодействие с мат-

рицей. Более точное определение относи-

тельных вкладов взаимодействий каждого 

типа в удерживание рассматриваемых со-

единений, а также их изменение в широ-

ком диапазоне условий требует дальней-

ших исследований. 

Электростатические взаимодействия. 

Варьируя концентрацию элюирующего 

иона независимо от pH подвижной фазы, 

согласно используемому подходу, можно 

управлять вкладом ионного обмена в 

удерживание ионизируемых аналитов, 

тем самым моделируя селективность. В 

таблицах 1 и 2 приведены относительные 

вклады ионного обмена, а также вели-

чины угловых коэффициентов (a) для 

кислот разной силы, полученные по ре-

зультатам статистической обработки за-

висимостей удерживания от концентра-

ции элюирующего иона в граничных точ-

ках диапазона 𝑝𝐻𝑤
𝑤  2.85 и 5.76. Ионный 

Таблица 1. Изменение вклада ионного обмена в удерживание в зависимости от концентра-

ции элюирующего иона для тестовых аналитов при pHw
w  = 2.85, pHw

𝑠  = 5.5; [HCOO−] = 1.25; 

2.5; 5.0; 7.5 мМ; n = 4, P = 0.95. Остальные условия указаны в подписи к рис. 2. 

Table 1. Relative ion exchange impacts in test analytes’ retention at varied counter ion concentration 

at pHw
w =2.85, pHw

𝑠 =5.5; [HCOO−]=1.25; 2.5; 5.0; 7.5 мМ; n=4, P=0.95. Other conditions are listed 

in Fig. 2. 
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обмен относится к неспецифическим вза-

имодействиям, поэтому при доминирую-

щем вкладе последнего аналиты могут 

быть разделены только на основании взаи-

модействий другого типа, что сокращает 

выбор условий их разрешения. Варьируя 

кислотность подвижной фазы, можно из-

менять состояние аналитов и, соответ-

ственно, долю ионного обмена в комплекс-

ном механизме их удерживания. 

Так, при pHw
w  2.85 не все кислоты дис-

социированы в достаточной степени, для 

аналитов с  p𝐾𝑎w
w >4 наблюдается заметный 

вклад взаимодействий неэлектростатиче-

ской природы. Соответственно, можно до-

биться разделения кислот разной силы за 

счет изменения вклада ионного обмена, ва-

рьируя концентрацию элюирующего иона 

в диапазоне, обеспечивающем достаточ-

ную буферную емкость. 

При pHw
w  5.76 практически все кис-

лоты диссоциированы в той или иной сте-

пени, вклад ионного обмена максимален 

и слабо подвержен влиянию концентра-

ции элюирующего иона, которая уже не 

будет эффективным инструментом под-

бора условий разделения, согласно бли-

зости величин угловых коэффициентов 

логарифмической зависимости a к заряду 

аналита (табл. 2). Таким образом, с уве-

личением (уменьшением) концентрации 

ожидается общее снижение (повышение) 

времен удерживания без изменения се-

лективности разделения кислот. 

Выбор условий разделения. На основа-

нии результатов независимого варьиро-

вания pH и концентрации элюирующего 

иона в подвижной фазе, можно опреде-

лить условия полного разделения смеси 

ионизируемых соединений в смешанном 

режиме ВЭЖХ. Для того, чтобы разде-

лить кислоты разной силы, нужно иметь 

в виду профиль зависимости их удержи-

вания от рН, а именно куполообразную 

кривую, максимум которой определяется 

величиной 𝑝𝐾𝑎𝑤
𝑠  аналита. Сильные кис-

лоты, доминирующим механизмом для 

которых является ионный обмен, могут 

быть разделены только на основе специ-

фических взаимодействий с сорбентом 

(гидрофобность SPSS и SPTS). Условием 

наилучшего разделения близких по силе 

кислот является создание в подвижной 

фазе pH=pKa ( 𝑝𝐻𝑤
𝑤 =2.85 для нитробен-

зойных кислот). Наиболее полное разде-

ление смеси алкил-, алкокси- и аминобен-

зойных кислот достигается при 𝑝𝐻𝑤
𝑤 = 

Таблица 2. Изменение вклада ионного обмена в удерживание в зависимости от концентра-

ции элюирующего иона для тестовых аналитов при pHw
w  = 5.76, pHw

𝑠  = 9.2; [СH3COO−] = 

2.5; 5.0; 7.5; 10.0 мМ. Остальные условия указаны в подписи к рис. 2, табл.1. 

Table 2. Relative ion exchange impacts in test analytes’ retention at varied counter ion concentra-

tion at pHw
w  = 5.76, pHw

𝑠  = 9.2; [HCOO−] = 2.5; 5.0; 7.5; 10.0 мМ. Other conditions are listed in 

Fig. 2 and Table 1. 
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4.26 с эффективностью до 32 000 тт/м 

(рис. 3а).  

При рН < pKa можно улучшать разре-

шение за счет изменения вклада ионного 

обмена путем варьирования концентра-

ции элюирующего иона в подвижной 

фазе. Так, при 𝑝𝐻𝑤
𝑤  2.85 двукратное уве-

личение концентрации формиата в 

элюенте приводит к повышению селек-

тивности и позволяет разделить смесь 

7 аналитов за 5 мин (рис. 3б). При этом, 

за счет ослабления ионного обмена также 

повышается эффективность – вплоть до 4 

раз для некоторых веществ. При величи-

нах pH, превышающих pKa большинства 

кислот, ионный обмен становится доми-

нирующим, и разрешение ухудшается. 

Таким образом, при 𝑝𝐻𝑤
𝑤  5.76 за счет пре-

обладания ионного обмена в удержива-

нии ионизированных аналитов разделе-

ния не происходит, а варьирование кон-

центрации равнозначно изменяет фак-

торы удерживания, не влияя на селектив-

ность (рис. 3в). 

Заключение 

Проведено описание ионообменных 

свойств новой многофункциональной ко-

лонки на основе ПС-ДВБ в режиме гид-

рофильной хроматографии. Продемон-

стрировано снижение анионообменной 

емкости вследствие наличия в функцио-

нальном слое сорбента аминогрупп раз-

ной степени замещенности. За счёт высо-

 

 

Рис. 3. Хроматограммы модельных смесей бензойных кислот, 100 ppm. А) pHw
w  = 5.76; 

4.26 ( pHw
s  = 9.2; 7.6); [HCOO−] = 2.5 мМ Б) pHw

w  = 2.85 ( pHw
s  = 5.5); [HCOO−] = 1.25; 2.5; В) 

pHw
w  = 5.76 ( pHw

s  = 9.2); [HCOO−] = 5; 7.5; 10 мМ; 90 об.% CH3CN;Т(колонки) = 25 С°; 
скорость потока 1 см3/мин, УФ-детектирование при 254 нм. 

Fig. 3. Model mixtures of benzoic acids chromatograms, 100 ppm. А) pHw
w  = 5.76; 4.26 ( pHw

s  

= 9.2; 7.6); [HCOO−] = 2.5 мМ Б) pHw
w  = 2.85 ( pHw

s  = 5.5); [HCOO−] = 1.25; 2.5; В) pHw
w  = 5.76 

( pHw
s  = 9.2); [HCOO−] = 5; 7.5; 10 мМ; 90 vol. % CH3CN; T(column) = 25 C°; flow rate 

1 ml/min, UV detection at 254 nm. 
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кой анионообменной емкости, вклад ион-

ного обмена в удерживание соединений 

на данной колонке в основном опреде-

лялся состоянием аналита, которое в 

свою очередь зависит от pH подвижной 

фазы и величины p𝐾𝑎w
𝑠  определяемого 

соединения. Наилучшая селективность 

разделения для всех кислот достигалась 

при рН≤pKa. При pHw
w  2.85 кислоты с 

p𝐾𝑎w
w <4 преимущественно удерживались 

по ионообменному механизму, в то время 

как для кислот с p𝐾𝑎w
w

 >4 вклад ионного 

обмена существенно снижался при повы-

шении концентрации элюирующего иона 

(90-0%). При pHw
w  5.76 показано домини-

рующее влияние ионного обмена для 

обеих групп. Полученные закономерно-

сти позволили выбрать наилучшие усло-

вия разделения кислотных и нейтральных 

соединений разной гидрофильности с эф-

фективностью до 32 000 тт/м: для кислот 

с p𝐾𝑎w
w >4 − элюент с pHw

w  2.85; 4.26, 

[HCOO−]=2.5 мM в ПФ; для кислот с 

p𝐾𝑎w
w <4 − элюент с pHw

w  2.85 и 

[HCOO−]=2.5-5 мM, в обоих случаях в со-

отношении 10/90 об.% с ацетонитрилом. 

Таким образом, путем грамотного варьи-

рования влияющих параметров подвиж-

ной фазы можно добиться эффективного 

разделения ионизируемы соединений в 

изократическом гидрофильном режиме 

без привлечения оборудования для ион-

ной хроматографии. 
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