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Аннотация. Композитный сорбент на основе монтмориллонита (Na,Ca)0,33(Al,Mg)2(Si4O10)(OH)2⋅nH2O, 

содержащий наночастицы магнетита и катионное поверхностно-активное вещество – хлорид додецил-

диметилбензиламмония C21H38NCl был охарактеризован рентгенофазовым анализом, измерена удель-

ная поверхность и пористость сорбента, проведены микроскопические исследования и электронно-зон-

довый рентгеноспектральный микроанализ. Изучена возможность извлечения Sb (III) из водных рас-

творов данным сорбентом. Проведено сравнение его сорбционных свойств по отношению к ионам Sb 

(III) и As (III). Степень извлечения Sb (III) на MM:КПАВ:Fe3O4 c ростом pH возрастает и достигает 

более 90%, когда степень извлечения As (III) не зависит от pH и достигает 99%. Процесс сорбции Sb 

(III) на MM:КПАВ:Fe3O4, лучше всего описывает модель Фрейндлиха. Максимальная эксперименталь-

ная сорбционная емкость MM:КПАВ:Fe3O4 по отношению к ионам Sb (III) ниже, чем для As (III), и 

составляет 2.1 мг/г. Максимальная степень извлечения Sb (III) на MM:КПАВ:Fe3O4 из водных раство-

ров наблюдалась в течение времени продолжительностью 90 минут. Наибольшую степень десорбции 

Sb (III) и As (III) удалось достичь с использованием 5 М HCl, она составила около 40 и 90% соответственно. 

Степень извлечения Sb (III) и As (III) на MM:КПАВ:Fe3O4 из модельного раствора составляет порядка 70 и 

90% соответственно. Снижение степени извлечения Sb (III) и As (III) на MM:КПАВ:Fe3O4 связано с конку-

рирующей сорбцией других ионов. MM:КПАВ:Fe3O4 можно рекомендовать использовать в качестве сор-

бента для предварительной очистки водных растворов сложного состава от Sb (III) и As (III). 

Ключевые слова: сурьма, мышьяк, модифицированный монтмориллонит, катионное поверхностно-

активное вещество, магнетит, сорбционная емкость 
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Abstract. A composite sorbent based on montmorillonite (Na,Ca)0.33(Al, Mg)2(Si4O10)(OH)2⋅nH2O, containing 

magnetite nanoparticles and a cationic surfactant - dodecyl dimethyl benzyl ammonium chloride C21H38NCl 

was characterized by X-ray phase analysis, the specific surface area and porosity of the sorbent were measured, 

and microscopic studies and electron probe X-ray spectral microanalysis were carried out. The possibility of 

extracting Sb (III) from aqueous solutions using this sorbent was studied. A comparison of sorption properties 

with respect to Sb (III) and As (III) ions was carried out. The degree of extraction of Sb (III) on 

MM:CSAC:Fe3O4 increases with increasing pH and reaches more than 90%, while the degree of extraction of 

As (III) does not depend on pH and reaches 99%. The Sorption process of Sb (III) on MM:CSAC:Fe3O4, is 

best described by the Freundlich model. The maximum experimental sorption capacity of MM:CSAC:Fe3O4 in 

relation to Sb (III) ions is lower than for As (III) and is 2.1 mg/g. The maximum degree of extraction of Sb 

(III) on MM:CSAC:Fe3O4 from aqueous solutions was observed over a period of 90 minutes. The highest de-

gree of desorption of Sb (III) and As (III) was achieved using 5 M HCl, about 40 and 90%, respectively. The 

degree of extraction of Sb (III) and As (III) on MM:CSAC:Fe3O4 from the model solution was approximately 

70 and 90%, respectively. The reduction in the degree of extraction of Sb (III) and As (III) on MM:CSAC:Fe3O4 

was associated with the competing sorption of other ions. MM:CSAC:Fe3O4 can be recommended for use as a 

sorbent for the preliminary purification of aqueous solutions of complex composition from Sb (III) and As (III). 
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Введение 

Сурьма является токсичным элемен-

том. Сурьма попадает в почву, донные от-

ложения и водную среду различными пу-

тями, в том числе в результате выветри-

вания, добычи полезных ископаемых, 

плавки и сжигания угля. Наиболее рас-

пространённой формой сурьмы в окружа-

ющей среде являются неорганические со-

единения, встречающиеся в двух основ-

ных степенях окисления: трёхвалентной 

(Sb (III)) и пятивалентной (Sb (V)). Трех-

валентная форма сурьмы считается более 

токсичной для человека и обычно труд-

нее поддается удалению из воды [1-3]. 

Для очистки водных растворов от ток-

сичных элементов используют природ-

ный минерал – монтмориллонит и его мо-

дификации [4-18].  

В работах [7, 8] показано, что монтмо-

риллонит (ММ), модифицированный од-

новременно катионным поверхностно-ак-

тивным веществом (КПАВ) и наночасти-

цами магнетита (Fe3O4), способен эффек-

тивно извлекать из водных растворов As 

(III), As (V) и Cr (VI). Возможность удале-

ния из водных растворов Sb (III) монтмо-

риллонитом, модифицированным одно-

временно КПАВ и Fe3O4, ранее не было 

изучена.  

Цель данной работы – изучение воз-

можности удаления из водных растворов 

Sb (III) с использованием монтморилло-

нита, модифицированного одновременно 

КПАВ и наночастицами Fe3O4, а также 

сравнение сорбционных свойств модифи-

цированного монтмориллонита по отно-

шению к ионам Sb (III) и As (III). 

Экспериментальная часть 

Материалы и методы. Исходными мате-

риалами для синтеза сорбента были монт-

мориллонит 

(Na,Ca)0,33(Al,Mg)2(Si4O10)(OH)2⋅nH2O 

(MM) BP®-183-FJ (Zhehejiang Feng Hong 

New Material Co., Ltd), содержание основ-

ного вещества 98%, КПАВ  – додецилдиме-

тилбензиламмония хлорид C21H38NCl 

(Jiangxi Simo Biological Chemical Co, Ltd),  

железа (III) хлорид 6-водное (о.с.ч., Panreac) 

и железа (II) хлорид 4-водное (Fluka), содер-

жание основного вещества 99%. 

Содержание сурьмы и мышьяка в рас-

творах определяли методом атомно-

эмиссионной спектроскопии с индук-

тивно-связанной плазмой (ИСП-АЭС) на 

спектрометре «SpectroBlue» фирмы 
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«SPECTRO Analytical Instruments». Спек-

тральные линии: Sb I 206.833, As I 

189.042 нм.  

Синтез сорбента MM:КПАВ:Fe3O4 про-

изводили по методике, изложенной в ра-

ботах [7, 8]. Первым этапом был синтези-

рован сорбент ММ:Fe3O4. Для этого к 

золю ММ добавляли стехиометрическое 

количество хлоридов железа (III) и железа 

(II) с использованием гидроксида натрия 

формировали в межслоевом пространстве 

сорбента фазу Fe3O4. Затем к золю компо-

зита ММ:Fe3O4 добавляли 50% раствор 

КПАВ в соотношении 10:1.  

Рентгенофазовый анализ (РФА) прово-

дили на дифрактометре Shimadzu XRD-

7000 (Япония) с CuKa-излучением, Ni-

фильтром и графитовым монохроматором 

в диапазоне углов 2=2-80° с шагом 

2=0.03° и экспозицией 7 с в точке. 

Идентификацию фаз выполняли с исполь-

зованием международной картотеки ди-

фракционных данных ICDD PDF-2. 

Удельную поверхность и пористость 

ММ и MM:КПАВ:Fe3O4 определяли при 

помощи метода низкотемпературной ад-

сорбции/десорбции азота на приборе 

Nova1200e (Qantochrome Instruments). Де-

газацию образцов проводили при темпе-

ратуре 100ºС в течение 2 часов. Площадь 

удельной поверхности определяли мето-

дом Брунауэра-Эммета-Тейлора (БЭТ). 

Распределения мезопор по размеру по-

строены при помощи Баррета-Джойнера-

Халенда – метода (БДЖ – метода). Рас-

пределения микропор по размеру постро-

ены при помощи Дубинина-Астахова –

метода (ДА – метода). 

Микроскопические исследования и 

электронно-зондовый рентгеноспек-

тральный микроанализ (РСМА) прово-

дили на сканирующем электронном мик-

роскопе Carl Zeiss EVO 40, укомплекто-

ванного приставкой для анализа дифрак-

ционных картин HKL Channel 5 EBSD 

(Premium) для химического микроана-

лиза (EDS), а также фазового и структур-

ного анализа (EBSD). Картирование рас-

пределения химических элементов по по-

верхности, определение фазового состава 

и ориентации зерен в поверхностном слое 

проводили при помощи системы микро-

анализа INCA X-Act (Oxford Instruments). 

Предварительно высушенные порошки 

сорбентов наносили тонким слоем на то-

копроводящую липкую поверхность и 

тщательно обдували сжатым воздухом 

для удаления частиц, не зафиксировав-

шихся на поверхности подложки. Под-

ложки с образцами помещали в камеру 

микроскопа и регистрировали внешний 

вид частиц порошка при различных уве-

личениях с детекцией вторичных «пря-

мых» электронах (SE) и обратно-рассеян-

ных электронов (BSE) при ускоряющей 

разности потенциалов 20 кВ на вольфра-

мовом катоде. Методом рентгеноспек-

трального микроанализа изучали ча-

стицы порошка для установления размер-

ного фактора и их химического состава. 

Для определения элементного состава 

поверхностей частиц использовался 

энергодисперсионный рентгеновский 

анализатор INCA Energy. Был проведен 

как точечный анализ (не менее 5 точек 

для каждой зоны), так и картирование с 

большой выдержкой для получения 

набора статистических данных. 

Исходные растворы концентрацией 

1000 мг/дм3, содержащие антимонит- и 

арсенит-ионы, готовили растворением 

точной навески Sb2O3 (ч., ООО «Химпри-

бор-СПБ») и As2O3 (ч., ООО «Новые тех-

нологии») в воде с поддержанием щелоч-

ной среды, доводили объем раствора до 

0.25 дм3 в мерной колбе. Сорбционные 

свойства модифицированного монтмо-

риллонита по отношению к ионам Sb (III) 

изучали в зависимости от pH раствора. 

Значение pH устанавливали с использо-

ванием растворов 0.1 и 1 М HCl (о.с.ч., 

ООО «СИГМА-ТЕК») и 0.1 и 1 М NaOH 

(ч.д.а., ООО «УфаХимПроект»). Кон-

троль полученных значений производили 

иономером И160-МИ (ООО «Измери-

тельная техника). 
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Степень извлечения Sb (III) из водных 

растворов изучали в зависимости от вре-

мени контакта сорбент/раствор. Изо-

термы сорбции Sb(III) были получены с 

использованием водных растворов с кон-

центрацией от 1 до 200 мг/дм3 при рН 6 и 

температуре 25ºС.  

Методика процессов сорбции была 

взята из работы [7]. Для этого навеску 

ММ или модифицированного 

MM:КПАВ:Fe3O4 помещали в пробирку с 

раствором объемом 25 см3, содержащим 

ионы Sb (III) или As (III) с концентрацией 

10 мг/дм3. Далее помещали пробирку в 

ротационный смеситель, проводили про-

цесс сорбции определенное время (при 

изучении кинетики сорбции: 0, 5, 10, 20, 

30, 40, 50, 60, 90, 120, 180 мин) затем до-

бавляли 0.3 см3 раствора коагулянта – по-

лиакриламида линейного неионогенного 

(молярная масса 2.5 мД) с концентрацией 

0.5 г/дм3 и отфильтровывали на фильтре 

«зеленая лента». 

Количество сорбированного вещества 

(Aр, мг/г) в момент достижения сорбцион-

ного равновесия рассчитывали по фор-

муле:  

𝐴р =
(𝐶0 − 𝐶р) 𝑉

𝑚
 

 

(1) 

где V – объем раствора, дм3; m – масса 

сорбента, г; С0 – исходное содержание Sb 

(III) или As (III) в растворе, мг/дм3; Cр – 

равновесное содержание Sb (III) или As 

(III) в растворе, мг/дм3. 

Степень извлечения (R, %) Sb (III) или 

As (III), рассчитывали, как отношение 

разницы между исходным и равновесным 

содержанием Sb или As в растворе к ис-

ходному содержанию: 

𝑅 =
𝐶0−𝐶р

𝐶0
∙ 100%. (2) 

MM:КПАВ:Fe3O4  после извлечения Sb 

(III) и As (III) из водных растворов при pH 

6 исследовали с использованием ряда де-

сорбирующих агентов. Среди них были 

ряд растворов NaOH (0.1 М; 1 М; 2 М) и 

HCl, (0.1 М; 1 М; 2 М; 5 М), 10%-ный рас-

твор NaCl в аммиачном буфере (pH 10).  

Для этого 0.4 г воздушно-сухого осадка 

сорбента с сорбатом перемешивали в те-

чение 180 мин с 20 см3 десорбента, затем 

сорбент отделяли фильтрованием на 

фильтре «зеленая лента» и определяли 

содержание Sb или As в растворе после 

десорбции методом ИСП-АЭС. 

Обсуждение результатов 

Результаты рентгеновского дифракци-

онного анализа исходного ММ и 

MM:КПАВ:Fe3O4. Результаты рентгенов-

ского дифракционного анализа исход-

ного ММ показали, что материал, наряду 

с основной фазой – монтмориллонитом, 

содержит небольшое количество сопут-

ствующих примесных фаз (рис. 1а). При-

месными фазами являются оксид крем-

ния (кварц) и высокодисперсные глини-

стые минералы сложного состава. Монт-

мориллонит имеет моноклинную синго-

нию, пространственная группа C2/m; па-

раметры элементарной ячейки: a=5.2843 

Å, b=9.2064 Å, c=13.5099 Å, =86.407°, 

V=655.958 Å3. Асимметричный высоко-

интенсивный дифракционный максимум 

(001), расположенный под углом 

2=6.54° (d001 = 13.504 Å), имеет плечо со 

стороны меньших углов. Это свидетель-

ствует о наличии нескольких высокодис-

персных фракций монтмориллонита с ва-

риациями значений межплоскостного 

расстояния. 

После модификации монтморилло-

нита катионным поверхностно-активным 

веществом и наночастицами магнетита 

(MM:КПАВ:Fe3O4) на дифрактограмме 

появились широкие размытые макси-

мумы, которые были отнесены к дифрак-

ционному спектру КПАВ. Кроме того, 

наблюдался максимальный пик (311) ок-

сида Fe3O4, который частично перекры-

вался плечом асимметричного пика 

(-202) монтмориллонита (рис. 1 б).  

На рис. 2 показано сравнение профиля 

дифракционного максимума (001) монт-

мориллонита до и после его модифика-

ции. Видно, что в исходном ММ пик 

имеет асимметричный профиль, который 

можно разложить на 3 составляющие, 
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каждая из которых соответствует фрак-

циям с различающимся межплоскостным 

расстоянием (рис.1 а). Две наиболее пред-

ставительные фракции, имеют межплос-

костные расстояния 13.556 и 14.529 Å.  

В модифицированном монтморилло-

ните MM:КПАВ:Fe3O4 пик (001) пред-

ставлен только двумя пиками, из которых 

максимальный пик, соответствующий ос-

новной фракции, находится под углом 

5.431° (рис. 2 б). Это соответствует меж-

плоскостному расстоянию d001 =16.261 Å. 

Столь значительное расширение рассто-

яния d001 модифицированного наноком-

позита свидетельствует о заселенности 

пустот частицами магнетита. Более про-

стой рентгеновский профиль пика (001) 

нанокомпозита MM:КПАВ:Fe3O4 свиде-

тельствует о том, что материал после мо-

дификации приобрел более однородное 

состояние. 

Удельная поверхность и пористость 

ММ и MM:КПАВ:Fe3O4. В таблице 1 

представлены структурные характери-

стики исходного ММ и модифицирован-

ного MM:КПАВ:Fe3O4. Удельная по-

верхность ММ в 2.5 раза больше, чем 

MM:КПАВ:Fe3O4. Сорбенты характери-

зуются IV типом изотерм по классифика-

ции ИЮПАК, которые характерны для 

мезопористых материалов. Материалы 

имеют поры щелевидной формы, образо-

ванные плоскопараллельными частицами 

(Н3) и образованные заполнением микро-

пор (Н4). 

Влияние pH на степень извлечения Sb 

(III). Влияние рН на степень извлечения 

  

Рис. 1. Рентгеновские дифрактограммы 

ММ (а) и MM:КПАВ:Fe3O4 (б). 

 

 

 

Fig. 1. X-ray diffraction patterns of MM (a) 

and MM:CSAC:Fe3O4 (b). 

 

Рис. 2. Эволюция пика (001) ММ (а) и 

MM:КПАВ:Fe3O4 (б); деконволюция пика 

на составляющие показывает наличие 

фракций с различным межплоскостным 

расстоянием. 

Fig. 2. Evolution of the (001) peak of MM (a) 

and MM:CSAC:Fe3O4 (b); deconvolution of 

the peak into its components shows the pres-

ence of fractions with different interplanar 

distances. 

 

Таблица 1. Структурные характеристики сорбентов 

Table 1. Structural characteristics of sorbents 

Параметр ММ MM:КПАВ:Fe3O4 

Удельная поверхность, м2/г 13.31 5.02 

Вклад микропор в удельную поверхность, м2/г - - 

Вклад мезопор в удельную поверхность, м2/г 13.31 5.02 

Объем пор, см3/г 0.0305 0.0160 

Средний диаметр пор, нм 9.17 12.79 

Мода распределения пор, нм 4.24 4.26 

Форма петли гистерезиса по классификации ИЮПАК Н3+Н4 Н3+H4 
 

 
 

Рис. 3. Зависимость степени сорбции Sb (III) 

на ММ и MM:КПАВ:Fe3O4 от pH раствора; 25 

см3 раствора с концентрацией Sb(III)=10.0 

мг/дм3, t=30 минут mсорбента=0.30 г. 
Fig. 3. Dependence of the degree of sorption 

of Sb (III) on MM and MM:CSAC:Fe3O4 from 

the pH of the solution; 25 cm3 solution with a 

concentration of Sb(III)=10.0 mg/dm3, 

t=30 min msorbent = 0.30 g. 

Рис. 4. Кинетические кривые сорбции Sb 

(III) на MM:КПАВ:Fe3O4, CSb (III) = 10 

мг/дм3, pH  6, Т = 25 °C. 

 

Fig. 4. Kinetic curves of Sb(III) sorption on 

MM:CSAC:Fe3O4, CSb (III) = 10 mg/dm3, pH 6, 

T = 25°C. 
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Sb (III) из водного раствора с использова-

нием MM:КПАВ:Fe3O4, исследовали в 

диапазоне рН 2-10 (рис. 3). Для сравнения 

также рассмотрели немодифицирован-

ный ММ в данном диапазоне pH.  

С ростом pH от 2 до 4 степень извлече-

ния Sb (III) на MM:КПАВ:Fe3O4 возрастает 

с 80 до 90% и в дальнейшем в диапазоне 4-

10 изменяется незначительно. Степень из-

влечения As (III) на MM:КПАВ:Fe3O4 во 

всем рассматриваемом диапазоне pH изме-

няется незначительно и составляет порядка 

99% [7]. На ММ, напротив, наибольшая 

степень извлечения Sb (III) наблюдается 

при pH 2 и составляет порядка 70%, а с 

ростом pH до 8 падает и составляет 50%. 

По-видимому, это связано с тем, что при 

pH 2 Sb (III) еще частично существует в 

виде Sb(OH)2
+ [1], а поверхность ММ от-

рицательно заряжена. При pH ˃2 Sb (III) 

существует в виде нейтральной моле-

кулы Sb(OH)3, которая начинает диссоци-

ировать с ростом pH с образованием 

Sb(OH)4
- [1]. Степень извлечения Sb (III) 

на ММ выше, чем у As (III) на ММ, по-

видимому, это также связано с разными 

формами нахождения Sb (III) и As (III) в 

растворе [1, 7]. Для модифицированного 

ММ, напротив, степень извлечения As 

(III) на MM:КПАВ:Fe3O4 выше, чем для 

Sb (III). Увеличение степени извлечение 

Sb (III) и As (III) на модифицированном 

ММ по сравнению с исходным ММ, 

можно объяснить, как присутствием 

КПАВ, так и наночастицами Fe3O4 [4, 7]. 

Для дальнейших исследований pH вод-

ных растворов поддерживались на уровне 

6.0, что соответствует диапазону pH боль-

шинства доступных питьевых вод. 

Кинетика сорбции Sb (III) на 

MM:КПАВ:Fe3O4. Эффективность извле-

  
Рис. 5 Изотермы сорбции Sb (III) на MM:КПАВ:Fe3O4 в координатах линейного уравне-

ния  Фрейндлиха (а) и Ленгмюра (б) 

Fig. 5 Sb (III) sorption isotherms on MM:CSAC:Fe3O4 in the coordinates of the Freundlich (a) 

and Langmuir (b) linear equations 

 

Таблица 2. Рассчитанные параметры модели изотермы адсорбции Sb (III) и As (III) на 

MM:КПАВ:Fe3O4 

Table 2. Calculated parameters of the adsorption isotherm model for Sb(III) and As(III) on 

MM:CSAC:Fe3O4 

Модель 
Параметр модели Sb (III) As (III) [6] 

Ленгмюра 
KL, дм3/мг 0.70 0.10 

amаx, мг/г 0.25 9.9 

r2 0.56 0.96 

Фрейндлиха 

KF, 

(мг/г)·(дм3/мг)1/n 
2.88 1.07 

1/n 0.85 0.55 

r2 0.93 0.91 
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чения Sb (III) из водных растворов с ис-

пользованием MM:КПАВ:Fe3O4 исследо-

вали в зависимости от времени (рис. 4).  

Установлено, что извлечение Sb (III) 

на MM:КПАВ:Fe3O4 резко возрастает в 

течение начальной фазы эксперимента. 

Это может быть связано с наличием боль-

шого количества адсорбционных участ-

ков на поверхности сорбента. Макси-

мальная степень извлечения Sb (III) 

наблюдалась в течение времени продол-

жительностью 90 минут. 

Изотерма адсорбции Sb (III). Анализ 

изотерм адсорбции Sb (III) на сорбенте 

MM:КПАВ:Fe3O4 проводили по уравне-

ниям адсорбции Ленгмюра и Фрейндлиха 

(рис.5). 

Модель изотермы Ленгмюра предпо-

лагает, что на поверхности сорбента об-

разуется мономолекулярный сорбцион-

ный слой и все сорбционные центры об-

ладают равной энергией сорбции [19]. В 

уравнение 3 представлена линейная 

форма данной модели: 
Ср

a
=

1

KLamax
+

Cp

amax
, (3) 

где Сp и a – концентрация в растворе 

(мг/дм3) и количество сорбированного ве-

щества (мг/г) в момент достижения сорб-

ционного равновесия, соответственно; 

amax – максимальная сорбционная ем-

кость (мг/г); KL – константа Ленгмюра.  

Модель Фрейндлиха используется для 

описания сорбции на гетерогенной по-

верхности. Cорбционные центры харак-

теризуются различными величинами 

энергии и в первую очередь происходит 

заполнение тех, которые обладают мак-

симальной энергией [19]. Линейная 

форма модели Фрейндлиха представлена 

в уравнение 4:  

ln a = lnKF +
1

n
lnCp, (4) 

где KF и 1/n – константы изотермы 

Фрейндлиха.   

Процесс сорбции Sb (III) на 

MM:КПАВ:Fe3O4 лучше описывает мо-

дель Фрейндлиха, поскольку коэффици-

ент корреляции (r2) линейного уравнения 

выше, чем для модели Ленгмюра. 

В таблице 2 представлены рассчитан-

ные значения адсорбционных параметров 

моделей Ленгмюра и Фрейндлиха. Мак-

симальная экспериментальная сорбцион-

ная емкость MM:КПАВ:Fe3O4 по отноше-

нию к ионам Sb (III) составляет 2.1 мг/г – 

в 5 раз ниже, чем емкость по отношению 

к ионам As (III) (9.9 мг/г [7]).  

 

 

 

Таблица 3. Сорбционные характеристики модификаций ММ по отношению к ионам сурьмы 

Table 3. Sorption characteristics of MM modifications in relation to antimony ions 

Сорбент Ион 
amax, 

мг/г 

Адсорбцио- 

нная модель 

Кинети- 

ческая мо-

дель 

Удельная 

поверх- 

ность, м2/г 

Ссылка 

MM:КПАВ:Fe3O4 
Sb 

(III) 
2.1 Фрейндлиха 

псевдо–

второго 

порядка 

5.02 
Данная 

работа 

ММ:КПАВ (цети-

лтриметил- 

аммоний бромид) 

Sb 

(III) 
255.80  Фрейндлиха 

псевдо–

второго 

порядка 

- [4] 

ММ: КПАВ (хлорид 

N-цетилпиридиния) 

Sb 

(III) 
436.51 Фрейндлиха 

псевдо–

второго 

порядка 

- [4] 

ММ:Fe2O3 
Sb 

(V) 
31.652 Фрейндлиха 

псевдо–

второго 

порядка 

176.82  [5] 

ММ: Fe (III) 
Sb 

(V) 
29.5  Ленгмюра - - [6] 
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Таблица 4. Элементный состав сорбентов по данным РСМА 

Table 4. Elemental composition of sorbents according to X-ray microanalysis data 

Элемент 
Масс. % 

ММ MM:КПАВ:Fe3O4 

С - 3.85 

O  58.73 49.74 

Na 0.81 - 

Ca 0.12 - 

Сl 0.13 - 

Mg 2.11 1.87 

Al 10.44 9.98 

Si 25.26 22.11 

K  0.29 0.30 

Fe  1.76 11.81 

Cu 0.35 0.36 

Сумма 100.00 100.00 

В таблице 3 представлена сорбционная 

емкость некоторых сорбентов на основе 

ММ по отношению к сурьме. Наиболь-

шая сорбционная емкость для Sb (III) со-

ставила 436 мг/г на ММ, модифицирован-

ном КПАВ [4]. Синтезированный сор-

бент MM:КПАВ:Fe3O4 уступает по сорб-

ционной емкости к сурьме в сравнение с 

другими модификациями ММ, можно 

предположить, что это связано с малень-

кой удельной поверхностью синтезиро-

ванного сорбента.  

Микроскопические исследования и 

зондовый рентгеноспектральный анализ.  

На рис. 6 приведены микрофотографии 

сорбентов ММ и MM:КПАВ:Fe3O4, после 

процесса сорбции ионов Sb (III) и As (III) 

в установленных оптимальных условиях. 

Картирование по элементному составу 

для образцов с сорбированным Sb (III) 

представлены на рисунке 7. В таблице 4 

показаны результаты определения их со-

става методом РСМА. 

Локальный химический анализ обна-

ружил наличие всех основных элементов  

как в ММ, так и в MM:КПАВ:Fe3O4.  При 

этом малые концентрации Ca, Cl, Na в об-

разце сорбента, модифицированного од-

новременно КПАВ и наночастицами 

Fe3O4, топически не были выявлены. 

Образец ММ после сорбции представ-

ляет собой однородный мелкодисперс-

ный порошок cо средним размером ча-

стиц ~20 мкм, в котором присутствуют 

единичные однородные включения того 

же состава с зёрнами ~100 мкм. В случае 

с MM:КПАВ:Fe3O4 можно заметить, что 

он является более крупнодисперсным, 

средний размер зерна увеличен по срав-

нению с аналогичным образцом ММ в 

5 раз, появляются включения больших 

частиц ~300-500 мкм.  

Карты распределения химических эле-

ментов после сорбции Sb (III) на 

MM:КПАВ:Fe3O4.представлены на ри-

сунке 7. В первой ячейке микрофотогра-

фия анализируемого участка, следующие 

картины соответствуют определенному 

обнаруженному химическому элементу. 

Аналогичные данные собраны для образ-

цов после сорбции As (III) на различных 

участках: точечно и с захватом большей 

площади поверхности. Полученные кар-

тины показывают равномерное распреде-

ление химических элементов по поверх-

ности образцов независимо от дисперсно-

сти порошков и отдельных крупных зе-

рен. На участках с крупными гранулами, 

как и на мелкоразмерных порошках, 

наблюдаются частицы сорбированного 

вещества. По степени яркости (набор по-

вышенного количества белых точек) 

можно судить о соотношении количества 

элементов и их взаимном расположению. 



 

Сорбционные и хроматографические процессы. 2025. Т. 25, № 6. С. 930-941. 

Sorbtsionnye i khromatograficheskie protsessy. 2025. Vol. 25, No 6. pp. 930-941. 
 

ISSN 1680-0613_____________________________________________________________ 
 

 

 
 

938 

  
Рис. 5. Изотермы сорбции Sb (III) на MM:КПАВ:Fe3O4 в координатах линейного уравнения 

Фрейндлиха (а) и Ленгмюра (б) 

Fig. 5. Sb (III) sorption isotherms on MM:CSAC:Fe3O4 in the coordinates of the Freundlich (a) 

and Langmuir (b) linear equations 

 
Рис. 6. Микрофотографии сорбентов, после процесса сорбции: (a) ММ + Sb (III); (б) ММ 

+ As (III); (в) MM:КПАВ:Fe3O4+ Sb (III); (г) MM:КПАВ:Fe3O4+ As (III). 

Fig. 6. Micrographs of sorbents after the sorption process: (a) MM Sb(III); (b) MM As (III); (c) 

MM:CSAC:Fe3O4Sb (III); (g) MM:CSAC:Fe3O4As (III). 

 
Рис.7. Картирование сорбента MM:КПАВ:Fe3O4, после процесса сорбции Sb (III). 

Fig.7. Mapping of the MM:CSAC:Fe3O4 sorbent, after the Sb(III) sorption process. 
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Таблица 5. Десорбция Sb (III) и As (III) из MM:КПАВ:Fe3O4 с использованием различных 

десорбирующих агентов 

Table 5. Desorption of Sb(III) and As(III) from MM:CSAC:Fe3O4 using various desorbing agents 

Десорбент 
Степень десорбции  

Sb (III), % As (III), % 

0.1 М HCl  5.13 5.95 

1.0 М HCl  9.78 24.10 

2.0 М HCl  24.38 42.99 

5.0 М HCl  40.08 92.71 

10 М HCl 39.89 92.77 

0.1 М NaOH  4.61 22.60 

1.0 М NaOH 5.58 24.81 

5.0 М NaOH 7.58 27.60 

10 % NaCl в аммиачном бу-

фере pH =10 
1.12 4.42 

 

Таблица 6. Элементный состав модельной системы 

Table 6. Elemental composition of the model system 
Ион Содержание, мг/дм3 

As3+  5.0 

Ca2+ 50.0 

Cl- 100.0 

K+ 5.0 

Li+ 0.5 

Mg2+ 50.0  

Na+ 100.0 

SO4
2- 100.0 

Sb3+ 5.0 

Si4+ 5.0 

Sr2+ 0.5 

Cr6+ 0.5 

Mn2+ 5.0 

Ni2+ 50.0 

Cu2+ 50.0 

Zn2+ 5.0 

Изучение процессов десорбции Sb (III) 

и As (III). Sb (III) и As (III) извлекали из 

водных растворов с концентрацией 10 

мг/дм3 при pH 6 на MM:КПАВ:Fe3O4. Для 

изучения десорбции использовали сор-

бент с предварительно сорбированными 

сурьмой и мышьяком. В таблице 5 пред-

ставлены полученные результаты. Уста-

новлено, что наибольшая степень десорб-

ции достигается с использованием 5.0 М 

HCl и составляет порядка 40% для Sb (III) 

и 90% для As (III), при этом дальнейшее 

увеличение концентрации HCl не приво-

дит к увеличению степени десорбции.  

Наименьшая степень десорбции Sb 

(III) и As (III) наблюдается при использо-

вании 10% NaCl в аммиачном буфере. Из 

полученных данных можно предполо-

жить, что процесс сорбции Sb (III) и As 

(III) из водных растворов с использова-

нием MM:КПАВ:Fe3O4 протекает как хе-

мосорбция, а не по механизму ионного 

обмена, в отличие от Cr (VI) [8]. 

Извлечение Sb (III) и As (III) из модель-

ных растворов, имитирующих шахтные 

воды. Извлечение Sb (III) и As (III) из мо-

дельных растворов, имитирующих шахт-

ные воды проводили при Т 25°С и pH 6. 

Состав был имитирован исходя из анализа 
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литературы, поскольку шахтные воды 

представляют собой сложные многоком-

понентные системы [20].  

Установлено, что степень извлечения 

Sb (III) и As (III) из модельного раствора 

составляет порядка 70 и 90%. Снижение 

степени извлечения Sb (III) и As (III) на 

MM:КПАВ:Fe3O4, по-видимому, связано 

с конкурирующей сорбцией других 

ионов, в том числе Cr (VI) [8].  Конечные 

концентрации Sb (III) и As (III) в растворе 

после извлечении на MM:КПАВ:Fe3O4 

составили 1.35 и 0.49 мг/дм3 соответ-

ственно, что превышает нормы пре-

дельно допустимых концентраций в пи-

тьевых водах, которые составляют 0.005 

и 0.01 мг/дм3 [21], в следствии этого не-

обходим еще один этап очистки. Однако 

MM:КПАВ:Fe3O4 можно рекомендовать 

использовать в качестве сорбента для 

предварительной очистки водных раство-

ров сложного состава от Sb (III) и As (III). 

Заключение 

Синтезирован композитный сорбент 

MM:КПАВ:Fe3O4. Удельная поверхность 

MM:КПАВ:Fe3O4 2.5 раза меньше, чем 

для исходного ММ и составила 5.02 м2/г. 

Сорбент MM:КПАВ:Fe3O4 является бо-

лее крупнодисперсным, средний размер 

зерна увеличен по сравнению с ММ в 5 

раз. Степень извлечения Sb (III) на 

MM:КПАВ:Fe3O4 увеличивается в 1.7 раз 

по сравнению с немодифицированным 

ММ. Процесс сорбции Sb (III) лучше 

всего описывает модель Фрейндлиха. 

Максимальная экспериментальная сорб-

ционная емкость MM:КПАВ:Fe3O4 по от-

ношению к Sb (III) составляет 2.1 мг/г и 

почти в 5 раз ниже, чем для As (III). Изу-

чен процесс десорбции различными де-

сорбентами. Установлено, что наиболь-

шая степень десорбции Sb (III) и As (III) 

достигается с использованием 5 М HCl и 

составляет порядка 40 и 90 % соответ-

ственно.  

Конфликт интересов  

Авторы заявляют, что у них нет из-

вестных финансовых конфликтов интере-

сов или личных отношений, которые 

могли бы повлиять на работу, представ-

ленную в этой статье. 
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