

УДК 543.544.943.3.068.9

Определение жирорастворимых витаминов в растительных объектах методом TCX

Тринеева О.В., Сафонова Е.Ф., Сливкин А.И.

ФГБОУ ВПО «Воронежский государственный университет», Воронеж

Поступила в редакцию 11.09.2013 г.

Аннотация

На примере плодов облепихи крушиновидной и листьев крапивы двудомной показана возможность определения и разделения жирорастворимых витаминов в лекарственном растительном сырье методом хроматографии в тонком слое сорбента.

Ключевые слова: жирорастворимые витамины, лекарственное растительное сырье, тонкослойная хроматография.

On the example of fruits of a Hippophaes rhamnoides and nettle leaves the two-blast furnace showed possibility of definition and division of fat-soluble vitamins in medicinal vegetable raw materials by a chromatography method in a thin layer of a sorbent.

Keywords: fat-soluble vitamins, medicinal vegetable raw materials, thin layer chromatography

Введение

Важнейшим классом незаменимых пищевых веществ являются витамины. Витамины представляют собой биологически активные органические соединения разнообразной химической природы. Недостаток, как и избыток, витаминов в организме одинаково вредны, так как вызывают глубокие нарушения различных функций организма, что приводит к тяжелым заболеваниям [1, 2].

В настоящее время ассортимент витаминных лекарственных средств представлен достаточно широко. Состав их сложен и многообразен. Жирорастворимые витамины (ЖРВ) применяются как самостоятельные препараты, а также являются важнейшими минорными компонентами лекарственного растительного сырья (ЛРС) и растительных масел на их основе.

Анализ литературных источников свидетельствует об уникальном комплексе биологически активных веществ (БАВ), содержащихся в ЛРС, среди которых важную роль занимают каротиноиды, в частности β -каротин. Совместное присутствие таких ЖРВ, как K, E, D и провитамина A обеспечивает возникновение синергизма лечебного эффекта. Синтетические аналоги этих витаминов не могут сравниться с их высокоактивными нативными формами, присутствующими в ЛРС [1, 2].

Известны способы идентификации, разделения и количественного определения ЖРВ в субстанции, одно- и многокомпонентных лекарственных формах, премиксах, биологически активных добавках, культурах микроорганизмов

методом ВЭЖХ. Недостатком ВЭЖХ является нехватка квалифицированных кадров, дорогостоящего оборудования, реактивов и материалов, а также стандартных образцов [3-7].

Нашли широкое применение также спектральные методы Фотоэлектроколориметрия, основанная на измерении оптической плотности растворов исследуемых витаминов после добавления каких-либо цветореагентов, образующих окрашенные продукты реакции. Прямая и дифференциальная спектрофотометрия находят широкое применение в анализе субстанций для подлинности, степени чистоты и количественного содержания. Недостатками указанных спектральных способов являются: громоздкость и длительность определений, нестабильность окрашенных продуктов цветных чувствительность реакций, недостаточная и селективность, невозможность определения витаминов Е, D₂ и β-каротина при совместном присутствии без предварительного разделения [8-11].

TCX, обладая всеми преимуществами хроматографических методов, находит широкое применение в виду своей экспрессности, доступности, достаточной чувствительности, селективности, малой стоимости и простоте выполнения анализа [12, 13].

В настоящее время, согласно нормативной документации (НД) ЛРС не стандартизируется по содержанию ЖРВ, составляющих липофильную фракцию [8-10]. Однако, необходимо учитывать данный показатель при разработке новых проектов и изменении уже существующих фармакопейных статей на ЛРС.

Целью настоящей работы являлась разработка методики идентификации ЖРВ в ЛРС методом ТСХ на примере листьев крапивы двудомной и плодов облепихи крушиновидной.

Эксперимент

Объектом исследования являлось измельченное высушенное ЛРС крапивы двудомной отечественного производителя, соответствующее требованиям НД, а также свежие плоды облепихи крушиновидной, собранные в Воронежской области в период полного созревания, согласно правилам заготовки данного вида ЛРС.

Этанол и гексан обладают избирательностью в отношении триглицеридов, фитостеринов, каротиноидов и токоферолов, поэтому данные растворители были выбраны в качестве экстрагентов.

Получение извлечения из листьев крапивы двудомной: около 1 г измельченного сырья (точная навеска) с размером частиц, проходящих сквозь сито с диаметром отверстий 0,5 мм, помешают в коническую колбу вместимостью 100 мл, прибавляют 50 мл экстрагента (гексан или смесь гексан-этанол (1:1). Колбу присоединяют к обратному холодильнику, нагревают на кипящей водяной бане в течение 45 мин, периодически встряхивая для смывания частиц сырья со стенок. Затем колбу с содержимым охлаждают до комнатной температуры. Извлечение фильтруют через несколько слоев марли, отжимая частицы сырья.

Получение извлечения из плодов облепихи крушиновидной: около 10,0 г (точная навеска) плодов облепихи (в пересчете на абсолютно сухое сырье) разминают и помещают в колбу вместимостью 50 мл, заливают 30 мл этанола. Колбу присоединяют к обратному холодильнику, нагревают на кипящей водяной бане в течение 45 мин, периодически встряхивая для смывания частиц сырья со стенок.

_

Затем колбу с содержимым охлаждают до комнатной температуры. Извлечение фильтруют через несколько слоев марли, отжимая ЛРС.

Обсуждение результатов

На первом этапе работы была подобрана оптимальная хроматографическая система, позволяющая идентифицировать и разделить ЖРВ. Выбор проявителя осуществляли с учетом таких требований как специфичность, чувствительность, доступность и высокое качество получаемой картины. Для обнаружения пятен эргокальциферола (ФСП 42-0008018000) [7], β-каротина (ВФС 42-3128-98) [14] и токоферола ацетата (ФС 42-7843-97) [6], которые выбраны в качестве стандартных образцов, были использованы реагенты, предложенные в литературе [1, 2, 8-13]: конц. азотная кислота; 70 % раствор хлорной кислоты и 5% спиртовый раствор фосфорномолибденовой кислоты (ФМК). В результате установлено, что первый проявитель обнаруживает только хроматографические зоны витамина Е (красно-оранжевого цвета на белом фоне), второй – только зоны эргокальциферола (размытые оранжево-красные зоны на белом фоне) и β-каротина (быстроисчезающие зоны на белом фоне). ФМК – проявляет все исследуемые ЖРВ (темно-синие зоны на желто-зеленом фоне). Идентификацию на хроматограмме В-каротина возможно проводить в видимом свете по характерному желтооранжевому окрашиванию зон. Детектирующим реагентом, отвечающим всем ФМК. является 5% спиртовый раствор Идентификация хроматографических зон после разделения осуществлялась в видимом и УФ-свете, а также при помощи выбранного реагента. Зоны проявлялись на хроматограммах в виде синих пятен на желто-зеленом фоне.

В эксперименте изучены элюирующие системы с различными значениями полярности, чаще всего предлагаемые в литературе для разделения и идентификации ЖРВ [1-2, 12-13]. В работе использовались растворители и реактивы марки х.ч. и ч.д.а. (ЗАО «Вектон», Санкт-Петербург). Лучшее разделение и качество хроматографических зон достигнуто в системе гексан-хлороформ (3:1), поэтому она выбрана для идентификации ЖРВ в извлечениях из ЛРС. Для выбранной хроматографической системы были рассчитаны величины относительных скоростей перемещения в тонком слое, коэффициенты селективности сорбции (L) и распределения (K) для образцов (табл. Результаты свидетельствуют стандартных ЖРВ 1). удовлетворительном разделении хроматографических зон на хроматограмме и правомерности использования данной системы [15]. Вид полученных хроматограмм представлен на рис. 1.

Таблица 1. Хроматографические параметры ЖРВ

№ п/п	ЖРВ	R_{f}	К	L
1	эргокальциферол	0.65 ± 0.03	0.54	1.93
2	Токоферола ацетат	0.78 ± 0.02	0.28	28
3	β-каротин	0.99±0.01	0.01	20

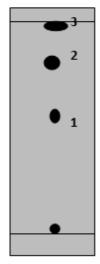


Рис. 1. Вид хроматограммы стандартных образцов жирорастворимых витаминов: 1 – витамин D₂; 2 – витамин E; 3 – β-каротин.

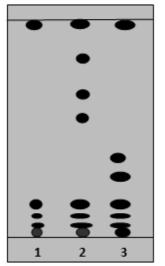


Рис. 2. Вид хроматограммы извлечений из листьев крапивы двудомной после проявления 5% спиртовым раствором ФМК: 1 – объем пробы 40 мкл; 2 – объем пробы 100 мкл гексанового извлечения; 3 – объем пробы 100 мкл извлечения (гексан-этанол 1:1)

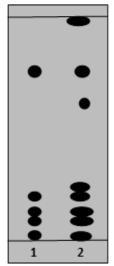


Рис. 3. Вид хроматограммы извлечения из плодов облепихи крушиновидной после проявления 5% спиртовым раствором ФМК: 1 – объем пробы 40 мкл; 2 – объем пробы 100 мкл.

На следующем этапе работы полученные извлечения из исследуемого ЛРС наносили на стартовую линию хроматографических пластин марок «Sorbfil» ПТСХ-АФ-А, ПТСХ-П-В и ПТСХ-П-А-УФ в количествах 40 и 100 мкл. Оптимальный объем пробы составил 100 мкл. Вид полученных хроматограмм представлен на рис. 2 и 3. Идентификация зон на хроматограммах представлена в табл. 2.

На хроматограммах извлечений из исследуемого ЛРС при использовании гексана и этанола в качестве экстрагентов (объем пробы 100 мкл) обнаружено восемь зон. Как видно из рис. 2 и 3, на хроматограммах семь хроматографических зон являются общими со значениями величин $R_f = 0.01\pm0.02$; 0.04 ± 0.02 ; 0.10 ± 0.02 ; 0.16 ± 0.02 ; 0.65 ± 0.02 ; 0.79 ± 0.01 ; 0.99 ± 0.01 . Для извлечения из листьев крапивы двудомной наблюдалась специфическая зона со значением $R_f = 0.58\pm0.02$. При анализе извлечения из плодов облепихи обнаружена характерная зона с величиной $R_f = 0.19\pm0.01$. В связи с этим мы предполагаем, что хроматографический профиль извлечений из ЛРС можно использовать для его стандартизации. В связи с тем, что в извлечениях, полученных с применением смеси гексан-этанол (1:1), не идентифицированы зоны витаминов D_2 и E (рис. 2, точка 3), обсуждение полученного хроматографического профиля не приводим.

Для каждой хроматографической зоны были рассчитаны величины относительных скоростей перемещения в тонком слое, коэффициенты распределения (K) и селективности сорбции (L) (табл. 2). В сравнении с достоверными стандартными образцами по величинам Rf идентифицированы зоны витаминов D_2 , E и β -каротина.

Таблица 2. Идентификация хроматографических зон на хроматограммах

таолица	і 2. йіденті	лфикаці	ии хрог	матографических	с зон на хрома	тог раммах				
№ 30ны	Rf±0,02	К	L	Окраска в видимом	Окраска в УФ-свете	Идентификация вещества				
JOHDI				свете	(365нм)	Вещества				
Извлечение из листьев крапивы двудомной, полученное с применением										
				гексана (ПТСХ-	П-В)					
1	0.01	99.00	4.13							
2	0.04	24.00	2.67							
3	0.10	9.00	1.59			-				
4	0.15	5.67	7.88	-	-					
5	0.58	0.72	1.47							
6	0.67	0.49	1.96			Витамин D ₂				
7	0.80	0.25	25.00			Витамин Е				
8	0.99	0.01		оранжевая	ı	β-каротин				
Извлечение из листьев крапивы двудомной, полученное с применением										
	смеси гексан-этанол (1:1); ПТСХ-П-А-УФ									
1	0.01	99.00	6.32	-	-	-				
2	0.06	15.67	1.94	светло-зеленая	розовая	хлорофилл b				
3	0.11	8.09	1.32	темно-зеленая	розовая	хлорофилл а				
4	0.14	6.14	1.17	зеленая	розовая	неидентифицированный хлорофилл				
5	0.16	5.25	1.57							
6	0.23	3.35	335	-	-	_				
7	0.99	0.01		оранжевая	-	β-каротин				
Извлеч	ение из пл	юдов об	лепихі	и крушиновидной	, полученное с	применением этанола				
				(ПТСХ-АФ-А	.)					
1	0.01	99.00	6.32							
2	0.06	15 (7	1.04			1				
	0.00	15.67	1.94							
3	0.00	8.09	1.94			-				
				-	-	-				
3	0.11	8.09	1.66	-	-	-				
3 4	0.11 0.17	8.09 4.88	1.66 1.15	-	-	- Витамин D ₂				
3 4 5	0.11 0.17 0.19	8.09 4.88 4.26	1.66 1.15 7.22	-	-	- B итамин D_2 B итамин E				

Заключение

Таким образом, предложена методика определения и разделения жирорастворимых витаминов β -каротина, D_2 и E методом TCX при совместном присутствии в извлечениях из JPC на примере плодов облепихи крушиновидной и листьев крапивы двудомной. Проведена идентификация зон на хроматограммах. В изучаемом JPC с помощью разработанной методики обнаружены KPB. Установлена целесообразность стандартизации плодов облепихи крушиновидной и листьев крапивы двудомной по содержанию KPB методом TCX. Хроматографический профиль извлечений из JPC можно использовать для оценки его подлинности и доброкачественности.

Список литературы:

- 1. Экспериментальная витаминология / Под ред. Ю. М. Островского // Минск: Наука и техника, 1979. С. 80-129.
- 2. Мелентьева Г.А. Фармацевтическая химия некоторых природных веществ с сильным биологическим действием. М.: Изд-во мед. института им. И.М. Сеченова, 1984. С. 48-56.
- 3. Лутцева А.И., Маслов Л.Г., Середенко В.И. Методы контроля и стандартизации лекарственных препаратов, содержащих жирорастворимые витамины // Хим.-фарм. журн. 2001. Т. 35. № 10. С. 41-45.
- 4. Козлов Э. И., Солунина И.А., Любарева М. Л., Надточий М.А. Определение витаминов А, D, E в поливитаминных препаратах с помощью высокоэффективной жидкостной хроматографии // Хим.-фарм. журн. 2003. Т. 37. № 10. С. 50-53.
 - 5. ФС 42-1699-95 Аевит в капсулах.
 - 6. НД 42-7843-97 Витамин Е в капсулах.
 - 7. ФСП 42-0008018000 Эргокальциферол раствор в масле 0,5 %.
 - 8. Государственная фармакопея Х изд. М.: Медицина, 1968.
 - 9. Государственная фармакопея XI изд. М.: Медицина, 1990. Вып. 2.
- 10. Государственная фармакопея Российской Федерации XII изд. Часть 1. М.: Изд-во: Научный центр экспертизы средств медицинского назначения, 2008. 704 с.
 - 11. ФС 42-2798-99. Таблетки «Глутамевит», покрытые оболочкой.
 - 12. Кирхнер Ю. Тонкослойная хроматография. М.: «Мир», 1981. С. 402-407.
- 13. Шаршунова М., Шварц В., Михалец Ч. Тонкослойная хроматография в фармации и клинической биохимии. М.: Мир, 1980. Т. 2. С. 610.
 - 14. ВФС 42-3128-98. Драже бета-каротина 0,0025.
 - 15. Гейсс Ф. Основы тонкослойной хроматографии. М.: Мир. 1999. 405 с.

Тринеева Ольга Валерьевна – к.фарм.н., доцент кафедры фармацевтической химии и фармацевтической технологии фармацевтического факультета ВГУ, Воронеж

Сафонова Елена Федоровна - к.х.н., доцент, заведующая кафедрой фармации последипломного образования ВГУ, Воронеж

Сливкин Алексей Иванович - д.фарм.н, профессор, зав. кафедрой фармацевтической химии и фармацевтической технологии, декан фармацевтического факультета ВГУ, Воронеж

Trineeva Olga V. - the candidate pharm. sciences, the senior lecturer to faculty of pharmaceutical chemistry and pharmaceutical technology of pharmaceutical faculty VGU, Voronezh, trineevaov@mail.ru

Safonova Elena F. - the candidate chem. sciences, the senior lecturer, manager of chair of pharmacy of post-degree formation of VGU, Voronezh

Slivkin Alexey I. - the doctor pharm. sciences, the professor, manager of faculty of pharmaceutical chemistry and pharmaceutical technology, the dean of pharmaceutical faculty VGU, Voronezh