

УДК 544.726

Поглощение ионов таллия (I) неорганическими сурьмяносодержащими ионообменниками

Синякова М.А., Епарина Е.А.

Санкт-Петербургский государственный университет, Санкт-Петербург

Поступила в редакцию 27.02.2014 г.

Аннотация

Установлено, что неорганические ионообменники – смешанные оксигидраты сурьмы и кремния, а также сурьмы, кремния и фосфора – эффективно извлекают ионы таллия (I) из водных растворов.

Ключевые слова: таллий, ионный обмен, неорганические ионообменники.

Found that the inorganic ion exchangers - oxyhydrates mixed antimony and silicon and antimony, silicon and phosphorus - effectively recovered thallium ions (I) from aqueous solutions

Keywords: thallium, ion exchange, inorganic ion exchangers

Введение

В настоящее время масштабы использования синтетических неорганических ионитов, обычно называемых ионообменными смолами, намного превышают масштабы использования ионитов неорганических. Однако неорганические ионообменники имеют, по сравнению с органическими, свои особенности: большое разнообразие состава и, как следствие, большое разнообразие типов селективности, как правило, более жесткую структуру, нередко они отличаются высокой радиационной и термической устойчивостью. Эти особенности обеспечивают за неорганическими ионитами определённые области применения. В частности, неорганические ионообменники находят применение в медицине [1, 2], позволяя с высокой селективностью извлекать токсиканты из биологических сред.

Например, ферроцианиды показали свою эффективность при излечении однозарядных радиоактивных ионов цезия, рубидия и ионов таллия (I), представляющих собой сильный яд [2, 3, 4].

Среди различных типов неорганических ионообменников выделяют т. н. «смешанные оксигидраты», содержащие атомы О, Н и двух или более других элементов.

Интересным неорганическим ионообменником является кристаллическая сурьмяная кислота. Она представляет собой неорганический полимер — оксигидрат сурьмы, каркас которого построен из октаэдров $[SbO_{6/2}]^-$; такая форма записи показывает, что в каждой ячейке (в центре) один атом сурьмы связан с шестью атомами кислорода, а один атом кислорода (находящийся в одном из углов октаэдра)

– с двумя атомами сурьмы (рис. 1). Отрицательный заряд ячеек ионита должен быть нейтрализован положительно заряженными противоионами.

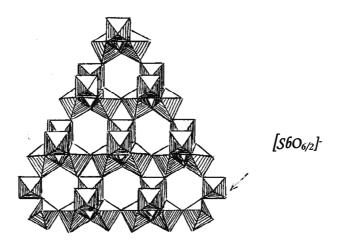


Рис. 1. Структура кристаллической сурьмяной кислоты [1]

Атомы сурьмы могут изоморфно замещаться атомами других ионов, в том числе кремния; при этом образуются ячейки $[SiO_{6/2}]^{2-}$. Наибольшее практическое применение получил смешанный оксигидрат сурьмы и кремния с соотношением компонентов ~ 2:1; он известен в медицине как препарат «полисурьмин».

Можно получить так же ряд ионитов, содержащих сурьму, кремний и фосфор. Последний образует в основном нейтральные ячейки $[POO_{3/2}]^0$, реже ячейки $[POO_{2/2}OH]$ и $[POO_{1/2}(OH)]$, в которых OH-группа способна к диссоциации [5]. Введение фосфора способствует аморфизации структуру ионита, понижая в целом его емкость, но в тоже время позволяя менять тип селективности. К сожалению, эти иониты не получили пока распространения, которого они заслуживают. Наиболее существенное практическое применение кремнефосфорносурьмяные иониты получили при упрочнении стекла [2, 5]; кроме того, показана их эффективность при поглощении золота (I) и серебра (I) из кислых растворов [6].

Согласно имеющимся данным, обменная емкость полисурьмина может достигать 4-5 мэкв/г [6], кремнефосфорносурьмяного ионита - 2 мэкв/г [5].

Проведённые ранее эксперименты показали возможность использования полисурьмина для ионообменного извлечения таллия из водных растворов [7]; было желательно развить это направление и определить возможность использования для этой цели кремнефосфорносурьмяного ионита. Кроме того, представляет интерес оценка возможности десорбции поглощенных ионов таллия из ионитов.

Эксперимент

Объектами исследований являлись сурьмянокремниевый ионит «полисурьмин» и кремнефосфорносурьмяный ионит, изготовленные в Лаборатории ионного обмена Химического факультета СПбГУ. В составе последнего мольное доли Sb, P и Si относились друг к другу как 0,2:0,07:0,73.

Визуально оба ионита представляют собой белые частицы неправильной формы; для полисурьмина, по сравнению с кремнефосфорносурьмяным ионитом, характерен меньший размер зёрен и меньший разброс по размерам. Разница в составе обеспечивает заметную разницу плоностей: насыпная плотность

полисурьмина составляет 1,1 г/см 3 , а кремнефосфорносурьмяного ионообменника – всего 0,32 г/см 3 .

Целями работы были получение зависимости величины сорбции ионов таллия (I) от их концентрации в растворе и оценка возможности десорбции поглощённых ионов.

Эксперименты проводились в статических условиях. Навески ионита, массой по 0,5 г каждая, приводились в контакт с водными растворами TINO₃; объём раствора во всех случаях составлял 50 см³, концентрация варьировалась. Проводилось не менее двух параллельных определений. Навески ионита и раствора находились во взаимодействии в течение времени, необходимого для установления равновесия (не менее 2 суток). По истечении этого времени производилось отделение ионита из раствора. Далее определялись равновесная концентрация ионов металлов в растворе и величина рН; навеску высушивали и взвешивали.

Затем навески ионитов, поглотившие таллий, соединяли и заливали по три раза поочерёдно 1 м раствором HCl; объём десорбента во всех случаях составлял $100~{\rm cm}^3$. Ионит и раствор находились во взаимодействии в течение не менее $2~{\rm суток}$, затем происходило отделение ионита от раствора. Далее в растворе определялась концентрация ${\rm Tl}^+$.

Концентрацию Tl^+ определяли методом рентгенофлуоресцентного анализа на рентгенофлюориметре EDX-800P (в Ресурсном Центре СПбГУ «Методы исследования состава вещества»).

Обменная ёмкость Γ , миллиэкв/ Γ (далее – мэкв/ Γ), рассчитывалась по уравнению

$$\Gamma = (C^{\text{ucx}} - C^*) \cdot V / g,$$

где C^{ucx} и C^* - исходная и равновесная концентрации Tl^+ в растворе соответственно, мэкв/см³; V – объём раствора, см³; g – исходная масса навески, Γ .

Рассчитывался также коэффициент распределения Краспр:

$$K_{\text{pacmp}} = \Gamma / C^*$$
.

Коэффициент распределения позволяет оценить эффективность извлечения иона.

Контроль рН позволял оценивать состояние иона металла в растворе, а изменение масс навесок могло качественно подтвердить или не подтвердить протекание ионообменной реакции

$$n RH + Me^{n+} = R_n Me + n H^+$$

где R – ионит.

Степень десорбции а, %, рассчитывали по формуле

$$\alpha = v^{\text{dec}} * 100 / v^{\text{ucx}} = C^{\text{dec}} * V^{\text{dec}} * 100 / v^{\text{ucx}}$$

где $v^{\text{исх}}$ и $v^{\text{дес}}$ - количество соответственно поглощённого и выделенного при десорбции иона, мэкв; $C^{\text{дес}}$ - концентрация иона Tl^+ в десорбирующем растворе после контакта с ионитом, мэкв/см 3 ; $V^{\text{дес}}$ – объём десорбента, см 3 .

Обсуждение результатов

Полученные результаты показывают, что ионы таллия (I) достаточно эффективно поглощаются исследованными неорганическими ионитами (табл. 1 и 2). Абсолютные значения обменной емкости хорошо согласуются с результатами, полученными для других ионов [5, 7, 8]. Необычно то, что зависимость Γ от концентрации в обоих случаях носит экстремальный характер: она достигает максимума при определённых условиях ($C^* = 0.07 - 0.08$ моль/л), а затем

уменьшается. Результаты, рассчитанные на основании разницы концентраций, в целом подтверждаются изменениями масс навесок - они максимальны в средней области исследованных концентраций. Не совсем обычный ход зависимостей может быть объяснён влиянием концентрации водородных ионов.

В исследуемой системе ионит-раствор ТІ⁺ как противоион конкурирует с Н⁺, и эта конкуренция усиливается при увеличении концентрации последнего. Можно было бы предполагать и частичное растворение ионитов, но эта версия противоречит накопленным экспериментальным данным, показывающим высокую устойчивость данных ионитов в кислых и нейтральных средах.

Таблица 1. Поглощение ионов Tl⁺ на полисурьмине

С ^{исх} , мэкв/см ³	С*, мэкв/см ³	Г, мэкв/г	$K_{\text{распр}}$, cm^3/Γ	Δm, Γ	рН
0.050	0.029	2.10	72.41	0.1254	2.35
0.067	0.0455	2.15	47.25	0.1376	1.94
0.100	0.078	2.20	28.21	0.1553	1.80
0.134	0.1125	2.15	19.11	0.1553	1.78
0.200	0.1795	2.05	11.42	0.1376	1.65

Таблица 2. Поглошение ионов TI⁺ на кремнефосфорносурьмяном ионите

таблица 2. Поглощение нопов 11 на кремпефосфорносурымиюм нопите							
С ^{исх} , мэкв/см ³	С*, мэкв/см ³	Г, мэкв/г	$K_{\text{распр}}, cm^3/\Gamma$	Δm, Γ	рН		
0.050	0.034	1.60	47.07	0.0731	2.25		
0.067	0.050	1.70	34.00	0.0857	1.95		
0.10	0.083	1.70	20.47	0.0965	1.91		
0.134	0.1185	1.55	13.08	0.1173	1.72		
0.20	0.1835	1.65	8.99	0.1054	1.68		

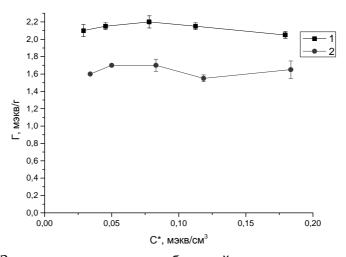


Рис. 2. Зависимости величины обменной емкости от равновесной концентрации для полисурьмина (1) и кремнефосфорносурьмяного ионита (2)

При десорбции ионы успешнее извлекаются таллия из кремнефосфорносурьмяного ионита, чем из полисурьмина (табл. 3). В обоих случаях большая часть извлекаемых ионов выделяется первыми порциями десорбента.

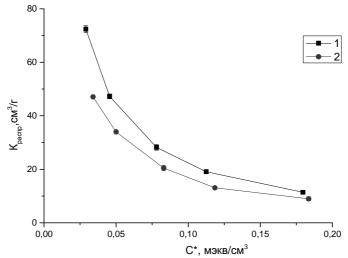


Рис. 3. Зависимости коэффициентов распределения от равновесной концентрации для полисурьмина (1).и кремнефосфорносурьмяного ионита (2)

Таблица 3. Десорбция ионов T1⁺

тиолици 3. десородия попов тт								
№ порции	$C^{\text{дес}}$, мэкв/см ³	V^{ucx} , мэкв	$V^{ m деc}$, мэкв	α, %				
полисурьмин								
1	0.025	10.65	2.5	23.5				
2	0.012	8.15	1.2	14.7				
3	0.009	6.95	0.9	12.9				
Σ		10.65	4.6	43.2				
кремнефосфорносурьмяный ионит								
1	0.032	8.2	3.2	39				
2	0.015	6.7	1.5	22.4				
3	0.01	5.2	1	19.2				
Σ		8.2	5.7	69.5				

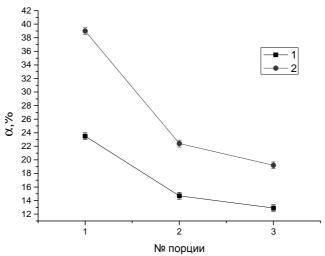


Рис. 4. Зависимость степени регенерации от порядка поступления порций фильтрата для полисурьмина (1).и кремнефосфорносурьмяного ионита (2)

Заключение

Кремнесурьмяный («полисурьмин») и кремнефосфорносурьмяный иониты достаточно эффективно поглощают и удерживают ионы таллия (I), причём полисурьмин показывает лучшие результаты.

При ионообменном поглощении Tl⁺ на обоих ионитах наблюдается экстремальная зависимость обменной емкости от концентрации извлекаемого иона в растворе, обусловленная, предположительно, влиянием рН.

Список литературы

- 1. Иониты в химической технологии. / Под ред. Б.П. Никольского, П. Г. Романкова. Л.: Химия. 1982. 416 с.
- 2. Белинская Ф. А. Иониты и ионообменные процессы в природе, науке, технике. // Ионный обмен и ионометрия Межвузовский сборник, вып. 10. 2000. С .7- 49.
- 3. Белинская Ф.А. Общие закономерности обмена ионов на неорганических ионообменных материалах. Л.: ЛГУ, 1984. 379 с.
- 4. Сосюкин А.Е., Щербак С.Г., Сарана А.М., Кузьмич В.Г., Воробьев Н.В. Применение препарата берлинской лазури в лечении отравлений солями таллия. // Материалы межд. конф. «Механизмы функционирования висцеральных систем». СПб, 2001. С. 344-345.
- 5. Григорова Н.С. Физико-химическое исследование кремнефосфорносурьмяных ионитов. Л.: ЛГУ, 1981.-197 с.
- 6. Овчинникова В.Ф., Черняк А.С., Завьялова Л.Л., Белинская Ф.А. и др. Сорбция золота (I) и серебра (I) из кислых тиомочевинных растворов фосфорносурьмяными и кремнефосфорносурьмяными катионитами // Журнал прикладной химии. 1986. № 7. C.1473-1477.
- 7. Синякова М. А., Семенова Е. А., Гамулецкая О. А. Обмен ионов меди (II), лантана (III), таллия (I) и ртути (II) на препарате «полисурьмин» // Экологическая химия, 2013. Т. 22. Вып. 3.
- 8. Колодезева Н.С., Григорова Н.С., Иванова-Павлова О.С., Карманова Л.А., Синякова М.А. Ионообменные свойства композиционных мембран // Экологическая химия, 2010. Т. 19. Вып. 1. С. 49 57.

Синякова Мария Александровна - к.х.н., физической химии химического факультета СПбГУ, Санкт-Петербург, (812) 428-45-76

Епарина Евгения Алексеевна - студентка химического факультета СПбГУ, Санкт-Петербург

Siniakova Maria A. - reader of Saint-Petersburg University, Candidate of chemistry, Petersburg, e-mail <u>kafischem@yandex.ru</u>

Eparina Evgenia A. - student of Saint-Petersburg University Saint-Petersburg