

Определение кумаринов и фурокумаринов в различных вегетативных органах Angelica decurrens (Ledeb.) Fedtsch. методом газовой хромато-масс-спектрометрии

Щипицына О.С., Ефремов А.А., Нарчуганов А.Н.

Сибирский федеральный университет, Красноярск

Поступила в редакцию 21.05.2013 г.

Аннотация

Методом газовой хромато-масс-спектрометрии идентифицированы и количественно определены в хлороформных экстрактах корневищ, соцветий и семян Angelica decurrens (Ledeb.) Fedtsch. кумарины: остол и лиметтин и ряд фурокумаринов: ангелицин, псорален, ксантотоксин, бергаптен, изопимпинеллин, императорин, оксипеуцеданин, изоимператорин, бъакангелицин, оксипеуцеданин гидрат и феллоптерин. Выявлено, что в листьях данного вида кумарины и фурокумарины не накапливаются.

Ключевые слова: кумарины, фурокумарины, Angelica decurrens (Ledeb.) Fedtsch., метод газовой хромато-масс-спектрометрии.

By means of the method GC-MS was identified and quantified in chloroform extracts of the rhizomes, flowers and seeds of Angelica decurrens (Ledeb.) Fedtsch. coumarins: osthol and limettin and some furocoumarins: angelicin, psoralen, xanthotoxin, bergapten, isopimpinellin, imperatorin, oxypeucedanin, isoimperatorin, byakangelicin, oxypeucedaninhydrate and phellopterin. It was found that the leaves of this type of coumarins and furocoumarins don't accumulate.

Keywords: coumarins, furocoumarins, Angelica decurrens (Ledeb.) Fedtsch., GC-MS-method

Введение

Pастения рода Angelica с древних времен известны и широко используются в народной и официальной медицине различных стран благодаря широкому спектру организм: противовоспалительному, воздействия человеческий спазмалитическому, атибактериальному, онкопротекторному. На сегодняшний день многочисленные исследования позволяют предполагать, что такие свойства могут быть обусловлены наличием в них уникального комплекса биологически активных веществ, наиболее ценными из которых являются кумарины и их производные [1,2].

В Сибирском регионе, являющимся одним из самых обширных регионов заготовки растительного сырья в РФ, наиболее известен и перспективен как лекарственное растительное сырье представитель рода Angelica - Angelica decurrens (*Ledeb.*) *Fedtsch.* [3,4].

При заготовительных работах Angelica decurrens (Ledeb.) Fedtsch. часто принимают за европейский вид Angelica archangelica L, что обусловлено не только ботаническим сходством, но и ближайшим филогенетическим родством этих видов [5-7]. Но, в отличие от Angelica decurrens (Ledeb.) Fedtsch. о биологически активных веществах которого известно очень мало, вид Angelica archangelica L. достаточно хорошо изучен, в том числе и его кумарины. Таким образом, близость этих видов, а также практически единственные данные о том, что кумарины семян и корней Angelica decurrens (Ledeb.) Fedtsch. представлены бергаптеном, изоимператорином, императорином, оксипеуцеданином, острутолом и умбеллипренином [8,9], позволяют предположить, что комплексы кумаринов и фурокумаринов различных вегетативных органов этих растений будут схожими.

О кумаринах Angelica archangelica L. известно, что они в основном представлены простыми кумаринами (рисунок 1), заместители которых указаны в таблице 1 [10]:

Рис. 1. Структура простых кумаринов Angelica archangelica L.

Таблица 1. Заместители простых кумаринов Angelica archangelica L.

		8
Название	R_1	R_2
Умбеллиферон	Н	-OH
Остенол	$-CH_2-CH=C(CH_3)_2$	-OH
Остол	$-CH_2-CH=C(CH_3)_2$	-OCH ₃
Умбеллипренин	Н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Фурокумарины Angelica archangelica L. чаще всего представлены соединениями с линейной структурой (рисунок 2), заместители которых представлены в таблице 2 [10].

Рис. 2. Структура линейных фурокумаринов Angelica archangelica L.

Таблица 2. Заместители линейных фурокумаринов Angelica archangelica L.

Tweetings 2. Swite this time time the property in the property of the property						
Название	R_1	R_2				
1	2	3				
Псорален	Н	Н				
Ксантотоксол	Н	-OH				
Ксантотоксин	Н	-OCH ₃				
Бергаптен	-OCH ₃	Н				
Изопимпинеллин	-OCH ₃	-OCH ₃				

1	2	3	
Императорин	Н	-O-CH ₂ - CH=C(CH ₃) ₂	
Изоимператорин	-O-CH ₂ - CH=C(CH ₃) ₂	Н	
Оксипеуцеданин		Н	
Феллоптерин	-OCH ₃	-O-CH ₂ - CH=C(CH ₃) ₂	
Оксипеуцеданин гидрат	ОН	Н	
Острутол	\ \ OH	Н	
Изобьякангелицин ангелат		-OCH ₃	

Одним из фурокумаринов, который наиболее характерен для растений рода Angelica, является ангелицин, а также ряд других угловых фурокумаринов, встречающихся в Angelica archangelica L. из различных мест произрастания (рисунок 3) [10]:

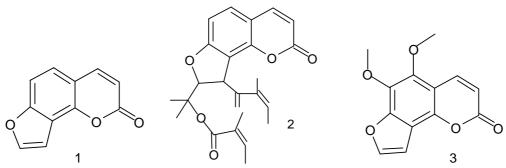


Рис. 3. Угловые фурокумарины *Angelica archangelica L*.: 1-ангелицин; 2- архангелицин; 3-пимпинеллин

Всего в различных органах *Angelica archangelica L*. найдено около 28 разновидностей кумаринов и фурокумаринов (таблица 3) [11]:

В связи с этим представляет интерес идентифицировать кумарины и фурокумарины *Angelica decurrens (Ledeb.) Fedtsch.*, определить их содержание в различных вегетативных органах и сравнить полученные данные с литературными данными по подобным соединениям в родственном виде *Angelica archangelica L*.

В нашей работе методом газовой хромато-масс-спектрометрии исследован компонентный состав исчерпывающих хлороформных экстрактов различных вегетативных органов *Angelica decurrens* (*Ledeb.*) *Fedtsch*. и определено содержание кумаринов и фурокумаринов в пересчете на абсолютно сухое сырье.

Таблица 3. Кумарины и фурокумарины различных вегетативных органов Angelica

archangelica L.

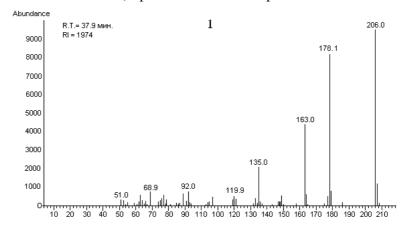
Вегетативный орган	Компонент		
Корневища и корни	Аптерин, архангелицин, архангелин, архангин, бергаптен, бьякангелицин ангелат, бьякангелицин изовалериат, изобергаптен, изоимператорин, изопимпинеллин, императорин, ксантотоксин, ксантотоксол, 5-метокси-геракленол изовалериат, ороселон, остенол, остол, острутол, оксипеуцеданин, оксипеуцеданин гидрат, оксипеуцеданин метанолат, псорален, феллоптерин, умбеллиферон, умбеллипренин		
Листья	Ангелицин, бергаптен, изоимператорин, изопимпинеллин, императорин, ксантотоксин, оксипеуцеданин, оксипеуцеданин гидрат		
Семена	Ангелицин, бергаптен, 8-гидроксибергаптен изоимператорин, изопимпинеллин, императорин, ксантотоксин, ксантотоксол, ороселон, остенол, остол, острутол, оксипеуцеданин, оксипеуцеданин гидрат, феллоптерин, умбеллиферон, умбеллипренин		

Эксперимент

Исследуемые в данной работе корневища и корни Angelica decurrens (Ledeb.) Fedtsch. были собраны в мае 2012 г. в Сибирском регионе (Кемеровской области), высушены и подготовлены к исследованиям согласно ГОСТ 21569-76Е. Соцветия, листья и семена заготовлены в июле и начале сентября 2012 г. по правилам Государственной фармакопеи для отбора проб цветков, стеблей и плодов (семян) [12-14].

Все операции по сушке и отбору проб для анализа, а также определению влажности растительного сырья проводили в соответствии с фармакопейными и фармакогнозийными статьями и рядом нормативно-технической документации [15,16].

Для извлечения кумариновых соединений из различных вегетативных органов: корней, соцветий, листьев и семян Angelica decurrens (Ledeb.) Fedtsch. проводили исчерпывающую экстракцию исходной навески воздушно-сухого сырья в количестве 10-20 г хлороформом в течение 8 часов в аппарате Сокслета [17]. хлороформные Полученные экстракты подвергали хромато-массспектрометрическому исследованию качественного ДЛЯ количественного И определения кумаринов и фурокумаринов.


Идентификацию компонентов проводили с использованием газового хроматомасс-спектрометра «Agilent Tecnologies 7890A» с селективным масс-спектрометром (5975 inert MSD/DS Std Turbo EJ) в качестве детектора. Применяли 30 м кварцевую колонку HP-5MS (сополимер 5%-дифенил-95%-диметилсилоксана) с внутренним диаметром 0,25 мм и толщиной пленки неподвижной фазы 0,25 мкм. Газ-носитель – гелий с постоянным потоком 1,0 мл/мин. В хроматограф вводили 1 мкл полученного экстракта. Условия хроматографирования: изотермический режим при 50°C в течение трех минут, затем программированный подъем температуры со скоростью 4°C/мин до 270 °C с выдержкой при конечной температуре 30 мин.

Температура испарителя 280° С, температура ионизационной камеры -170° С, энергия ионизации -70 эВ. Идентификацию индивидуальных кумаринов и фурокумаринов производили на основании сравнения полученных масс-спектров с масс-спектрами библиотеки данных Willey.7n, содержание компонентов вычисляли по площадям пиков без применения корректирующих коэффициентов в пересчете на остол. Содержание компонентов вычисляли по площадям пиков без применения корректирующих коэффициентов.

Для приготовления стандартных образцов применяли образец остола производства фирмы «Sigma-Aldrich» чистотой 99,8%. Стандартные растворы готовили в концентрациях 5;1;0,1 и 0,01 мг/мл в метиловом спирте.

Обсуждение результатов

В ходе сравнительного анализа полученных нами масс-спектров соединений с масс-спектрами банка данных Willey.7n в различных органах Angelica decurrens (Ledeb.) Fedtsch. был идентифицирован с определением времен удерживания и расчетом индексов удерживания ряд соединений: лиметтин, остол, ангелицин, бергаптен, быякангелицин, изоимператорин, изопимпинеллин, императорин, ксантотоксин, оксипеуцеданин, оксипеуцеданин гидрат, псорален и феллоптерин. Необходимо отметить, что совпадение масс-спектров полученных нами соединений и из банка данных Willey.7n достигает 98%, что наглядно видно на примере масс-спектров лиметтина и ангелицина, представленных на рис. 4 и 5.

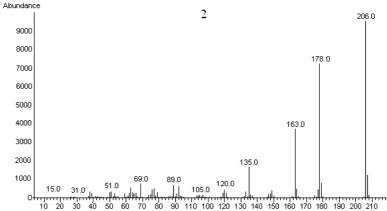
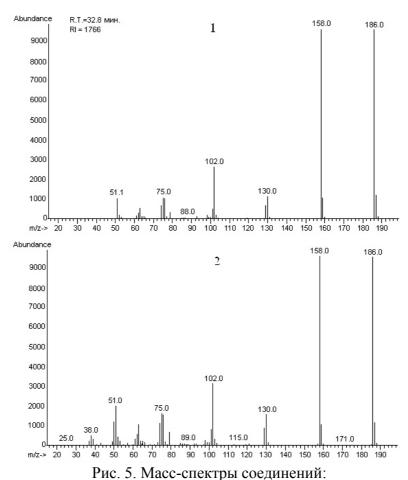



Рис. 4. Масс-спектры соединений: 1- Angelica decurrens (Ledeb.) Fedtsch. с R.T.=37,9 мин., RI= 1974 2- лиметтина из банка данных Willey.7n

1- Angelica decurrens (Ledeb.) Fedtsch. с R.T.=32,8 мин., RI= 1766 2- ангелицина из банка данных Willey.7n

На полученных нами хроматограммах (рис.6) видно, что в различных вегетативных органах накапливается разный комплекс кумариновых соединений. В корневищах и корнях сибирского вида Angelica decurrens (Ledeb.) Fedtsch. определили максимальный набор компонентов: кумарины лиметтин, остол и фурокумарины: ангелицин, бергаптен, бъакангелицин, изоимператорин, изопимпинеллин, императорин, ксантотоксин, оксипеуцеданин, оксипеуцеданин гидрат и псорален. В соцветиях же были обнаружены только фурокумарины: бергаптен, изопимпинеллин, императорин и феллоптерин, а в семенах все те же соединения, кроме бергаптена. В листьях же не было обнаружено кумаринов и их производных.

Таким образом, в вегетативных органах Angelica decurrens (Ledeb.) Fedtsch. нами был выявлен более богатый, чем указанный в более ранних исследованиях [8,9], набор кумаринов и фурокумаринов, но при этом были идентифицированы и аналогичные соединения: бергаптен, изоимператорин, императорин и оксипеуцеданин. Кроме того, весь набор идентифицированных соединений Angelica decurrens (Ledeb.) Fedtsch. соответствует кумаринам и фурокумаринам, характерным для вида Angelica archangelica L.

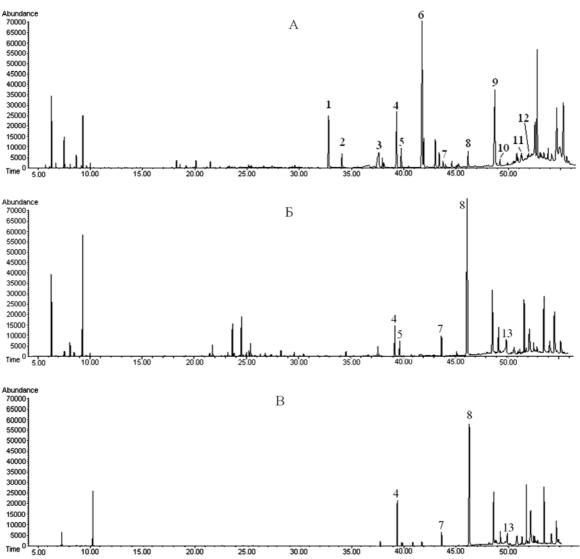


Рис. 6. Хроматограммы хлороформных экстрактов различных вегетативных органов *Angelica decurrens (Ledeb.) Fedtsch.*: А- корневищ; Б – соцветий; В – семян с обозначенными пиками идентифицированных соединений: 1- ангелицин; 2- псорален; 3-лиметтин; 4-ксантотоксин; 5-бергаптен; 6-остол; 7-изопимпинеллин; 8-императорин; 9-оксипеуцеданин; 10-изоимператорин; 11-бьякангелицин; 12-оксипеуцеданин гидрат; 13-феллоптерин

Основные характеристики идентифицированных кумариновых соединений различных вегетативных органов *Angelica decurrens (Ledeb.) Fedtsch.*: времена удерживания - в интервале 32-52 минуты и индексы удерживание также были определены по полученным хроматограммам (рис.6, табл.4). Кроме того, для кумаринов и фурокумаринов *Angelica decurrens (Ledeb.) Fedtsch.* были рассчитаны значения индексов удерживания (табл.4).

Количественное содержание кумаринов и фурокумаринов в различных вегетативных органах *Angelica decurrens (Ledeb.) Fedtsch.* (табл.4) определяли по внутреннему стандарту, в качестве которого использовали химически чистый остол.

По результатам таблицы 4 видно, что в корневищах *Angelica decurrens* (*Ledeb.*) *Fedtsch*. максимально содержание кумарина остола, а также фурокумаринов ангелицина, оксипеуцеданина и оксипеуцеданин гидрата; в соцветиях и семенах –

фурокумарина императорина, причем его содержание максимально по величине для всех органов.

Таблица 4. Содержание идентифицированных кумариновых соединений в различных вегетативных органах Angelica decurrens (Ledeb.) Fedtsch. с определенными

временами и инд	ексами	удерж	гивания			
Компонент	R.T.,	RI	Структура	Содержание*, мг/100 г абс.		
	мин.			сухого сырья		
				Вегетативный орган		ан
				Корневища	Соцветия	Семена
1	2	3	4	5	6	7
Ангелицин	32.8	1766		22.70	-	-
Псорален	34.1	1822		3.94	-	-
Лиметтин	37.9	1974		3.99	-	-
Ксантотоксин	39.3	2029		9.02	14.25	52.29
Бергаптен	39.7	2048		5.33	12.01	-
Остол	41.7	2131		98.14	-	-
Изопимпинеллин	43.7	2210		1.43	15.76	12.92
Императорин	46.2	2312	ë	8.90	231.74	191.40

1	2	3	4	5	6	7
Оксипеуцеданин	48.7	2416		31.89	-	-
Изоимператорин	49.3	2450		2.73	-	-
Феллоптерин	50.0	2470		-	2.53	25.17
Бьякангелицин	51.2	2524		6.63	-	-
Оксипеуцеданин гидрат	51.9	2551	HOOH	29.62	-	-

^{* -} погрешность измерения не более 3%

Заключение

Таким образом, экспериментально в корневищах, соцветиях и семенах сибирского вида Angelica decurrens (Ledeb.) Fedtsch. идентифицированы 2 кумарина и 11 фурокумаринов. Выявлено, что в листьях данного вида кумарины и фурокумарины не накапливаются, а также то, что вегетативные органы накапливают разных комплекс кумариновых соединений, причем наиболее богаты ими корневища.

В ходе работы определены времена и индексы удерживания кумаринов и фурокумаринов *Angelica decurrens (Ledeb.) Fedtsch.*, а также их количественное содержание в каждом вегетативном органе в пересчете на абсолютно сухое сырье.

Кроме того, мы подтвердили высказанное нами предположение о сходство комплексов кумариновых соединений сибирского вида - Angelica decurrens (Ledeb.) Fedtsch. и ближайшего ему родственного лекарственного вида Angelica archangelica L.

Список литературы

- 1. Chevalier A. The Encyclopedia of Medicinal Plants. London: Reader's Digest, 1996. 336 p.
- 2.Башкирова Р.М., Касьянова А.Ю., Галяутдинов И.В. Растения рода дягиль: химический состав и фармакологические свойства // Фармация. 2004. №4. С.46-48.
- 3.Пленник Р.Я., Гонтарь Э.М., Тюрина Э.М. Полезные растения Хакасии. Ресурсы и интродукция. Новосибирск: Наука.сиб. отд., 1989.- 271 с.
- 4.Минаева В.Г. Лекарственные растения Сибири. Новосибирск: Наука. Сибирское отделение, 1991.- 431 с.
- 5.Stephen T.F., Downie R., Yu Y. Molecular systematics of Angelica and allied genera (Apiaceae) from the Hengduan Mountains of China based on nrDNA ITS sequences: phylogenetic affinities and biogeographic implications // J. of Plant Research. 2009. V.122. P. 403–414.
- 6.Lee S.-B., Rasmussen S.K.Molecular markers in some medicinal plants of the Apiaceae family // Euphytica. 2000. V.114. P. 87–91.
- 7. Weinert E. Die Taxonomische Stellung und das Areal von Angelica archangelica L. und A. lucida L. // Feddes Repert. 1973. Heft 84. S. 303-314.
- 8.Денисова Г.А., Драницына Ю.А. Локализация соединений кумаринового ряда в тканях плода и корня Archangelica decurrens Ledeb. // Ботан. журн. 1963. Т.48. № 12. С. 1830-1834.
- 9. Драницына Ю.А., Денисова Г.А. Динамика накопления кумариновых соединений и эфирных масел в плодах Archangelica decurrens Ledeb. на разных фазах их развития // Труды БИН АН СССР. 1965. Сер. 5. Вып. 12. С. 44.
- 10. Murray R.D.H., Mendes J., Brown S.A. The Natural Coumarins: Occurrence, Chemistry and Biochemistry. New York: John Wiley et Sons Ltd., 1982. 714 p.
- 11. Manu J. M. E. Plant secondary metabolites in *Peucedanum palustre* and *Angelica archangelica* and their plant cell cultures. Ac.dissert. // Helsinki: University of Helsinki, 2010. 77 p.
- 12. Государственная фармакопея СССР: Вып. 2. Общие методы анализа. Лекарственное растительное сырье. 11-е издание. Том 1. М.: Медицина, 1989. 400 с.
- 13. ГОСТ 21569-76Е. Корневища и корни дягиля лекарственного. М.: Изд-во стандартов, 1976.- 3 с.
- 14. Лекарственное растительное сырье. Фармакогнозия / Под ред. Г.П.Яковлева, К.Ф.Блиновой. СПб.: СпецЛит, 2004. -765 с.
- 15. ГОСТ 24027.0- 80. Сырье лекарственное растительное. Правили приема и отбора проб М.: Изд-во стандартов, 1999. 5 с.
- 16. ГОСТ 24027.2-80. Сырьё лекарственное растительное. Методы определения влажности, содержания золы, экстрактивных и дубильных веществ, эфирного масла. М.: Изд-во стандартов, 1980. 12 с.

17. Руководство 4.1.1672-03 «Руководство по методам контроля качества и безопасности биологически активных добавок к пище». М.: Изд-во стандартов, 2003.- 183 с.

Щипицына Ольга Сергеевна - аспирантка кафедры «Аналитическая химия» ФГАОУ ВПО «Сибирский федеральный университет», Красноярск

Нарчуганов Антон Николаевич - аспирант кафедры «Аналитическая химия» ФГАОУ ВПО «Сибирский федеральный университет», Красноярск

Shchipitsyna Olga Sergeevna - aspirant «Analytical chemistry» faculty of SibFU

Efremov Aleksandr A. - Prof., Doctor of Chemistry, Head of the Laboratory of Chromatographic methods of analysis of SibFU CEJU

Narchuganov Anton N. - aspirant «Analytical chemistry» faculty of SibFU