

УДК 543. 544; 577.1:544.77

Механизм разделения полимерных молекул хитозана и хитозан-хитина на колонке с высокосшитым полидивинилбензольным сорбентом

Хабаров В.Б., Пронин А.Я., Пыцкий И.С., Буряк А.К.

Учреждение Российской академии наук Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва

Поступила в редакцию 21.11.2011 г.

Аннотация

До настоящего времени работ по разделению методом ВЭЖХ полимерных молекул хитозана и хитозан-хитина в литературе не встречается. В данной работе представлены данные по механизму разделения хитозана и хитозан-хитина из креветки методом ВЭЖХ на колонке с высокосшитым полидивинилбензольным (ВПДВБ) сорбентом в водном растворе уксусной кислоты при использовании хроматографического тракта жидкостного хроматографа в безметаллическом исполнении. Элюирование из колонки с ВПДВБ-сорбентом полимерных молекул хитозана и хитозан-хитина и их комплексов с металлами в уксусной кислоте осуществляется в режиме критической ВЭЖХ по эксклюзионному механизму и по смешанному сорбционно-эксклюзионному механизму. Анализ методом масс-спектрометрии с индуктивно-связанной плазмой проб хитина и хитозана из креветки показал, что хитин содержат элементы – Mg, Si, P, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Sr, Cd, Hg и хитозан – Si, Ti, Mn, Fe, Co, Cu и Sr.

Ключевые слова: хитозан, хитозан-хитин, ВЭЖХ, хроматографическая колонка с ВПДВБсорбентом, уксусная кислота, эксклюзионный и сорбционно-эксклюзионный механизм элюирования.

Till now activities on separation by a method HPLC of polymer moleculas chitosan and chitosanchitin in the literature does not meet. In the given activity the data on the mechanism of separation chitosan and chitosan-chitin from a shrimp by a method HPLC on a column with highcrosslinked polydivinilbenzen (HCDVB) by sorbent in aqueous solution of acetic acid are shawn at usage of a chromatographic channel of a liquid chromatograph in metalles fulfilment. The eluating from a column with HCDVB-sorbent of polymer moleculas chitosan and chitosan-chitin and their complexes with metals in acetic acid implements in a mode critical HPLC on ecsclusion and on blended sorpshn-ecsclusion mechanism. The analysis by a method of mass spectrometry with inductiveti-bound plasma of samples of chitin and chitosan from a shrimp has shown, that the chitin is contained by members – Mg, Si, P, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Sr, Cd, Hg and chitosan-chitin – Si, Ti, Mn, Fe, Co, Cu and Sr.

Keywords: chitosan, chitosan-chitin, HPLC chromatographic column with HCDVB-sorbent, acetic acid, ecsclusion and sorpshn-ecsclusion mechanism of separation

Введение

В [1, 2] показано, что при использовании метода ВЭЖХ на колонке из стекла (150 х 3 мм) с ВПДВБ-сорбентом в водном растворе уксусной кислоты (4 %) разделяются полимерные молекулы хитозана, хитозан-хитина и молекулы хитозан-

белкового комплекса. что позволяет определять молекулярно-массовое распределение молекул хитозана и содержание примесей в препаратах хитозана.

высокоэффективных колонок ВПДВБ-сорбентом Лля с с хроматографическим трактом в безметаллическом исполнении характерны следующие процессы:

- элюирование из колонки в водном растворе уксусной кислоты (4; 6 %) полимеров декстрана с ММ 0,504-2000 кДа протекает по эксклюзионному механизму [1];

элюирование В абсолютном ИЗ колонки этаноле олигомеров гидролизованного и негидролизованного этилсиликата протекает в режиме критической ВЭЖХ по эксклюзионному механизму [3, 4];

– элюирование из колонки дистиллированной водой олигомеров и полимеров кремниевой кислоты протекает по эксклюзионному, а мономерной кремниевой кислоты – по сорбционному механизму [5];

– элюирование из колонки в водном растворе ацетонитрила (80%) гидратированных молекул сульфата натрия протекает по смешанному сорбционноэксклюзионному механизму [6].

Цель настоящего исследования – изучение механизма разделения полимерных молекул хитозана и хитозан-хитина на высокоэффективной колонке с ВПДВБ-сорбентом в водном растворе уксусной кислоты.

Эксперимент

В работе использовали нестандартный жидкостный хроматограф, в котором хроматографический тракт выполнен в безметаллическом исполнении. Жидкостный хроматограф включал детекторы – рефрактометрический RIDK-102 фирмы Laboratorni pristroje Praha (Чехословакия) [7] и ультрафиолетовый (диодная матрица) фирмы Agilent Technologies (США) с жидкостным трактом из фторопласта [8]. В насосе высокого давления жидкостный тракт выполнен из полиэтерэтеркетона (ПИИК) и капилляров из ПИИК (вн. Ө 0,25 мм) фирмы Кnauer (Германия). Инжектор выполнен из ПИИК и фторопласта. Масс-спектрометр с индуктивносвязанной плазмой фирмы Agilent Technologies (США). Для разделения проб хитозана использовали колонку из стекла (150 х 3 мм) с ВПДВБ-сорбентом в виде моносферических зёрен диаметром (d_p) 10 мкм, Dпор 500 Å. Упаковку колонок ВПДВБ-сорбентом осуществляли в водном растворе щёлочи с рН 11 при давлении 25 МПа в соответствии с [6]. Для исследования использовали образцы хитозана, полученные при деацетилировании хитина креветки щёлочью – 40 %-й водный раствор NaOH при температуре 125 °C в течение 4 часов. [9]. В качестве элюента и для растворения проб препаратов хитозана использовали 4 и 6 %-й водные растворы уксусной кислоты. Условия разделения: колонка из стекла (150 x 3 мм) с ВПДВБсорбентом, зернения 10 мкм. Скорость элюента – 4 и 6 %-го водного раствора уксусной кислоты, 0,1 мл/мин. Анализируемая проба – 10 мкл 0,05 %-го раствора препарата хитозана в элюенте. После начала выхода разделённых проб хитозана на колонке с ВПДВБ-сорбентом отбирали последовательно по одной капле (объёмом 28 мкл) 14 проб из хроматогорафических пиков, содержащих хитозан и хитозан-хитин. 10 мкл каждой отобранной пробы анализировали на колонке с ВПДВБ-сорбентом (см. табл. 1).

Элементный анализ проб хитина и хитозана из креветки проводили методом масс-спектрометрии с индуктивно-связанной плазмой. Для этого пробы разлагали по общепринятой методике. К 0,2 г хитина или хитозана добавляли 1 мл концентрированной азотной кислоты (о.с.ч.). Пробы нагревали при температуре 100 °С до растворения. В охлаждённую пробу добавляли 0,2 мл 70 %-й перекиси водорода (о.с.ч.) и нагревали при 100 °С до появления в пробирке оксидов азота. После разложения пробу охлаждали И добавляли деионизированную бидистиллированную воду до объёма 15 мл. Раствор использовали для определения элементов. Концентрацию элементов в пробе рассчитывали по формуле: $C_{\text{в пробе}} = [C \text{ мг/л x } 0,015 \text{ л}] : M,$

где: С_{в пробе} – концентрация элемента в пробе, мг/кг; С – концентрация элемента, мг/л; 0,015 – объём приготовленной пробы, л; М – навеска исследуемой пробы, кг.

Обсуждение результатов

Анализ результатов табл. 1 показывает, что отобранные пробы хитозана с молекулярной массой (ММ) 50,1-1047 кДа (пробы 1-7) и хитозан-хитина с ММ 1,4-29,5 кДа (пробы 8-14) на колонке с ВПДВБ-сорбентом имеют одинаковые объёмы удерживания (V_r), что указывает на элюирование молекул в режиме критической ВЭЖХ [10]. При хроматографическом анализе препаратов хитозана элюируются полимерные молекулы хитозана и хитозан-хитина из колонки с ВПДВБ-сорбентом в водном растворе уксусной кислоты (4, 6 %) в критическом режиме ВЭЖХ по эксклюзионному механизму и по смешанному сорбционно-эксклюзионному, молекулы хитозан-хитинового комплекса по сорбционному – механизму [1].

Таблица 1. Результаты анализа проб из хроматографических пиков, содержащих хитозан и хитозан-хитин из креветки, разделённых на колонке с ВПДВБ-сорбентом в водном растворе уксусной кислоты (4, 6 %), 0,1 мл/мин

	Hourous		V _r ,	Высота пика,	V _r ,	Высота пика,		
N⁰	паимено-	*MM,	МЛ	MB	МЛ	MB		
пробы	вание прооы – № капли	кДа	Элюент – водный раствор уксусной кислоты					
			4 %		6 %			
Пик хитозана								
1	1-я	1047.0	0.50	0.8	0.45	0.6		
2	2-я	631.0	0.50	1.3	0.46	1.5		
3	3-я	371.5	0.50	2.8	0.45	2.5		
4	4-я	213.8	0.50	4.3	0.46	3.2		
5	5-я	141.3	0.51	4.8	0.46	3.6		
6	6-я	83.2	0.51	4.7	0.46	3.9		
7	7-я	50.1	0.50	6.8	0.46	4.3		
Пик хитозан-хитина								
8	1-я	29.5	0.51	7.8	0.46	4.3		
9	2-я	18.2	0.51	6.5	0.46	3.6		
10	3-я	11.0	0.51	6.5	0.46	3.2		
11	4-я	6.3	0.51	6.1	0.50	2.7		
12	5-я	3.2	0.51	3.2	0.50	2.2		
13	6-я	2.3	0.51	1.5	0.50	1.2		
14	7-я	1.4	0.51	1.4	0.50	0.9		

*Молекулярные массы определяли по градуировочному графику (рис. 1).

Для градуировки колонок с ВПДВБ сорбентом использовали стандарты молекулярных масс (ММ) декстранов Т-серии фирмы Serva (Германия). На рис. 1 представлен градуировочный график зависимости lg ММ стандартов полимеров декстрана от объёма удерживания (V_r, мл), который использовали для расчёта молекулярно-массового распределения хитозана.

Рис. 1. Градуировочный график зависимости lg MM полимеров декстрана от V_r Колонка из стекла (150х3 мм) с ВПДВБ-сорбентом, зернения 10 мкм. Элюент – 4 %-й водный раствор уксусной кислоты 0,1 мл/мин. 1 – мальтотриоза, 2 – Т-20, 3 – Т-500, 4 – Т-2000. Детектор – рефрактометрический RIDK-102 с жидкостным трактом из фторопласта

Рис. 2. Хроматограмма хитозана из креветки: 1-2 – полимерные молекулы хитозана, 3-4 – полимерные молекулы с хитозан-хитиновыми звеньями, 5 – вода. Колонка из стекла (150х3 мм) с ВПДВБ-сорбентом, зернения 10 мкм. Элюент – 4 %-й водный раствор уксусной кислоты, 0,1 мл/мин. Детектор – рефрактометрический RIDK-102 с жидкостным трактом из фторопласта

На рис. 2 представлена хроматограмма хитозана и хитозан-хитина, элюируемых из колонки с ВПДВБ-сорбентом в водном растворе уксусной кислоты в критическом режиме по эксклюзионному механизму.

На хроматограмме видно, что из колонки с ВПДВБ-сорбентом элюируются в водном растворе уксусной кислоты молекулы хитозана и хитизан-хитина, а на месте выхода хитозан-белкового комплекса детектируется отрицательный пик, который соответствует выходу пика воды с V_r 1,24 мл. Это связано с тем, что при растворении пробы хитозана в 4 %-м водном растворе уксусной кислоты, кислота реагирует с аминогруппами хитозана и образуется вода, которая детектируется в виде отрицательного пика. На УФ-детектор при $\lambda = 254$ нм и $\lambda = 280$ нм молекулы хитозан-белкового комплекса детектируются в виде положительного пика (рис. 3).

В [1] показано, что в хитозане хитозан-белковый комплекс (16 %) на рефрактометрическом детекторе определятся в виде положительного пика, то есть хитозан-белковый комплекс поглощает пик воды, которая образуется при растворении хитизана в 4 %-м водном растворе уксусной кислоты.

Эксклюзионный механизм подтверждается тем, что объёмы выхода хитозана и хитозан-хитина меньше колоночного объёма (1 мл), а в случае чистого сорбционного механизма объёмы выхода превышают колоночный объём.

Для заключения о механизме разделения полимерных молекул хитозана и хитозан-хитина нужно учитывать следующее:

– чистый хитозан содержит только аминогруппы (–NH₂), которые не поглощают УФ [11, с. 147] (при λ = 210-400 нм) и не взаимодействуют с ВПДВБ-сорбентом, благодаря чему элюируются из колонки по эксклюзионному механизму;

– полимерные молекулы хитозан-хитина содержат амидоацетильные группы (–NH–CO–CH₃), в которых группировка –NH–CO– ответственна за поглощение УФ при $\lambda = 235$ нм [11] и ответственна за сорбционные взаимодействия с сорбентом, поэтому эти молекулы элюируются с объёмом больше, чем объём удерживания чистого хитозана [1];

– эксперимент показывает, что молекулы хитозан-хитина из креветки выходят с объёмом меньше колоночного и меньше чем он наблюдается с хитозанхитином из краба [1], что может быть объяснено образованием комплексов металлов (Si, Ti, Mn, Fe, Co, Cu, Sr), обнаруженных в препаратах хитозана креветки, благодаря чему поглощение УФ сдвигается в область при $\lambda = 254$ нм и $\lambda = 280$ нм, а эти комплексы очень слабо удерживаются сорбентом.

Анализ проб хитозана из креветки методом ВЭЖХ на колонке с ВПДВБсорбентом показал, что при детектировании на УФ-детекторе с жидкостным трактом из фторопласта (диодная матрица) полимерные молекулы хитозана, хитозан-хитина и хитозан-белкового комплекса поглощают УФ при $\lambda = 254$ нм и $\lambda = 280$ нм (рис. 3). Это по-видимому связано с тем, что аминогруппы хитозана и хитозан-хитина образует комплексы с Si, Ti, Mn, Fe, Co, Cu и Sr (см. табл. 2).

Рис. 3. Хроматограмма хитозана из креветки: 1 – полимерные молекулы хитозана, 2 – полимерные молекулы с хитозан-хитиновыми звеньями, 3 – молекулы хитозан-белкового комплекса. Колонка из стекла (150 х 3 мм) с ВПДВБ-сорбентом, зернения 10 мкм. Элюент – 4 %-й водный раствор уксусной кислоты, 0,1 мл/мин. УФ-детектор при $\lambda = 254$ нм и $\lambda = 280$ нм с жидкостным трактом из фторопласта

Анализ методом масс-спектрометрии с индуктивно-связанной плазмой проб хитина и хитозана креветки показал, что хитин содержат элементы – Mg, Si, P, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Sr, Cd, Hg и хитозан – Si, Ti, Mn, Fe, Co, Cu и Sr (см. табл. 2). При деацетилировании хитина креветки щёлочью комплексы Mg, P, Ca, Cr, Zn, Cd и Hg с аминогруппами хитина разрушаются, а комплексы Si, Ti, Mn, Fe, Co и Sr разрушаются частично. Хитозан из креветки по сравнению с хитином содержит меньше кремния в 1,07 раза, титана в 2,7 раза, марганца в 4 раза, железа в 1,7 раза, кобальта в 6 раз и стронция в 39,7 раза.

Таблица 2. Результаты элементного анализа содержания металлов методом массспектрометрии с индуктивно-связанной плазмой в твёрдых пробах хитина и хитозана из креветки, мг/кг

Элемент	Атомная масса	Хитин креветки	*Хитозан из креветки	
		Концентрация, мг/кг		
Mg (магний)	24	105.0	-	
Si (кремний)	29	360.0	336.7	
Р (фосфор)	31	589.5	-	
Са (кальций)	43	887.3	-	
Ті (титан)	47	6.7	2.5	
Cr (хром)	53	0.40	-	
Mn (марганец)	55	5.95	1.44	
Fe (железо)	57	290.00	174.50	
Со (кобальт)	59	0.30	0.05	
Си (медь)	63	5.20	5.20	
Zn (цинк)	66	5.30	-	
Sr (стронций)	88	27.80	0.70	
Cd (кадмий)	111	0.02	-	
Нд (ртуть)	202	0.04	_	

*Хитозан содержит полимерные молекулы с хитозан-хитиновыми звеньями

Заключение

Метод ВЭЖХ анализа на колонке с ВПДВБ-сорбентом обеспечивает элюирование полимерных молекул хитозана и хитозан-хитина и их комплексов с металлами в уксусной кислоте (4 и 6 %) в режиме критической ВЭЖХ по эксклюзионному механизму и по смешанному сорбционно-эксклюзионному механизму.

Список литературы

1. Хабаров В.Б., Пронин А.Я., Самуйленко А.Я., Гринь А.В. Способ определения полимерных молекул хитозана в препаратах хитозана. Пат. РФ № 2295127. МПК⁷ G01N 30/02. Бюл. 2007. № 7.

2. Хабаров В.Б., Пронин А.Я., Буряк А.К., Самуйленко А.Я. Возможности

молекулярного химического анализа методом высокоэффектиной жидкостной хроматографии при использовании полимерного сорбента на основе высокосшитого полидивинилбензола // ДАН. 2009. Т. 427. № 1. С. 57-60.

3. Пронин А.Я., Хабаров В.Б., Оспенникова О.Г., Пикулина Л.В., Антипин Л.М., Ларионов О.Г. Способ определения молекулярно- массового распределения олигомеров этоксисилоксанов в гидролизованных и негидролизованных этилсиликатах. Пат. РФ № 2280252. МПК⁷ G01N 30/26. Бюл. 2006. № 20. 4. Хабаров В.Б., Пронин А.Я., Буряк А.К., Оспенникова О.Г., Пикулина Л.В. Молекулярный химический анализ методом высокоэффективной жидкостной хроматографии олигомеров этоксисилоксанов, получаемых при кислотном гидролизе этилсиликата. // ДАН. 2009. Т. 429. № 4. С. 1-4.

5. Хабаров В.Б., Пронин А.Я., Буряк А.К. Способ определения форм существования и молекулярно-массового распределения полимерных молекул кремниевой кислоты в геотермальных водных растворах. Пат. РФ № 2330280. МПК⁷ G01N 30/26. Бюл. 2008. № 21.

6. Хабаров В.Б., Пронин А.Я., Ермаков В.В., Буряк А.К., Хабаров М.В. Способ приготовления высокоэффективных колонок с полимерными сорбентами для жидкостной хроматографии. Пат. РФ № 2278379. МПК⁷ G01N 30/56. Бюл. 2006. № 17.

7. Хабаров В.Б., Пронин А.Я., Панина Л.И., Буряк А.К. Устройство крепления и герметизации кварцевой кюветы в рефрактометрическом детекторе для жидкостной хроматографии // Пат. РФ № 2362143. МПК⁷ G01N 21/05. Бюл. 2009. № 20.

8. Хабаров В.Б., Пронин А.Я., Буряк А.К. Исследование хитозана и примесных методом высокоэффективной жидкостной хроматографии соединений при использовании хроматографического жидкостного хроматографа тракта В И безметаллическом // Сорбционные металлическом исполнении И хроматографические процессы. 2011. Т.11. Вып. 3. С. 292-298.

9. Быкова В.М., Немцев С.В. Сырьевые источники и способы получения хитина и хитозана. В кн.: Хитин и хитозан. Получение, свойства и применение. Под ред. Скрябина К.Г., Вихоревой Г.А., Варламова В.П. Москва. Наука, 2002, с. 7-23.

10. Горшков А.В. Евреинов В.В. Критическая хроматография макромолекул. // 100 лет хроматографии / Отв. ред. Б.А. Руденко. – М.: Наука, 2003. С. 136-184.

11. Химическая энциклопедия. Москва, 1988. Т. 1. С. 147, 250.

Хабаров Виктор Борисович – к.х.н., старший научный сотрудник, Учреждение Российской академии наук Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, тел.: 8(495)9554668

Пронин Александр Яковлевич – к.х.н., ведущий научный сотрудник, Учреждение Российской академии наук Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва

Буряк Алексей Константинович – д.х.н., профессор, заведующий лаборатории, Учреждение Российской академии наук Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва

Пыцкий Иван Сергеевич – аспирант, Учреждение Российской академии наук Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва Khabarov Victor B. – Candidat of Chemistry, senior research worker, Institution Russian Academy of Science A.N. Frumcin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow, e-mail: Khabarov@phyche.ac.ru

Pronin Alexander Ya. – Candidat of Chemistry, senior research worker, Institution Russian Academy of Science A.N. Frumcin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow

Buryak Aleksey K. – Doctor of Chemical sciens, professor, chief of laboratory, Institution Russian Academy of Science A.N. Frumcin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow

Pytsky Ivan S. – post graduate student, Institution Russian Academy of Science A.N. Frumcin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow