УДК 541.(64+183.12)

Влияние физико-химических условий среды на соотношение вкладов специфичной и неспецифичной сорбции L-лизина в сорбцию молекулярно импринтированными сорбентами

Полякова И.В., Ежова Н.М., Писарев О.А.

Учреждение Российской академии наук Институт высокомолекулярных соединений РАН, С.-Петербург

Поступила в редакцию 8.09.2010 г.

Аннотация

Исследованы равновесно-кинетические параметры и термодинамические функции сорбции L-лизина новыми молекулярно импринтированными сорбентами. Показано влияние физико-химических факторов на соотношение вкладов специфичного и неспецифичного связывания в неоднородное распределение L-лизина в импринтированных полимерных сетках.

Ключевые слова: L-лизин, МИПы, энергетическая неоднородность распределения сорбата

The equilibrium and kinetic parameters and thermodynamic functions of L-lysine sorption on new molecularly imprinted sorbents have been investigated. There have been shown the physico-chemical factors influence on ratio of the specific and non-specific binding contributions into the L-lysine heterogeneous distribution in the imprinted polymeric nets.

Keywords: L-lysine, MIPs, energetically heterogonous distribution of sorbate

Введение

Повышение эффективности сорбционных и хроматографических процессов требует решения ряда фундаментальных проблем, связанных с поиском селективных сорбентов нового поколения. В этой связи все большее внимание уделяется созданию сорбентов на основе полимерных систем, структурно настраиваемых на наноуровне. К таким системам можно отнести молекулярно импринтированные полимеры (molecularly imprinted polumers – МИПы) или полимеры с молекулярными «отпечатками», на которых селективная сорбция осуществляется в результате специфичного молекулярного узнавания целевого выделяемого компонента. Принципы создания МИПов описаны в работах [1, 2].

Наряду с высокоаффинными сорбционными центрами – полостями, комплементарными к целевым молекулам, в процессе синтеза в матрице МИПов формируются также сорбционные центры с меньшей степенью сродства к целевым молекулам [3]. В результате из-за различия в сорбционных константах сорбция осуществляется при энергетически неоднородном распределении сорбата, а соотношение вкладов специфичного и неспецифичного связывания в сорбцию зависит не только от структуры сорбционной поверхности, но также от физикохимических свойств сорбтива и сорбционной среды.

Целью работы являлось изучение влияния физико-химических факторов на равновесие и кинетику сорбции аминокислоты L-лизина новыми импринтированными сорбентами – лиз-МИПами.

Эксперимент

В работе использовался L-лизина [NH2CH2(CH2)3CH(NH2)COOH], в структуре которого содержатся две аминогруппы (рК α 1=8,95 и рК α 2=10,5) и одна карбоксильная группа (рК α =2,18), что придает аминокислоте свойства амфолита. Исследовались полимеры, синтезированные методом радикальной сополимеризации метакриловой кислоты (МАК) и гидрофобного сшивающего агента диметакрилата этиленгликоля (ДМЭГ), импринтированные шаблонными молекулами L-лизина (лизМИПы), при концентрации аминокислоты в полимеризационной массе 3 моль % и 6 моль %. (лиз-МИП-3, лиз-МИП-6). Контрольный полимер (КП) синтезирован в аналогичных с лиз-МИПами условиях, но без введения темплатов аминокислоты в полимеризационную массу [4]. Равновесие и кинетика сорбция L-лизина исследовались статическим методом [5].

Обсуждение результатов

Неспецифичная сорбция на сополимерах МАК-ДМЭГ может осуществляться фиксированными карбоксильными группами, обеспечивающими катионобменную сорбцию, и гидрофобными радикалами структурных единиц полимерных сеток сорбентов, обеспечивающими молекулярную сорбцию. Исследование коэффициентов распределения (Г) и термодинамических функций показало, что при варьировании физико-химических факторов среды (рН, температура Т, и ионная сила Ј) неспецифичные взаимодействия могут определяться, как энтропийным, так и энтальпийным членом изменения свободной энергии сорбции. При этом в условиях, способствующих улучшению доступности карбоксильных фиксированных групп сорбентов, превалировал вклад ион-ионных взаимодействий в неспецифичное связывание (табл. 1).

Доминирующий вклад специфичного связывания в сорбцию L-лизина наиболее ярко наблюдался на сорбенте с наибольшей степенью импринтинга — лиз-МИПе-6 при рН 8,0 в условиях сорбции наиболее близких к условиям синтеза, и, соответственно, улучшающих аффинное сродство аминокислоты к комплементарным микроотпечаткам. При сорбции сорбентом с меньшей степенью импринтинга (лиз-МИПом-3) взаимовлияние специфичных и неспецифичных сорбционных центров в большей степени зависело от факторов среды.

При сорбции органических молекул МИПами может наблюдаться размытие элюционного фронта. Причиной может быть низкая степень импринтинга, при которой соотношение вкладов специфичного и неспецифичного связывания сорбата сдвигается в сторону неспецифичных взаимодействий, суммарная энергия которых препятствует диффузии сорбтива к аффинным участкам сорбции и массоперенос значительно замедляется [6]. Поэтому одной из задач, поставленных в работе, являлось исследование основных кинетических параметров сорбции L-лизина лиз-МИПами в условиях, способствующих увеличению вклада специфичной сорбции, а именно при рН 8,0 и J=0,2M.

_

Таблица 1. Термодинамические функции сорбции L-лизина КП и лизМИПами при

варьировании физико-химических факторов сорбционной среды

варыпрова	инии	физико	-химич	еских факт	горов сорс	рционно	ои среды					
	J,	293 °K			310 °K							
сорбент			ΔG,	ΔΗ	$T\Delta S$		ΔG	ΔΗ	TΔS			
	M	Γ_1	кДж/	кДж/	кДж/	Γ_2	кДж/	кДж/	кДж/			
			моль	моль	моль		моль	моль	моль			
pH 6,5												
КП	0.1	76.7	_	61.8	72.3	308.8	- 14.8	61.8	76.5			
	0.1	48.8	10.5	47.7	57.2	143.2	- 14.8 - 12.8	47.7	60.5			
	0.2	85.5	-9.5	35.0	45.8	188.1	- 12.8 - 13.5	35.0	48.5			
	0.4		-10.8									
лизМИП-	0.1	256.9	-13.5	-32.4	- 18.9	123.6	-12.4	-32.4	-20.0			
	0.2	66.5	-10.2	46.4	56.7	189.6	-13.5	46.4	59.9			
	0.4	100.1	-11.2	35.8	47.0	224.5	- 13.9	35.8	49.7			
лизМИП- 6	0.1	200.3	-12.9	-12.5	0.4	151.1	-12.9	-12.5	0.4			
	0.2	150.0	-12.2	-1.6	10.6	144.7	-12.8	-1.6	11.2			
	0.4	218.2	-13.1	-8.7	0.4	179.5	-13.4	-8.7	4.7			
pH 8,0												
КП	0.1	122.0	-11.7	-81.3	- 69.6	19.5	- 7.6	-81.3	-73.7			
	0.2	109.5	-11.4	-78.0	- 66.6	18.6	-7.6	-78.0	- 70.4			
	0.4	124.9	-11.7	-29.0	-17.3	56.9	-10.7	-29.1	- 18.3			
лизМИП- 3	0.1	67.9	-10.3	-7.1	3.2	57.9	-10.4	-7.1	3.4			
	0.2	24.9	-7.8	10.4	18.2	31.5	-8.9	10.4	19.2			
	0.4	57.5	- 9.9	-21.1	-11.3	35.7	-9.2	-21.4	- 11.9			
лизМИП- 6	0.1	102.6	-11.3	-4.3	7.0	93.2	-11.7	-4.3	7.4			
	0.2	144.9	-12.1	-6.2	5.9	126	-12.4	-6.2	6.2			
	0.4	113.0	-11.5	0.5	12.0	114.4	-12.2	0.5	12.7			
					pH 11,0							
КП	0.1	32.4	-8.5	-37.4	-29.0	13.9	- 67.8	-37.4	- 30.9			
	0.2	25.0	-7.8	-34.3	-26.5	11.5	-62.8	-34.3	-28.1			
	0.4	15.1	-6.6	-21.9	-15.3	9.2	-5.7	-21.9	-16.2			
лизМИП- 3	0.1	12.3	-6.1	38.8	44.9	29.5	- 8.7	38.8	47.5			
	0.2	10.3	-5.7	31.6	37.2	21.0	-7.8	31.6	34.4			
	0.4	21.4	-7.4	6.4	13.8	24.7	-8.3	6.4	14.6			
лизМИП-	0.1	8.8	-5.3	76.2	81.5	48.8	-10.0	76.2	86.2			
	0.2	17.6	-7.0	67.0	74.0	79.9	-11.3	67.0	78.3			
	0.4	21.0	-7.4	46.2	53.6	59.6	-10.5	46.2	56.7			

Основные кинетические параметры были получены экспериментальных данных посредством кинетических моделей, описывающих различное распределение сорбтива в объеме зерна сорбента [7]. Из таблицы 2 видно, что наиболее медленная кинетика наблюдалась при сорбции аминокислоты на лизМИПе-3. По всей видимости, низкий коэффициент аффинного связывания и наиболее выраженное неоднородное распределение сорбционных сайтов при трудной доступности аффинных центров ухудшали массоперенос. Улучшение кинетических параметров наблюдалось на лизМИПе-6. Близкие величины эффективных коэффициентов и средних времен диффузии для двух моделей указывали на узкое распределение комплементарных полостей в полимерной матрице, а быстрый массоперенос при высоком значении коэффициента распределения свидетельствовал о высокой доступности специфичных сорбционных центров.

катионитами на основе мак и дмэт, ртт 8,0, т = 0,2 м												
		Модель «обо	олочка-ядро»	Модель Бойда								
$d_{\scriptscriptstyle m H}$, мкм	tgα	$\overline{D} \times 10^7$,	$\frac{-}{t}$, сек	$\overline{D} \times 10^7$,	$\frac{-}{t}$, cek,							
		cм ² /ceк	ι , σοπ	cм ² /ceк	ι , σοκ,							
Сорбция на КП, $\Gamma = 109,5$												
70-90	0,09	5,9	90	6,2	94							
100-160	0,10	12,8	64	18,0	76							
Сорбция на лизМИПе-3, Γ = 24,9												
70-90	0,06	3,0	179	11,1	187							
100-160	0,07	6,3	131	25,9	156							
Сорбция на лизМИПе-6, Γ = 144,9												
70-90	0,06	20,3	51	21,3	53							
100-160	0,07	35,6	45	49,8	53							

Таблица 2. Основные кинетические параметры сорбции лизина карбоксильными катионитами на основе МАК и ДМЭГ, pH 8.0, J = 0.2 М

Заключение

Исследование равновесия и кинетики сорбции L-лизина новыми импринтированными сорбентами показало, что вклад специфичного связывания возрастал в физико-химических условиях сорбции, близких к условиям синтеза МИПов и способствующих аффинному сродству аминокислоты с комплементарными полостями. Массоперенос улучшался с ростом степени импринтинга при узком распределении и высокой доступности комплементарных полостей.

Список литературы

- 1.Allender C. J. Molecularly imprinted polymers: technology and applications // Advanced Drug Delivery Reviews. 2005. V.57. №5. P.1731–1732.
- 2.Spivak D.A. Optimization, evaluation, and characterization of molecularly imprinted polymers // Advanced Drug Relivery Reviews. 2005. T.57. №4. P.1779–1794.
- 3.H. Kim, G. Guiochon Thermodynamic Studies on the Solvent Effects In Chromatography on Molecularly Imprinted Polymers. 1. Nature of the Organic Modifier. // Anal. Chem. 2005, V. 77, p.1708–1717.
- 4.Н. М. Ежова, И. В. Полякова, О. А. Писарев О.А. Сорбция лизина молекулярно импринтированными карбоксильными сорбентами // Приклад. Биохимия и Микробиология. 2009. Т.45. № 2. С.124–129.
- 5. Либинсон Г.С. Сорбция органических соединений ионитами. // М.: Медицина. 1979. 182 с.
- 6.H. Kim, G. Guiochon. Thermodynamic functions and intraparticle mass transfer kinetics of structural analogues of a template on molecularly imprinted polymers in liquid chromatography // J. of Chromatogr. 2005.V.1097. № 1. P.84–97.

^{*} \overline{D} - средний эффективный коэффициент диффузии, см²/сек; \overline{t} - среднее время диффузии, сек; $tg\alpha$ — тангенс угла наклона начальных участков кинетических кривых, $F = f(t^{1/2})$, где F — степень насыщения.

7.Polyakova I. V., Kolikov V. M., Pisarev O. A.. Mass Transfer Effects in Preparative Chromatography of Antibacterial Antibiotic Eremomycin on Polymeric Sorbents. // J.Chrom.A. 2003. V.1006. №2. P251-260.

Работа осуществлялась при поддержке гранта РФФИ 09-03-00516.

Полякова Ирина Валериевна - старший научный сотрудник лаборатории полимерных наносистем и биотехнологических продуктов, Институт высокомолекулярных соединений Российской Академии Наук, Санкт-Петербург, тел.: (812) 3283302

ЕжоваНадеждаМихайловна-к.х.н.,старшийнаучныйсотрудниклабораторииполимерныхнаносистемибиотехнологическихпродуктов,ИнститутвысокомолекулярныхсоединенийРоссийскойАкадемииНаук, Санкт-Петербург

Писарев Олег Александрович - зав. лаб. полимерных наносистем и биотехнологических продуктов, Институт высокомолекулярных соединений Российской Академии Наук, Санкт-Петербург

Polyakova Irina V. - senior research worker, Institute of Macromolecular Compounds, Russian Academy of Sciences, S-Peterburg, e-mail: pol_irina_val@list.ru

Ezhova Nadezhda M. - Candidate of Chemical Science, research worker, Institute of Macromolecular Compounds, Russian Academy of Sciences, S-Peterburg

Pisarev Oleg A. - laboratory chief, Institute of Macromolecular Compounds, Russian Academy of Sciences, S-Peterburg

УДК 541

Сорбция аммония из поверхностной воды на клиноптилолите, модифицированном полиэтиленимином

Кац Э.М.

Учреждение РАН Институт геохимии и аналитической химии им. В.И.Вернадского (ГЕОХИ РАН), Москва

Поступила в редакцию 8.09.2010 г.

Аннотация

В статических условиях показана линейность изотерм сорбции аммония и совпадение данных, полученных на модифицированном ПЭИ и природном клиноптилолитах. Для исследования выбрана Na⁺ форма сорбентов, характеризующаяся более высоким значением коэффициентом распределения аммония. Показано, что динамика сорбции микрокомпонента аммония на модифицированном ПЭИ цеолите происходит при незначительном изменении концентраций макрокомпонента кальция в растворе. Изучена динамика десорбции аммония и кальция с исследованных сорбентов раствором 2N NaCL. В динамических условиях в циклах "сорбция-десорбция" подтверждена высокая селективность сорбции аммония к модифицированному ПЭИ и природному цеолитам. На модифицированном ПЭИ цеолите отмечается значительное ухудшение сорбционных и десорбционных свойств кальция. Показана возможность использования модифицированного ПЭИ цеолита для очистки поверхностных вод от иона аммония в динамических циклах "сорбция-десорбция".

Ключевые слова: цеолиты, модифицированные цеолиты, поверхностная вода, аммоний, сорбция, десорбция.