УДК 544.726; 544.77

# Осаждение серебра в ионообменные материалы и электровосстановление молекулярного кислорода на них

Новикова В.В., Стародубова С.П., Чайка М.Ю., Кравченко Т.А.

Воронежский государственный университет, Воронеж

Поступила в редакцию 1.07.2010 г.

## Аннотация

Изучена реакция электровосстановления молекулярного кислорода на серебросодержащем нанокомпозите на основе сульфокатионообменника КУ-23, сульфокатионообменной мембраны МК-40 и на компактном серебряном электроде с осажденными частицами серебра. Обнаружено, что при содержании количества осажденного метала  $\varepsilon_{Ag}^0 = 1.87 \text{ ммоль/см}^3$  для  $Ag^0$ ·KУ-23 и  $\varepsilon_{Ag}^0 = 3.03 \text{ ммоль/см}^3$  для  $Ag^0$ ·MK-40 происходит формирование сопряженной металлической системы. Спецификой протекания реакции электровосстановления кислорода на дисперсном серебре в отличие от его компактного состояния является участие протонов H<sup>+</sup> в стадии присоединения первого электрона к молекуле кислорода.

**Ключевые слова:** Электровосстановление, кислород, электронная проводимость, серебросодержащий нанокомпозит, ионообменная матрица.

The electroreduction reaction of molecular oxygen on the silver-nanocomposite based on sulphocation exchanger CU-23, sulpho-cation exchange membrane MC-40 and a bulk silver electrode with deposited particles of silver was studied. It was found that at the amount of the deposited metal were  $\varepsilon_{Ag^0} = 1.87 \text{ mmol/cm}^3$  for  $Ag^0 \cdot CU$ -23 and  $\varepsilon_{Ag^0} = 3.03 \text{ mmol/cm}^3$  for  $Ag^0 \cdot MC$ -40 the formation of the conjugated metal system was observed. The specificity of the oxygen electroreduction reaction on dispersed silver in contrast to its bulk state is the participation of protons H+ in the stage when the first electron connects to the oxygen molecule.

Keywords: electroreduction, oxygen, electron conductivity, silvercontaining nanocomposite, ion-exchange matrix

### Введение

электровосстановления Реакция молекулярного кислорода привлекает большое внимание в связи с широкой распространенностью и применением данной реакции для решения многих практических задач, таких как разработка эффективных электрокатализаторов для кислородно-водородных топливных элементов, амперометрических сенсоров, создания фильтров глубокого удаления кислорода и т.д. [1-3]. В настоящее время возрос интерес к наноструктурным электродам, наличием многочисленных дефектных связанный поверхностей с раздела, позволяющих интенсифицировать электрохимические процессы. Одним из путей создания таких электродных материалов является внедрение наночастиц металлов в ионообменные матрицы (мембраны, гранулы, волокна). Данные композиты обладают нанопористой структурой, высокой электронной проводимостью и стабильны в присутствии растворенного кислорода.

### Эксперимент

При изучении реакции электровосстановления молекулярного кислорода использовали серебросодержащий нанокомпозит на основе сульфокатионообменника КУ-23, сульфокатионообменной мембраны МК-40 и компактный серебряный электрод с осажденными дисперсными частицами серебра. Химическое осаждение серебра В ионообменные носители заключалось В чередовании циклов ионообменного насыщения-восстановления, включая промежуточную стадию формирования хлорида серебра:

$$RSO_{3}^{-}\overline{H}^{+} + Ag^{+} \leftrightarrow RSO_{3}^{-}\overline{Ag}^{+} + H^{+}$$
(1)

$$\mathbf{RSO}_{3}^{-}\overline{\mathbf{Ag}}^{+} \xrightarrow{\mathrm{KCl}} [\mathbf{RSO}_{3}^{-}\overline{\mathbf{K}}^{+}] \cdot \mathbf{AgCl}$$

$$\tag{2}$$

$$[RSO_{3}^{-}\overline{K}^{+}] \cdot AgCl \xrightarrow{N_{2}H_{4},+OH^{-}} [RSO_{3}^{-}\overline{K}^{+}] \cdot Ag^{0}$$
(3)

Наличие промежуточной стадии (2) – образование труднорастворимой соли AgCl обусловлено более полным восстановлением ионов серебра гидразином из соли, чем из свободного состояния.

Так же в работе электрохимическим методом проводилось осаждение дисперсных частиц серебра на компактный серебряный электрод с помощью восстановления анодно-сформированной оксидной пленки Ag<sub>2</sub>O различной толщины (25 нм и 100 нм).

Измерения электронной проводимости серебросодержащего нанокомпозита на основе сульфокатионообменника КУ-23 и сульфокатионообменной мембраны МК-40 проводили при комнатной температуре с использованием прижимных медных дисков согласно методике [4]. Образцы композита серебро-ионообменная матрица высушивали под вакуумом до остаточного давления 2.10<sup>-2</sup> мм рт.ст. для максимального снижения ионной проводимости.



Рис. 1. Электронные микрофотографии исследуемых образцов: а – срез гранулы композита Ag<sup>0</sup>·KУ-23, ε<sub>Ag</sub><sup>0</sup>= 3.70 ммоль/см<sup>3</sup>; б – поверхность Ag<sup>0</sup>·MK-40, ε<sub>Ag</sub><sup>0</sup>= 8.40 ммоль/см<sup>3</sup>; дисперсные серебряные электроды, полученные восстановлением пленки Ag<sub>2</sub>O толщиной 25 нм (в) и 100 нм (г)

Данные сканирующей электронной микроскопии (рис. 1 и табл. 1) показывают, что размер частиц серебра составил 650 нм для  $Ag^0$ ·KУ-23 и 4.8 мкм для  $Ag^0$ ·MK-40. Согласно рентгенографическим исследованиям размер частиц серебра составил более 100 нм. На серебряном электроде, полученном восстановлением оксидной пленки толщиной 100 нм и 25 нм, преобладают частицы серебра размером 220 нм и 110 нм соответственно.

Таблица 1. Зависимость размера частиц на исследуемых материалах, где  $d_{Ag}^{C ext{OM}}$  и  $d_{Ag}^{P\Gamma}$  - размер частиц серебра, определенный методами сканирующей электронной микроскопии и рентгенографического анализа

| Исследуемый материал                                                                     | $d_{Ag}^{C 	ext{OM}}$ | $d_{Ag}^{P\Gamma}$ |
|------------------------------------------------------------------------------------------|-----------------------|--------------------|
| Ад <sup>0</sup> ·КУ-23                                                                   | 650 нм                | >100 нм            |
| Ag <sup>0</sup> ⋅MK-40                                                                   | 4.8 мкм               | >100 нм            |
| Ag <sup>0</sup> частицы, полученные восстановлением<br>Ag <sub>2</sub> O толщиной 100 нм | 220 нм                | _                  |
| Ag <sup>0</sup> частицы, полученные восстановлением<br>Ag <sub>2</sub> O толщиной 25 нм  | 110 нм                | _                  |

## Результаты и обсуждения

Полимерная цепь ионообменной матрицы (КУ-23 и МК-40) не обладает электронной проводимостью из-за отсутствия сопряженных  $\pi$ -связей. Поэтому внедрение серебра в сульфокатионообменные материалы (мембрана, зернистый ионообменник) позволяет создать композиты, обладающие не только ионной, но и электронной проводимостью. Зависимость электронной проводимости композитов  $\sigma$  от количества внедренного металла  $\epsilon_{Ag}^0$  представлена на рис.2.



ионообменная матрица от количества осажденного металла:  $a - Ag^0 \cdot KY - 23; \ 6 - Ag^0 \cdot MK - 40$ 

Вначале серебросодержащие композиты оказываются практически непроводящими, что указывает на разобщенность металлических частиц и отсутствие электронного обмена между ними. При достижении количества осажденного метала  $\epsilon_{Ag^0} = 1.87$  ммоль/см<sup>3</sup> для  $Ag^0$ ·KУ-23 и  $\epsilon_{Ag^0} = 3.03$  ммоль/см<sup>3</sup> для  $Ag^0$ ·MK-40

происходит резкое увеличение электронной проводимости, соответствующее формированию сопряженной металлической системы и возникновению электронной проводимости.

Осажденные частицы серебра объединяются в объемные образования внутри непроводящей полимерной матрицы и формируют единый перколяционный кластер проводящих частиц [5].

Различное состояние электрода при положительном и отрицательном направлении сканирования потенциала приводит к появлению гистерезиса на поляризационных кривых. В случае компактного серебряного электрода и для дисперсных частиц серебра, осажденных на компактном электроде (рис. 3 а, б), ток обратной кривой выше (положительный гистерезис), так как поверхность, освобожденная от оксидов, обладает большей катодной эффективностью. Для композитов (рис. 3 в-е) наблюдается наличие отрицательного гистерезиса, что связано с уменьшением концентрации кислорода в приповерхностном слое, вследствие его частичного стока в поры.



Рис. 3. Поляризационные кривые электровосстановления молекулярного кислорода на компактном серебряном электроде  $Ag^0$  и на композитах: дисперсные серебряные электроды, полученные восстановлением пленки  $Ag_2O$  толщиной 25 нм (а) и 100 нм (б); в, д –  $Ag^0$ ·KУ-23,  $\epsilon_{Ag^0}$ = 3.70 ммоль/см<sup>3</sup>; г, е –  $Ag^0$ ·MK-40,  $\epsilon_{Ag^0}$ = 8.40 ммоль/см<sup>3</sup>; а, б – 0.56 М H<sub>2</sub>SO<sub>4</sub>+0.44 М Na<sub>2</sub>SO<sub>4</sub>, pH 1; в, г – 0.10 М Na<sub>2</sub>SO<sub>4</sub>; д, е – 0.10 М H<sub>2</sub>SO<sub>4</sub>

Краткие сообщения / Сорбционные и хроматографические процессы. 2011. Т. 11. Вып. 5

Приведенные значения тафелевских наклонов на исследуемых материалах (табл. 2) соответствуют замедленной стадии присоединения первого электрона к молекуле кислорода:

$$O_2 + e^- \to O_2^- \tag{4}$$

Высокая концентрация противоионов  $\overline{H}^+$  в серебросодержащей матрице ( $c_{\overline{H}^+} = 1.2$  ммоль/см<sup>3</sup>), приводит к увеличению потенциала полуволны электровосстановления кислорода в сравнении с Na<sup>+</sup>-формой от ~0.106 В до ~0.232 В, свидетельствующему об участии противоионов  $\overline{H}^+$  в стадии присоединения первого электрона к молекуле кислорода (табл. 3). При восстановлении кислорода на дисперсном серебре с размером частиц 220 нм в стадии присоединения первого электрона к молекуле кислорода также участвует ион водорода, на это указывает порядок реакции по H<sup>+</sup>, равный 0.50±0.02:

$$O_2 + H^+ + e^- \to HO_2 \tag{5}$$

Порядок исследуемой реакции по молекулярному кислороду на изучаемых материалах, также как и на компактном серебряном электроде, близок к 1, что подтверждает отсутствие диссоциативного механизма.

Линейная зависимость предельного диффузионного тока по кислороду  $i_{lim}$  от корня квадратного из скорости вращения  $\omega$  электрода указывает, что процесс лимитируется внешней диффузией (рис. 4).

| Исследуемый материал                             | dE/dlgi, B             |          |
|--------------------------------------------------|------------------------|----------|
|                                                  | Na <sup>+</sup> -форма | Н+-форма |
| $\mathrm{Ag}^0$                                  | 0.13                   | 0.17     |
| Ад <sup>0</sup> ·КУ-23                           | 0.13                   | 0.32     |
| Ag <sup>0</sup> ⋅MK-40                           | 0.18                   | 0.16     |
| Ад <sup>0</sup> с частицами серебра, d(Ag)=220нм | _                      | 0.12     |
| Ag <sup>0</sup> с частицами серебра, d(Ag)=110нм | _                      | 0.12     |

Таблица 2. Тафелевские наклоны поляризационных кривых электровосстановления молекулярного кислорода на дисперсном и компактном серебре

Таблица 3. Потенциал полуволны  $E_{1/2}$  и разность  $\Delta E_{1/2} = E_{1/2} (H^+) - E_{1/2} (Na^+)$  в реакции электровосстановления молекулярного кислорода на композитах в  $H^+$ -форме и Na<sup>+</sup>- форме. Обратный ход поляризационной кривой

| Иссловионий моторион   | E <sub>1/2</sub> , B  |                        |                     |
|------------------------|-----------------------|------------------------|---------------------|
| исследуемый материал   | Н <sup>+</sup> -форма | Na <sup>+</sup> -форма | $\Delta E_{1/2}, D$ |
| Ад <sup>0</sup> ·КУ-23 | 0.136                 | -0.096                 | 0.232               |
| Ag <sup>0</sup> ⋅MK-40 | 0                     | 0.106                  | 0.106               |

Для компактного серебряного электрода зависимость  $i_{lim}$ -  $\omega^{0.5}$  экстраполируется строго в ноль, в то время как для серебросодержащего нанокомпозита на основе сульфокатионообменника КУ-23, сульфокатионообменной мембраны МК-40 и для компактного серебряного электрода с осажденными дисперсными частицами серебра размером 220 нм и 110 нм данная зависимость отсутствует, что указывает на существование иных стадий (внутренняя диффузия, адсорбция), кроме внешней диффузии.



Рис. 4. Зависимость предельного тока  $i_{lim}$  электровосстановления молекулярного кислорода от корня квадратного из скорости вращения  $\omega$  дискового электрода: a – 0.10 M Na<sub>2</sub>SO<sub>4</sub>; б – 0.56 M H<sub>2</sub>SO<sub>4</sub>+0.44 M Na<sub>2</sub>SO<sub>4</sub>, pH 1

### Заключение

Химическим осаждением серебра в ионообменные матрицы созданы серебросодержащие нанокомпозиты на основе сульфокатионообменника КУ-23 и сульфокатионообменной мембраны МК-40. Так же в работе электрохимическим методом проводилось осаждение дисперсных частиц серебра на компактный серебряный электрод с помощью восстановления анодно-сформированной оксидной пленки  $Ag_2O$  различной толщины (25 нм и 100 нм). Согласно рентгенографическим исследованиям и сканирующей электронной микроскопии размер частиц серебра осажденных на исследуемые материалы находится в нанометровом масштабе. Установлено, что спецификой протекания реакции электровосстановления кислорода на дисперсном серебре в отличие от его компактного состояния является участие протонов  $H^+$  в стадии присоединения электрона к молекуле кислорода, что приводит к уменьшению перенапряжения кислородной реакции на серебросодержащих ионообменных матрицах (КУ-23, МК-40).

Работа выполнена при финансировании РФФИ (грант № 10-08-91331-ННИО\_а)

#### Список литературы

1. Багоцкий В.С., Некрасов Л.Н., Шумилова Н. А. Электрохимическое восстановление кислорода // Успехи химии. 1965. Т.34. № 10. С. 1697-1719.

2. Гринберг В.А. и др. Наноструктурные катодные катализаторы для кислородноводородных топливных элементов // Электрохимия. 2007. Т.43. № 1. С. 77-86.

3. Ван М., Ксу Кс., Гао Ж., Жиа Н., Чен Я. Электрокаталитическое восстановление О<sub>2</sub> на электроде из пиролитического графита, модифицированном новым комплексом меди (II) с лигандами: 2-[бис(2-аминоэтил) амино] этанолом и имидазолом // Электрохимия. 2006. Т.42. № 8. С. 975-979.

4. Пак В.Н., Соломатина О.Ю., Буркат Т.М., Тихомирова И.Ю. Формирование структуры и электрическая проводимость наноразмерного оксида никеля в пористом стекле // Журн. прикл. химии. 2004. Т.77. № 1. С. 1-3.

5. Шиловский Б.И., Эфрос А.Л. полупроводников. М.: Наука, 1979. 416с.

Новикова Виктория Васильевна - аспирант 1 года обучения, ВГУ, Воронеж

Стародубова Светлана Павловна Магистрант 1 года обучения, ВГУ, Воронеж

**Чайка Михаил Юрьевич** - Старший научный сотрудник кафедры физической химии, ВГУ, Воронеж

**Кравченко Тамара Александровна** - д.х.н., профессор. ВГУ, Воронеж

**Novikova Viktoria V.** - year post-graduate courses, Voronezh State University, Voronezh

**Starodubova Svetlana P.** - Master student 1 year, Voronezh State University, Voronezh

Chayka Mikhail Ju. - Senior member of staff of physical chemistry department, Voronezh State University, Voronezh

**Kravchenko Tamara A.** - Doctor of chemical sciences, professor, Voronezh State University, Voronezh



УДК 582:615.322

# Ключевые биологически активные вещества фитопрепаратов на основе растений рода Копеечник

Федорова Ю.С., Сухих А.С., Кузнецов П.В.

Кемеровская государственная медицинская академия, Кемерово

Поступила в редакцию 8.09.2010 г.

## Аннотация

Комплексом хроматографических методов с использованием высоко эффективной жидкостной хроматографии (ВЭЖХ) и газожидкостной хроматографией с массспектрометрической детекцией (ГЖХ-МС), определены основные типы биологически активных веществ содержащиеся в фитопрепаратах приготовленных на основе некоторых видов Копеечников (К. забытый, К. чайный, К. альпийский).

Ключевые слова: биологически активные вещества, растения рода Копеечник

The complex chromatography methods with use of highly effective liquid chromatography (HPLC) and газожидкостной a chromatography with mass spectrometer детекцией (GLC-MS), defines the basic types of biologically active substances containing in phytopreparations prepared on the basis of some kinds Hedysarum (H. neglectum, H. theinum, H. alpinum).

Keywords: biologically active substances, plants of a sort of Hedysarum

#### Введение

Сегодня в мировой практике лекарственное растительное сырье и фитопрепараты из различных видов Копеечника (род *Hedysarum* сем. *Fabaceae*) содержат уникальный компонентный состав различных типов растительных БАВ. Среди них, по данным [1], среди первичных метаболитов определены: аминокислоты, углеводы, липиды, жирные кислоты. Среди вторичных метаболитов найдены:

Электронные свойства легированных