

УДК 541

Артефакты в кинетике набухания полимерных гранул в водно-спиртовых растворах и их интерпретация

Рудаков О.Б., Кудухова И.Г.

Воронежский государственный архитектурно-строительный университет, Воронеж

Рудакова Л.В.

Воронежская государственная медицинская академия, Воронеж

Пастухов А.В., Даванков В.А.

Институт элементорганической химии РАН, Москва

Поступила в редакцию 21.06.2011 г.

Аннотация

Микрофотографическим методом изучены эффекты набухания гранул неионогенных и ионогенных полимеров в водно-спиртовых растворах. Отмечено, что в ряде случаев наблюдаются артефакты, требующие новых подходов в теоретической интерпретации и экспериментальных исследований.

Ключевые слова: микрофотография, набухание, иониты, поливиниловый спирт, полиакриламид

Microphotographic technique was used to study the effects of swelling of spherical beads of non-ionic and ionic polymers in aqueous-alcoholic solutions. It is noted that in some cases, there are artifacts that require additional experimental tests and new approaches to their theoretical interpretation.

Keywords: photomicrography, swelling, ion exchangers, polyvinyl alcohol, polyacrylamide

Введение

Микрофотографический метод в настоящее время широко применяют для изучения морфологических изменений различных объектов, в частности, для изучения эффектов набухания гранул ионогенных и неионогенных полимерных материалов. Это обусловлено высоким уровнем развития техники и программного обеспечения для получения и обработки цифровых изображений. Цифровое видеоизображение набухающей гранулы предложено Ферапонтовым в качестве аналитического сигнала [1]. Дальнейшее изучение объемных эффектов в растворах показало перспективность их применения в качестве интегрального показателя в химическом анализе [2-4]. Информация о кинетике набухания гранул в водноспиртовых растворах необходима также при конструировании фильтров и

разработке технологии сорбционной очистки этанола и его растворов [5].

Целью работы было изучение формальной кинетики набухания гранул ионогенных материалов, применяемых в сорбционной очистке водно-спиртовых растворов, а также кинетики набухания гранул неионогенных материалов — поливинилового спирта (ПВС) и полиакриламида (ПАА) для установления размеров гранул в состоянии, близком к равновесному.

Эксперимент

Алгоритм получения цифрового изображения набухающей гранулы и его обработки описан в [1,2]. В отличие от [1,2] окружность гранул измеряли с применением программы Pixia, ver. 4.70e.

Таблица 1. Объемные эффекты гранул полимеров в водно-спиртовых растворах

Марка	Тип полимера	$f_{ m max}$	$f_{ m min}$
AB 17 Cl	анионит сильноосновный	1.21	0.75
C 120 E H ⁺	катионит сильнокислотный	1.17	0.93
ПАА 3% сшивки	неионогенный	3.48	0.21
ПВС 20% сшивки	неионогенный	4.05	0.33
BΠ 1 An	анионит сильноосновный	1.40	0.73
ВП 14 К	амфолит	1.43	0.66
WOFATIT AK 40 tech	анионит слабоосновный	1.07	0.99
WOFATIT EA 60	анионит сильноосновный	1.40	0.74
WOFATIT ES tech	анионит сильноосновный	1.66	0.67
TULSION A-2 XMP	анионит слабоосновный	1.13	0.94
TULSION A-8 XMP	анионит слабоосновный	1.20	0.85
TULSION A-23 Cl	анионит сильноосновный	1.25	0.80
TULSION A-23 P	анионит сильноосновный	1.28	0.79
TULSION T-42 Na ⁺	катионит сильнокислотный	1.38	0.72

В табл. 1 приведены полученные данные о максимальных и минимальных значениях набухания этих гранул (относительные объемы $f=V/V_0$). Эксперимент проводили в условиях термостатирования при 25 °C.

Для изучения набухания применяли гранулы размером 0.50-0.75 мм формы, близкой к сферической. Гранулометрический состав и форму гранул определяли по данным измерений на лазерном дифрактометре Fritsch Analysette 22 NanoTech Combi.

Деформации гранул определяли также дилатометрическим методом на установке для термомеханических и дилатометрических исследований полимеров УИП-70 (ЦКБ АН СССР)[6]. В этом случае диаметр гранулы перед экспериментом определяли с точностью 1 мкм микроскопом МИН-8. Образец гранулы помещали в специально выточенное сферическое углубление (радиус 1.0 мм, глубина 0.2 мм) в кварцевой пластине. Пластину помещали в измерительную камеру прибора. Изменение диаметра гранулы регистрировали потенциометром с точностью ± 0.5 мкм.

_

После нанесения микрошприцем порции воды объемом ~ 0.02 -0.03 мл на образец, камеру закрывали и при комнатной температуре в автоматическом режиме записывали кривую изменения размера образца до полного прекращения увеличения диаметра гранулы в растворителе и достижения равновесного состояния. Объемную деформацию e_{sw} сферического образца при поглощении или десорбции растворителя рассчитывали по уравнению:

$$e_{sw} = (V_{sw} - V)/V = [(D_{sw}/D)^3 - 1] 100$$

где D, V - диаметр и объем сухой гранулы, D_{sw} , V_{sw} - диаметр и объем гранулы в процессе набухания или высушивания.

Результаты и их обсуждение

Установлено, что гранулы рассматриваемых полимеров, выдержанные предварительно в ректификованном спирте (96 масс. %) в водно-спиртовых растворах набухают. Чем выше концентрация воды, тем сильнее эффект набухания.

Ранее в работе [4] было показано, что величина lnf для ПВС и ПАА прямо пропорциональна концентрации воды в водно-спиртовой смеси в широком диапазоне варьирования составов.

Для гранул, выдержанных в воде, наблюдается, как правило, отрицательное набухание в водно-спиртовых растворах, тем более выраженное, чем выше массовая доля этанола. Этот эффект можно назвать контракцией, хотя под этим термином в химии полимеров обычно понимают уменьшение объема всей системы в целом, а не только фазы полимера. Общее уменьшение объема системы в данной работе не измеряли.

Наиболее сильный эффект набухания наблюдали для гранул полимеров неионогенного типа (ПАА с 3% сшивкой и ПВС с 20% сшивкой) – в 3.5-4 раза в воде, для них же характерны максимальные эффекты контракции – 70-80% в 96%-ном этаноле. Достаточно ярко выраженные объемные эффекты получены также для гранул сильных анионообменных смол – максимальное набухание примерно в 1.5 раза и контракция – до 25-30%. Для использованных в эксперименте слабокислотных катионитов наблюдались лишь слабые объемные эффекты.

На рис. 1 приведены кинетические кривые набухания гранул различных полимеров. Кинетика набухания, как известно, определяется сродством жидкости к полимеру и скоростью диффузионных процессов. В пористых полимерах набухание ускоряется в результате капиллярного проникновения в них жидкости. Для некоторых полимеров воспроизводимо наблюдается временное превышение степени набухания над ее равновесным значением.

Обращают на себя внимание заметные флуктуации квазипериодического и стохастического типа, которые имели место на стадии, близкой к равновесному состоянию. Наиболее вероятным объяснением этих артефактов является разброс экспериментальных точек, вызванный возможностью координатах, свободного перемещения гранул декартовых В принципиальная возможность вращательных перемещений в измерительной ячейке. Вертикальные перемещения наблюдаются, например, при изменении плотности гранул. В отдельных случаях замечали даже всплытие или погружение гранул в растворах в процессе регистрации цифрового изображения. Микрофотографии гранул показывают, что они могут иметь дефекты поверхности в виде углублений, вмятин, кратерообразных структур, выпуклостей, трещин, иметь эллипсоидное

строение и т.п. Такие гранулы могут давать нестабильные результаты измерений объемных эффектов. На рис. 2 приведены примеры микрофотографий гранул.

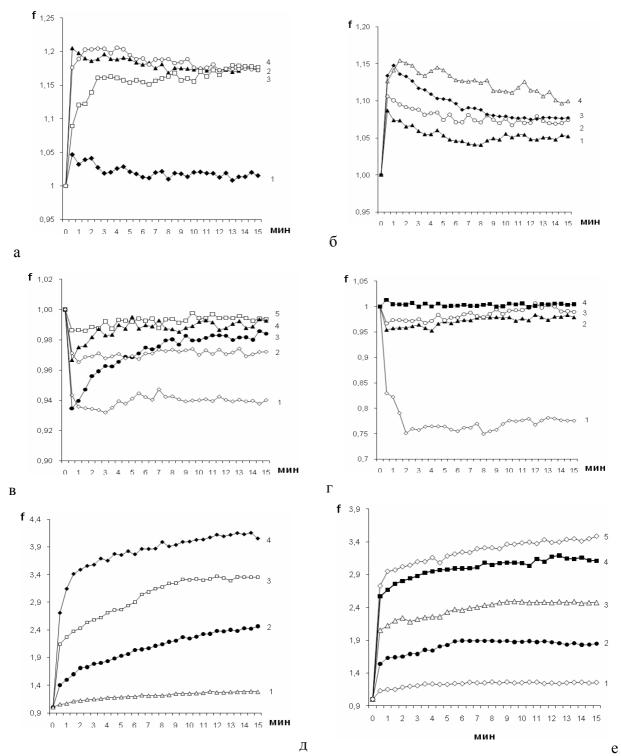
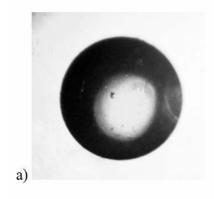



Рис. 1. Кинетика изменения f для гранул ионогенных и неиогенных полимеров, выдержанных в воде или в ректификованном спирте, в водно-спиртовых растворах различной концентрации: а) анионит AB 17 Cl (1 – 100%; 2 – 80%; 3 – 60%; 4 – 30 % об. воды); б) катионит C 120 E H $^+$; (1 – 100%; 2 – 60%; 3 – 30%; 4 – 80% об. воды); в) катионит C 120 E H $^+$ (1 – 4%; 2 – 95%; 3 – 80%; 4 – 60%; 5 – 30% об. воды); г) анионит AB 17 Cl (1 – 4%; 2 – 60%; 3 – 80%; 4 – 95% об. воды); д) ПВС (1 – 30%; 2 – 60%; 3 – 95%; 4 – 100% об. воды); е) ПАА (1 – 30%; 2 – 60%; 3 – 80%; 4 – 95%; 5 – 100% об. воды)

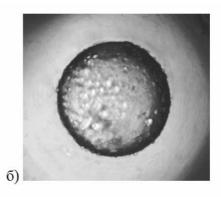


Рис. 2. Микрофотографии набухших гранул в воде: a) WOFATIT ES б) ПАА

Вместе с тем, как показала выполненная нами микровидеосъемка процесса набухания, гранулы в условиях эксперимента, как правило, не испытывают интенсивных вращательных и других перемещений, но процесс набухания иногда происходит не монотонно, при этом гранулы, прозрачные в воде, мутнеют при помещении в спиртовые смеси, а мутные гранулы, выдержанные в спирте, напротив, приобретают в воде прозрачность, с градиентом от поверхности внутрь зерна.

Еще одним недостатком микрофотографического метода в кинетических исследованиях является наличие «слепой зоны», т.е. участок кривой набухания в 1-ую минуту при перенесении гранулы из исходного в анализируемый раствор по технике эксперимента не фиксируется. Этого недостатка лишен дилатометрический метол.

В целом, дилатометрическое наблюдение за изменением размеров гранул дает аналогичные кинетические зависимости, что и микрофотографические измерения. Однако в них отсутствует «колебательный» характер кривых на участке, близком к равновесному. Вместе с тем, немонотонность, ступенчатость процесса набухания, которую нельзя объяснить случайными погрешностями измерений размеров гранул, мы четко наблюдали при дилатометрических измерениях (рис.3), особенно ступенчатость набухания проявляется для ПВС. Это явление, по всей видимости, связано с особенностями процессов образования и разрыва водородных связей между слоями полимера и жидкой фазой.

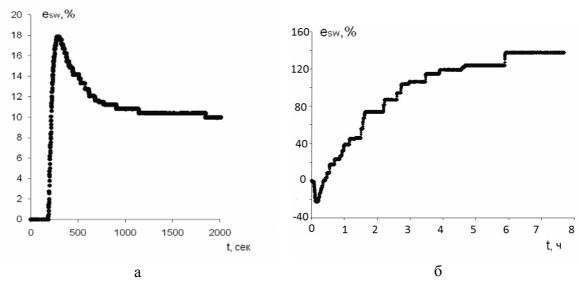


Рис. 3. Деформация в воде гранулы, предварительно набухшей в спирте: a) сильнокислотного катионита С 120 \to H $^+$; б) ПВС

Преимуществом микрофотографического метода является техническая возможность одновременно фиксировать равновесные эффекты набухания в испытуемых растворах для гранул нескольких разных полимеров, что позволяет получать мультисенсорный сигнал, обладающий селективностью к составу раствора, в котором происходит набухание.

Заключение

С точки зрения прикладных задач использования эффекта набухания гранул в качестве аналитического сигнала с целью уменьшения случайных погрешностей следует предусмотреть возможность фиксации гранул. Важными факторами, которые необходимо учитывать при выборе гранул для количественных измерений объемных эффектов, являются факторы, влияющие на качество гранул в процессе их изготовления и эксплуатации, а именно, максимально близкая к сфере форма гранул, минимальное количество дефектов на поверхности и в структуре полимера, равномерность сшивки и размеров пор, степень полимеризации. Для выявления влияния этих факторов на стабильность эффектов набухания необходимы дальнейшие исследования.

Список литературы

- 1. Ферапонтов Н.Б., Ковалева С.С., Рубин Ф.Ф. Определение природы и концентрации растворенных веществ методом набухающей гранулы // Журн. аналит. химии. 2007. Т.62. №10. С. 1028.
- 2. Байдичева О.В., Рудаков О.Б., Полянская Н.К., Рудакова Л.В., Селеменев В.Ф. Применение эффекта контракции гранул сульфокатионита для контроля содержания лизоцима в изотоническом растворе// Сорбционные и хроматографические процессы. 2007. Т. 7. № 4. С. 699.
- 3. Кудухова И. Г., Рудаков О.Б., Рудакова Л.В., Ферапонтов Н.Б. Кинетика набухания гранул из ионогенных и неионогенных полимерных материалов в водноспиртовых растворах// Сорбционные и хроматографические процессы. 2010. т.10. №4, с. 589.
- 4. Кудухова И. Г., Рудаков О.Б., Рудакова Л.В., Ферапонтов Н.Б. Новый способ контроля содержания воды в водно-спиртовых смесях, основанный на микрофотографическом измерении эффектов набухания полимерных гранул // Сорбционные и хроматографические процессы. 2010. т.10. №5. с.759.
- 5. Никитина С.Ю., Кудухова И.Г., Рудаков О.Б. Применение ионообменных смол в сорбционной очистке этанола от микропримесей // Сорбционные и хроматографические процессы, 2010, т.10, №5, с. 786.
- 6. Цюрупа М.П., Павлова Л.А., Пастухов А.В., Даванков В.А. О колебательном характере процесса сорбции аминокислот на катионитах // Журн. физич. химии. 2009. Т. 83. №5. С. 996.

Рудакова Людмила Васильевна — к.х.н., доцент кафедры фармацевтической химии и клинической фармации Воронежской государственной медицинской академии им. Н.Н. Бурденко, Воронеж, тел. (473)-2208185

Кудухова Инга Гайозовна – аспирант кафедры химии Воронежского государственного архитектурно-строительного университета, Воронеж

Рудаков Олег Борисович - профессор, зав. кафедрой физики и химии Воронежского государственного архитектурно-строительного университета, Воронеж

Даванков Вадим Александрович – д.х.н., профессор, заведующий лабораторией Института элементоорганических соединений РАН, Москва, тел. (499) 135-64-71

Пастухов Александр Валерианович, д.х.н., ведущий научный сотрудник Института элементоорганических соединений РАН, Москва

Rudakova Lyudmila V. – k.kh.n., assistant professor of the chair of pharmaceutical chemistry and clinical pharmacy of Voronezh state medical academy, Voronezh, vodoley65@mail.ru

Kudukhova Inga G. - post-graduate student of the chair of chemistry Voronezh state university of architecture and civil engineering, Voronezh

Rudakov Oleg B. - professor, head of the chair of physics and chemistry of Voronezh state university of architecture and civil engineering, Voronezh

Davankov Vadim A. – Dr. Sc. Chem., Prof., Head of Department Institute of Organo-Element Compounds, Russ. Acad. Sci., Moscow, davank@ineos.ac.ru

Pastuhkov Aleksander V. Dr. Sc. Chem., Leading Researcher of Institute of Organo-Element Compounds, Russ. Acad. Sci., Moscow