

УДК 544

Электрохимические свойства композиционных мембран на основе неорганических ионитов и фторопласта

Колодезева Н. С., Григорова Н. С, Карманова Л. А., Синякова М.А.

Санкт-Петербургский государственный университет, Санкт-Петербург

Поступила в редакцию 6.02.2010 г.

Аннотация

Получены мембраны на основе неорганических ионитов — «Полисурьмина» и «Ферроцина» - и органического полимерного связующего - фторопласта. Исследована электропроводность мембран в растворах электролитов. Установлен характер зависимостей между свойствами полученных композиционных мембран и соотношением количеств взятых при синтезе неорганического ионита и фторопласта.

Ключевые слова: композиционные материалы, мембраны, ионный обмен.

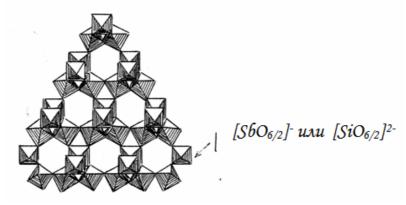
Had made membranes from inorganic ionites – "Polysurmin" and "Ferrocin" - and organic polymer – ftoroplast-26. Had studied its electrical conductivity in differents solution. Had established depending membrane's properties on its composition.

Keywords: compositional materials, membranes, ion exchange

Введение

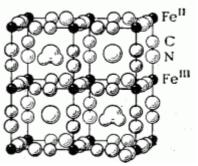
В настоящее время мембранные технологии находят самое широкое применение в производстве, медицине, очистке сточных вод и водоподготовке и т. д.. В разнообразных по конструкции и назначению аппаратах применяются мембраны с различными химическим составом, толщиной, механизмом переноса вещества через перегородку и другими параметрами.

В Лаборатории ионного обмена (ЛИО) СПбГУ ещё во второй половине XX века были начаты работы по синтезу композиционных мембран на основе неорганических ионитов и полимерных материалов, игравших роль связующего [1-3]. Сейчас эти работы переживают своё возрождение.


Одним из этапов исследований стало определение электрохимических свойств получаемых мембран. В рамках этого этапа определяли электропроводность мембран в растворах электролитов различной концентрации и числа переноса ионов в них.

Теоретическая часть

Известно, что неорганические ионообменные материалы обладают рядом уникальных свойств - высокой радиационной, термической устойчивостью, а большим многообразием селективности сорбции, органические ионообменные смолы. Этой своей особенностью неорганические материалы обязаны относительной жёсткости полимерного каркаса. Однако неорганические иониты без использования специальных технологических приёмов могут быть получены только в виде более или менее тонкодисперсных порошков, либо в виде гранул неправильной формы, подверженных разрушению и истиранию при работе с ними, что, безусловно, является недостатком данного класса сорбентов, затрудняющим их практическое использование. Одним из возможных вариантов исправления этого недостатка является синтез композиционных материалов из ионитов и органических связующих. В идеале эти материалы должны сочетать в себе положительные качества обоих «родителей»: с одной стороны - способность к ионному обмену, с другой – пластичность, позволяющая создавать пластины, округлые гранулы, диски и другие формы. Для достижения этих целей применяются поверхностное и объёмное модифицирование; результаты проведённых в ЛИО работ позволили установить, что более перспективным является второе направление [4]. объёмномодифицированных мембран определяются Свойства поверхностью, но и всем объёмом фазы; решающую роль в их формирование вносит активное вещество - ионит, но и влиянием инертного связующего тоже не следует пренебрегать.


Исходные материалы и условия создания мембран

При создании композиционных мембран использовались два неорганических ионита – «Полисурьмин» и «Ферроцин» - и органический полимер фторопласт-26 (Ф-26).

Структура «Полисурьмина»

«Ферроцин» - это ферроцианид железа (II, III), каркас которого представляет собой трёхмерную решётку из анионов $[Fe^{3+}(CN)_6Fe^{2+}]^-$; анионный заряд решётки должен быть нейтрализован однозарядными катионами, располагающимися в пустотах решётки. Наиболее эффективно поглощаются ионы Rb^+ и Cs^+ (в том числе радиоактивные), а также Tl^+ .

Структура «Ферроцина»

Фторпопласт Φ -26 является сополимером винилденфторида и гексафторпропилена; его структурная формула имеет вид [(-CH $_2$ - CF $_2$ -)m (CF $_2$ - CF $_3$ -)n]p.

Плотность полимера составляет 1,79 г*см $^{-3}$, удельное объёмное сопротивление — 10^{11} — 10^{12} Ом*см, температура плавления - 130^{0} С. Ф-26 обладает высокой химической стойкостью к действию кислот, щелочей, окислителей нерастворим в этиловом спирте и CCl_4 , однако хорошо растворим в сложных эфирах и кетонах.

Приготовление мембран осуществлялось T.H. «методом полива», разработанным в ЛИО [1]. Образец неорганического ионита измельчали в яшмовой ступке и просеивали через сито с размером отверстий 0,125 мм. Навеску порошка связующего растворяли в ацетоне в течение нескольких часов при постоянном помешивании. Затем к полученной смеси добавляли навеску полисурьмина или ферроцина и тщательно перемешивали при слабом нагревании для гомогенизации и удаления пузырьков воздуха. Из полученной густой сиропообразной массы отливали мембрану на ровную стеклянную поверхность и высушивали на воздухе. Таким образом были получены образцы композиционных мембран с содержанием кремнесурьмяного катионита 40, 60, 70, 75 и 80 %, мембраны из ферроцина с содержанием 20, 40, 50, 60 и 70 %, а также мембраны из чистого фторопласта.

Для готовых мембран определяли водопоглощение (A, %), толщину (l, мм) и площадь поверхности $(S, cм^2)$. Методом рентгенофазового анализа была исследована структура мембран.

Мембраны на основе полисурьмина визуально представляли собой гибкие белые пластинки. Результаты исследования их водопоглощения и геометрических параметров представлены в таблице 1.

Как видно из представленных данных, мембрана из чистого фторопласта практически не поглощает воду и не меняет своих геометрических характеристик. Для композиционных мембран водопоглощение возрастает при увеличении содержания ионита, достигая максимума при 70 % полисурьмина, и затем уменьшается. Площадь мембран также увеличивается при возрастании доли ионита в их составе, но только до 70 %; далее происходит резкое уменьшение площади поверхности при одновременном увеличении толщины мембран. Здесь можно отметить, что при смешении 85 % полисурьмина и 15 фторопласта была получена

очень толстая и неоднородная мембрана, от использования которой было решено отказаться.

Таблица 1. Водопоглощение и геометрические параметры полисурьминовых мембран.

% полисурь мина	m _{cyx} , г	m _{влажн} , Г	A, %	S _{cyx} , cm ²	S _{влажн} , cm ²	изм S, %	l _{сух} , мм	l _{влажн} , мм
0	0,5300	0,5360	1,13	9,05	9,05	0,0	0,0380	0,0380
40	1,5071	1,6985	12,69	22,63	22,96	1,5	0,0444	0,0444
60	1,1805	1,4700	24,52	22,99	23,61	2,7	0,0366	0,0366
70	1,3345	1,6724	25,32	29,58	29,65	0,2	0,0345	0,0339
75	0,2942	0,3530	19,99	2,97	3,05	2,7	0,0869	0,0872
80	0,4433	0,5233	18,07	4,878	5,045	3,4	0,0768	0,0772

Таким образом, мембраны с 75 и 80 % полисурьмина жёстко структурированы; мембраны с меньшим содержанием ионита обладают более подвижным каркасом и легче поглощают молекулы воды, но поскольку фторопласт гидрофобен, то при уменьшении его содержания (при переходе от 40 %-ной полисурьминовой мембраны к 70 %-ной) водопоглощение возрастает.

Мембраны на основе ферроцина были окрашены в синий цвет. Как и в случае с мембранами из ферроцина, при увеличении содержания ионита в мембране происходит уменьшение площади её поверхности при увеличении толщины; однако ферроциновые мембраны поглощают воду в значительно меньшей степени, чем полисурьминовых, и практически не меняют при этом свои геометрические характеристики. При непосредственном контакте отмечалось, что при повышении доли активного вещества увеличиваются твёрдость и хрупкость мембран.

Таблица 2. Водопоглощение и геометрические параметры ферроциновых мембран.

	7 1	1				F T-F1		
% ферроцина	m _{cyx} , г	m _{влажн} ,	A, %	$S_{\text{cyx}},$ cm^2	S _{влажн} , cm ²	изм S, %	l _{cyx} , MM	l _{влажн} , мм
0	0,5300	0,5360	1,1	9,05	9,05	0,0	0,0380	0,0380
20	0,3270	0,3450	5,5	13,66	13,66	0,0	0,195	0,202
40	0,3020	0,3140	4,0	7,98	7,98	0,0	0,315	0,314
70	0,1890	0,2150	13,8	7,13	7,13	0,0	0,267	0,267

Рентгенофазовый анализ показал, что кристаллическая структура как полисурьмина, так и ферроцина не претерпевает существенных структурных изменений; в дифрактограммах всех исследованных мембран признаки, присущие неорганическим ионитам безусловно преобладают над признаками, характерными для органического связующего.

Так как соединения класса ферроцианидов способны разрушаться в кислых и особенно щелочных растворах, было решено оценить устойчивость мембран путём их долговременного (до 2 месяцев) выдерживания в растворах различных реагентов. Эксперимент показал, что химическая устойчивость композиционных мембран выше, чем у исходного ионита: в 0,1 н растворах соляной кислоты, гидроксида натрия и нитрата серебра выхода ионов железа в жидкую фазу не наблюдалось в течение 2-3 суток, в воде и растворах NaCl, LiCl, CsCl и CaCl $_2$ – в течение 2 месяцев.

Мембрана из чистого фторопласта практически не обладает ионообменными свойствами. Обменные способности композиционных мембран зависят от типа используемого ионита и соотношения количеств активного вещества и связующего. Количество ионов металлов, поглощаемых полисурьмивыми мембранами, заметно возрастает при увеличении содержания активного вещества от 0 до 60 %; при дальнейшем повышении обменная ёмкость меняется незначительно, иногда в сторону уменьшения (табл. 3). Ёмкость ионита, входящего в состав 40 %-ной мембраны, значительно ниже емкости исходного полисурьмина; это объясняется «эффектом капсулирования», когда органический полимер, слишком плотно окружает ионит и понижает его доступность для способных к обмену ионов. Напротив, для ионита 60, 70 и 75 %-ных мембран обменная ёмкость реализуется практически полностью. Наблюдаемое в ряде случае некоторое снижение ёмкости ионита в мембранах с высоким содержанием полисурьмина может быть вызвано повышением жесткости структуры мембраны и, как следствие, затруднением доступа компонентов раствора внутрь твёрдой фазы. Избирательность сорбции возрастает при повышении содержания полисурьмина в мембране; любопытно, что для ионита 60 и 70 %-ных мембран они выше, чем для чистого препарата [5]

Таблица 3. Ионообменная сорбция ионов Me^{z+} мембранами на основе полисурьмина

%	Γ , мг-экв * г $^{-1}$				
полисурьмина	Ag^+	Cd ²⁺	Ca ²⁺	Pb ²⁺	
0	0,37	0,12	0,02	0,01	
40	2,30	2,25	1,65	1,91	
60	3,77	3,61	2,30	3,30	
70	3,77	3,75	2,45	3,50	
75	3,90	3,97	2,25		
80	3,35	3,47	2,03		
100	2.05	2 90	2.50	2 60	
(чистый ионит)	3,95	3,80	2,50	3,60	

Для мембран на основе ферроцина исследовалась ионообменная сорбция только ионов ${\rm Ag}^+$. Результаты представлены в таблице 4.

Таблица 4. Ионообменная сорбция ионов Ад + мембранами на основе ферроцина.

% ферроцина	0	20	40	50	60	70	100 (чистый ионит)
Г, мг-экв*г ⁻¹	0,4	2,4	7,0	9,8	9,8	9,8	9,8

Таким образом, при увеличении доли ионита в мембране поглощение серебра возрастает, и уже в 50 %-ной мембране ёмкость ферроцина по этому иону полностью реализуется. Однако в ходе эксперимента было установлено, что при длительном взаимодействии ферроциновой мембраны с раствором $AgNO_3$ начинает протекать процесс, конкурентный по отношению к ионному обмену — процесс разрушения ионита мембраны с образованием новых соединений, в том числе малорастворимого AgCN.

Методика исследований электрохимических свойств мембран

Существуют различные методы измерения сопротивления мембран [6 - 9]; из них был выбран разностный метод, основанный на измерении импеданса системы «электрод – раствор – мембрана – раствор - электрод» и той же системы без мембраны. По разности двух сопротивлений рассчитывается электрическое сопротивление мембраны.

В настоящей работе измерения проводились в растворах $CaCl_2$ и $CdCl_2$ на переменном токе с частотой $100~\Gamma$ ц с помощью моста сопротивлений E 7–11. Использовалась ячейка, изготовленная из полиметилметакрилата и состоявшая из 2-х полуячеек. Между фланцами двух половин ячейки, имеющими отверстия размером 2x2см, зажимали мембрану. С обеих сторон к мембране подводили чернёные платиновые электроды. Расстояние между электродами и мембраной составляло около 1~ мм и фиксировалось с помощью металлической струбцины. Значение электрического сопротивления мембраны определялось по разности значений сопротивления ячейки, заполненной $CaCl_2$ или $CdCl_2$ с мембраной (R_{p+M}, Om) и без мембраны (R_p, Om) . Таким образом,

$$R_{\mathsf{M}} = R_{\mathsf{M}+\mathsf{p}} - R_{\mathsf{p}}. \tag{1}$$

Измерения вели в направлении увеличения концентрации растворов.

Расчёт удельного сопротивления (р, Om^*cm^{-1}) и удельной электропроводности (χ , $Om^{-1}*cm^{-1}$) производили по формулам (2) и (3):

$$\rho_{\mathsf{M}} = \mathsf{R}_{\mathsf{M}} * \mathsf{S} / \mathsf{I} \tag{2}$$

$$\chi = 1 / \rho_{\mathsf{M}} \tag{3}$$

Для измерения чисел переноса использовался метод, основанный на применении концентрационных гальванических цепей. В этом методе мембрана находится между двумя растворами электролита различной концентрации. В растворы помещаются электроды, обратимые либо к катиону, либо к аниону электролита. Измеряя ЭДС такого элемента с мембраной (E_{t_i} мВ) и без мембраны (E_{t_i} мВ) можно найти число переноса как отношение E_{t_i} и E:

$$t_{Me} = E_t / E$$
 (4)

Измерения проводились в гальванических элементах

Ag / AgCl, 0,1 н CaCl₂ / мембрана / 0,0005 н – 0,1 н CaCl₂, AgCl / Ag

Ag / AgCl, 0,1 н $CdCl_2 / мембрана / 0,0005$ н - 0,1 н $CdCl_2$, AgCl / Ag,

где мембрана разделяет растворы хлоридов кальция или кадмия разных концентраций, а вспомогательными электродами служат хлорсеребряные электроды.

ЭДС элементов без мембраны (Е) рассчитывали по формуле (5):

$$E = \frac{|z_{-}| + z_{+}}{|z_{-}| * z_{+}} * \frac{RT}{F} * 2.3 \lg \frac{a_{\pm MeCl_{2}}}{a_{\pm MeCl_{2}}},$$
 (5)

где z и z^+ - заряд аниона и катиона, R – универсальная газовая постоянная, T – температура, O К, F – постоянная Фарадея , $a'_{\pm MeCl2}$ и $a''_{\pm MeCl2}$ — средние активности растворов $MeCl_2$ по обе стороны мембраны.

Экспериментальные результаты и их обсуждение

Электропроводность мембраны из фторопласта в интервале концентраций от 0,0005 до 0,1 н на 6-7 порядков ниже, чем электропроводность растворов хлоридов кальция и кадмия, т. е. она практически обусловлена только присутствием растворов электролитов в порах мембраны. При введении в мембрану полисурьмина её

электропроводность возрастает; для 40 %-ной она уже на 5 порядков ниже, чем у раствора электролита, для 60 %-ной — на 3 порядка, у мембран с содержанием 70, 75 и 80 % полисурьмина она уже всего на 2 порядка ниже, чем у растворов $CaCl_2$ и $CdCl_2$ (рис. 1 и 2).

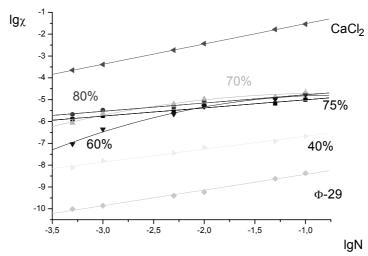


Рис. 1. Зависимость электропроводности полисурьминовых мембран от концентрации раствора $CaCl_2$

Следует отметить, что зависимости lgx от lgN для растворов солей, мембраны из чистого фторопласта и мембраны, содержащей 40 % полисурьмина прямолинейны; аналогичные зависимости для мембран с высоким содержанием активного вещества носят более сложный характер, что особенно заметно на рис. 2. По-видимому, это связано с набуханием мембран в растворах и возрастанием роли ионообменных взаимодействий.

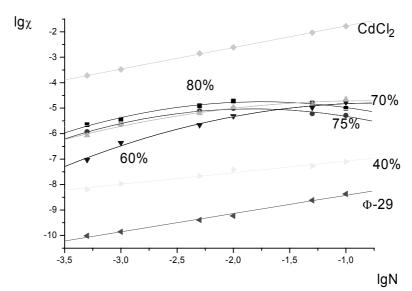


Рис. 2. Зависимость электропроводности полисурьминовых мембран от концентрации раствора $CdCl_2$

Результаты исследования электропроводности мембран на основе ферроцина в растворах хлоридов кальция и кадмия представлены на рис. 3 и 4.

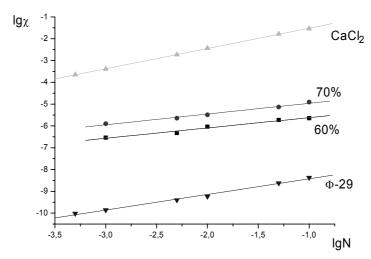


Рис. 3. Зависимость электропроводности ферроциновых мембран от концентрации раствора $CaCl_2$

Для всех мембран на основе ферроцина характерен прямолинейный ход зависимостей $lg\chi$ от lgN и незначительные различия в значениях электропроводности для мембран с различным содержанием ионита. При увеличении доли ферроцина электропроводность мембраны возрастает.

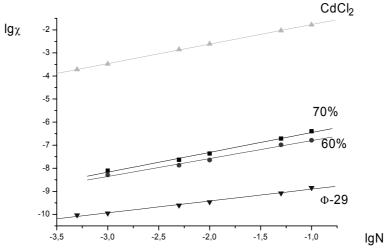


Рис. 4. Зависимость электропроводности ферроциновых мембран от концентрации раствора $CdCl_2$

Результаты измерения ЭДС гальванических элементов, описанных выше, и рассчитанные по ним числа переноса катионов в мембранах из полисурьмина при контакте с растворами $CaCl_2$ и $CdCl_2$ представлены на рис. 5 и 6 и в таблице 6.

Для всех мембран наблюдается линейная зависимость ЭДС от логарифма средней ионной активности раствора. Угол наклона для 80 %-ной мембраны в растворе $CaCl_2$ составил $62,0\,$ для 75 %-ной – 62,7, для 70 %-ной – $49,3\,$ для 60% - $48,0\,$ и для 40% - 71,1.

Таким образом, электродная функция по отношению к ионам Ca^{2+} не выполняется ни для одного из составов мембран, поскольку при её выполнении угол наклона линейной зависимости должен составлять при работе с элементом без переноса в случае двухзарядных ионов 3/20, т. е. \sim 87 мВ.

В растворе хлорида кадмия также наблюдается линейная зависимость ЭДС от логарифма средней ионной активности раствора для всех мембран, а углы наклона зависимостей также далеки от теоретического (66,3 – для 80 % -ной мембраны, 54,9 – для 75 %-ной, 53,5 – для 70 %-ной, 46,0 – для 60 %-ной и 71,6 – для 40 %-ной).

В работе [10] была подробно изучена сорбция ионов Cd^{2+} смешанными оксигидратами сурьмы (V) и кремния (IV), к которым принадлежит и «Полисурьмин». Авторы [10] показали, что величина поглощения ионов Cd^{2+} существенно зависят от природы растворов, из которых ведётся сорбция. Наиболее сложно этот процесс протекает именно в растворах хлоридов, поскольку в них очень велика роль комплексообразования, усиливающегося по мере старения растворов $CdCl_2$. Очевидно, наличие большой доли комплексных частиц $[CdCl_3]^-$ ($CdCl_3$) и даже $[CdCl_4]^{2-}$ в равновесных растворах мешает реализации электродной функции по отношению к ионам Cd^{2+} .

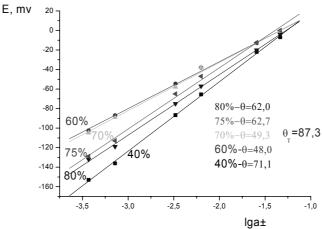


Рис. 5. Зависимость ЭДС гальванического элемента с мембраной от $\lg a_{\pm}$ раствора $CaCl_2$

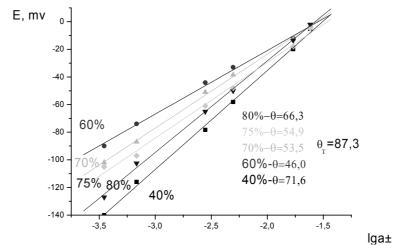


Рис. 6. Зависимость ЭДС гальванического элемента с мембраной от $\lg a_{\pm}$ раствора $\mathrm{CdCl_2}$

Рассчитанные числа переноса ионов Ca^{2+} и Cd^{2+} в мембранах в 1,5–2 раза выше аналогичных величин в соответствующих растворах хлоридов [11]. Для $CaCl_2$ число переноса ионов Ca^{2+} составляет 0,40–0,44 при изменении концентрации в интервале от 0,2 до 0,05 молей/л. В мембранах, напротив, максимальные числа

переноса ионов Ca^{2+} и Cd^{2+} отвечают наиболее концентрированным растворам. Подобная закономерность характерна для электролитов с крупными анионами, например, остатками карбоновых кислот; это логично, потому что отрицательно заряженный каркас полисурьмина можно рассматривать как очень крупный многозарядный анион.

Наивысшие значения чисел переноса были получены для мембран, содержащих 40 и 80 % полисурьмина, в растворах $CdCl_2$; они достигают 0,98, т. е. приближаются к единице.

Таблица 6. Числа переноса катионов в полисурьминовых мембранах

таблица б. тиела перепоса катионов в полисурыминовых меморанах								
Концентрация	Числа переноса ионов Ca ²⁺							
CaCl ₂ ,	в мембранах с содержанием полисурьмина, %:							
мг-экв*мл ⁻¹	40	60	70	75	80			
0,0005	0,83	0,56	0,57	0,70	0,72			
0,001	0,86	0,55	0,56	0,71	0,76			
0,005	0,87	0,54	0,58	0,65	0,75			
0,01	0,87	0,50	0,50	0,62	0,75			
0,05	0,98	0,58	0,58	0,55	0,87			
Концентрация	Числа переноса ионов Cd ²⁺							
$CdCl_2$,		в мембранах с содержанием полисурьмина, %:						
мг-экв*мл ⁻¹	40	60	70	75	80			
0,0005	0,87	0,56	0,63	0,65	0,79			
0,001	0,86	0,55	0,64	0,72	0,76			
0,005	0,96	0,54	0,63	0,75	0,80			
0,01	0,96	0,55	0,64	0,79	0,83			
0,05	0,98	0,89	0,93	0,98	0,98			

Результаты исследований ЭДС и расчёта чисел переноса катионов в мембранах из ферроцина, также в растворах $CaCl_2$ и $CdCl_2$ представлены на рис. 7 и 8 и в таблице 7.

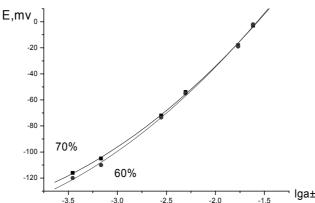


Рис. 7. Зависимость ЭДС гальванического элемента с мембраной от $\lg a_{\pm}$ раствора $CaCl_2$.

Как и в случае с рассмотренными ранее мембранами на основе полисурьмина, электродная функция не выполняется. Углы наклона далеки от теоретического, а в растворе $CaCl_2$ наблюдаются отклонения от линейной зависимости. Однако числа переноса катионов в мембранах достаточно высоки, особенно в концентрированных растворах $CdCl_2$ — до 0,95.

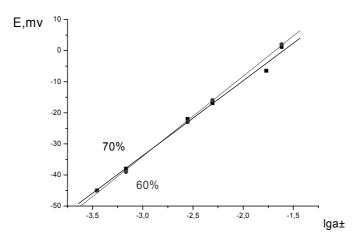


Рис. 8. Зависимость ЭДС гальванического элемента с мембраной от $\lg a_{\pm}$ раствора $CdCl_2$

Таблица 7. Числа переноса катионов в ферроциновых мембранах

Концен трация CaCl ₂ , мг- экв*мл ⁻¹	в мемб содержанием	са ионов Са ²⁺ ранах с и ферроцина, 6:	Концен трация CdCl ₂ , мг- экв*мл ⁻¹	Числа переноса ионов Cd ²⁺ в мембранах с содержанием ферроцина, %:		
JKB MJI	60	70	JKB MJI	60	70	
0,0005	0,65	0,64	0,0005	0,84	0,84	
0,001	0,69	0,68	0,001	0,84	0,82	
0,005	0,70	0,71	0,005	0,82	0,85	
0,01	0,71	0,70	0,01	0,89	0,95	
0,05	0,78	0,80	0,05	0,86	0,93	

Заключение

В рамках настоящей работы были изготовлены композиционные мембраны на основе неорганических ионообменных препаратов «Полисурьмин» и «Ферроцин», определёны их структуры, водопоглощение и набухание, исследованы ионообменные свойства, электропроводность и числа переноса катионов в фазе мембран.

Установлено, что мембрана из чистого фторопласта электропроводностью не обладает, а электропроводность композиционных мембран определяются прежде всего свойствами и содержанием активного компонента. Для мембран с высоким содержанием ионита характерны высокие значения электропроводности, сравнимые с аналогичными показателями для растворов сильных электролитов. Зависимость электрохимических свойств мембран от концентрации равновесного раствора более выражена для сильнонабухающих мембран. Обнаружено, что для катионов металлов в мембране характерны высокие значения чисел переноса, в ряде случаев приближающиеся к единице.

Результаты проведённых исследований позволяют заключить, что варьируя соотношение исходных компонентов можно получать мембраны с желательным составом и, следовательно, параметрами: ионообменной ёмкостью, числами переноса, набухаемостью и т. д. Обнаружение в ряде случаев очень высоких чисел переноса катионов в мембранах открывает возможности для использования их в

переноса катионов в меморанах открывает возможности для использования их

качестве электрохимически активных мембран или материалов для создания ионоселективных электродов. Так как «Полисурьмин» и «Ферроцин» являются признанными лекарственными препаратами [12, 13], а композиционные материалы на их основе, в отличие от чистых ионитов, не травмируют форменные элементы крови, мембраны могут быть использованы в медицинских целях. Но для наилучшего применения композиционных мембран необходимо знать их свойства — в том числе и электрохимические.

Список литературы

- 1. Иониты в химической промышленности. / Под ред. Б.П. Никольского и П. Г. романкова. Л.: Химия, 1982.
- 2. Белинская Ф. А., Н. Н. Кочергина, Л. А. Карманова. Получение и некоторые характеристики тонкодисперсных сорбентов с полимерным связующим. В кн. Химия и технология неорганических сорбентов. Пермь: изд-во ППИ, 1979. С. 103 -106.
- 3. Левон А.С. Исследование ионообменных и электрохимических свойств фторполимерных мембран, модифицированных сурьмяной кислотой. Дипломная работа, Л.: ЛГУ, 1988. 86 с.
- 4.Белинская Φ . А.. Неорганические иониты. В кн. Иониты в химической технологии. Л.: Химия, 1982.-416 с.
- 5. Белинская Ф. А., Матерова Е. А., Милицина Э. А.. Получение, ионообменные свойства и возможности применения катионитов на основе полимеров сурьмы. В сб. Иониты и ионный обмен. Л.: изд-во ЛГУ, 1975. С. 14 18.. Получение, ионообменные свойства и возможности применения катионитов на основе полимеров сурьмы. В сб. Иониты и ионный обмен. Л.: изд-во ЛГУ, 1975. С. 14 18.
- 6.Салдадзе Г.К., Базикова Г.Д. Методы контроля электрохимических характеристик ионообменных полимерных мембран. Обз. инф. Сер. «Производство и переработка пластических масс и синтетических смол», М., НИИТ ЭХИМ,1985. 36 с.
- 7. Гнусин Н.П., Гребенюк В.Д., Певницкая М.В., Электрохимия ионитов. Новосибирск: Наука, 1973. 200 с.
- 8. Дворкина Г.А., Мешечков А.И., Гнусин Н.П., Дифференциальный разностный метод измерения электросопротивления мембран. // Электрохимия, т.20, вып.1. С. 85 89.
- 9. Бобрешова О.В., Кулинцов П.И., Муругова Т.И. и др. Методы измерения и исследования электропроводности ионообменных мембран. // Теория и практика сорбционных процессов. Воронеж: изд-во ВГУ, 1983, вып. 16. С. 79 83.
- 10. Никольский Б. П., Белинская Ф. А., Милицина Э. А. Исследование сорбции кадмия кремнефосфорносурьмяными катионитами. //. Неорганические ионообменные материалы. Л.: изд-во ЛГУ, 1980. Вып. 2. С. 88-101.
- 11. Краткий справочник физико-химических величин. Изд. 8-е, перераб./Под ред. Равделя А. А. и Пономарёвой А. М., Л., Химия, 1983. 232 с.
- 12. Временная фармакопейная статья на «Полисурьмин» № 42-574-76 от 25 июня 1976 года.
- 13. Временная фармакопейная статья на «Ферроцин» № 42-773-78 от 10 ноября 1978 года.

Колодезева Наталья Сергеевна — эксперткриминалист Северо-Западного регионального центра судебной экспертизы, магистр химии, Санкт-Петербург, тел. (812) 272-69-68

Карманова Людмила Андреевна – научный сотрудник отдела физической химии Химического факультета СПбГУ, Санкт-Петербург, тел. (812) 428-40-63

Синякова Мария Александровна — к.х.н., доцент физической химии химического факультета СПбГУ, Санкт-Петербург, тел. (812) 428-45-76

Kolodezeva Natalia S. – expert of North-West regional center judicial examination, Master of chemistry, Saint-Petersburg

Karmanova Ludmila A. – scientific worker of Saint-Petersburg University, Saint-Petersburg

Siniakova Maria A. – reader of Saint-Petersburg University, Candidate of chemistry, Saint-Petersburg, e-mail kafischem@yandex.ru

Колодезева и др. / Сорбционные и хроматографические процессы. 2010 Т. 10. Вып. 4