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Gradient boosting for the prediction
of gas chromatographic retention indices
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The estimation of gas chromatographic retention indices based on compounds structures is an im-
portant problem. Predicted retention indices can be used in a mass spectral library search for the identifica-
tion of unknowns. Various machine learning methods are used for this task, but methods based on decision
trees, in particular gradient boosting, are not used widely. The aim of this work is to examine the usability of
this method for the retention index prediction. 177 molecular descriptors computed with Chemistry Devel-
opment Kit are used as the input representation of a molecule. Random subsets of the whole NIST 17 data-
base are used as training, test and validation sets. 8000 trees with 6 leaves each are used. A neural network
with one hidden layer (90 hidden nodes) is used for the comparison. The same data sets and the set of de-
scriptors are used for the neural network and gradient boosting. The model based on gradient boosting out-
performs the neural network with one hidden layer for subsets of NIST 17 and for the set of essential oils.
The performance of this model is comparable or better than performance of other modern retention prediction
models. The average relative deviation is ~3.0%, the median relative deviation is ~1.7% for subsets of NIST
17. The median absolute deviation is ~34 retention index units. Only non-polar liquid stationary phases (such
as polydimethylsiloxane, 5% phenyl 95% polydimethylsiloxane, squalane) are considered. Errors obtained
with different machine learning algorithms and with the same representation of the molecule strongly corre-
late with each other.
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paaueHTHbIW OYyCTUHI AN npeacKasaHuA
rasoxpomartorpacpmyecknx UHAEKCOB yaepXXuBaHUA
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Hnemumym ¢usuueckoii xumuu u snekmpoxumuu um. A.H. @pymruna PAH, Mocksa

Ouenka razoxpomMarorpamueckux HHIEKCOB YACPKUBAHHUS UCXOS U3 CTPYKTYP MOJIEKYJI SIBIISIETCS
Ba)XHOH 3amaueil. [IpenckasaHHble HHACKCH! yAEP)KUBAHUS MOTYT OBITh MCIOJIB30BAHBI IIPU UICHTU(HUKALIH
HEHM3BECTHBIX COCAMHEHWI MOCPEACTBOM IIOWCKA IO MAaCC-CHEKTPaJIbHBIM 0a3aM AaHHBIX. PazHooOpa3Hble
METO/Ibl MAITMHHOTO OOYUYCHNS MCIOIB3YIOTCS AJIsl 3TOH 3a/lauH, OHAKO, METO/Ibl, OCHOBaHHBIE HA JIEPEBbAX
peLICHUi, B 4aCTHOCTH rpaineHTHbIN OycTuHr (gradient boosting), He 4acTO MCIOIB3YIOTCS [UIsl ATOM LETIH.
Ilens 3TOH pabOTBHI — WM3YyYUTh BO3MOXKHOCTH HCIIOJIB30BAHUSI 3TOI0 METOJA I INpPEACKa3aHWs HHAEKCa
yaepxuBaHus. 177 MOJNEKYJSIPHBIX JECKPUIITOPOB, PACCUUTaHHBIX ¢ momolnsio Chemistry Development Kit,
HCIOJIB3YIOTCA B Ka4YC€CTBC BXOJHOT'O MNPEACTABJICHUSA MOJICKYJIbI. Cﬂyqaﬁﬂme IIOJAMHOXKECTBA BCet 633]31
naHHbiX NIST 17 ucnone3yrorcsi B KauecTBe HAOOPOB JaHHBIX JUIsl OOYYEHHMs, TECTUPOBAHHS U BalWAAIH.
Hcnons3yercst 8000 nepeBbeB pelieHUH, UMEIOIUX M0 6 JHCTheB (KOHEYHBIX y3710B) Kaxkaoe. HelipoHnHas
CeTh C OJIHUM CKPBITBIM CJIO€M, cOCTOANM n3 90 CKPBITBIX HEHPOHOB, UCIIOIB3YeTCsl Uil cpaBHeHus. U
HEeWpOHHAs! CEeTh, U TPaJHEHTHBI OYCTHUHT MCIOJIB3YIOTCS C OAHUM M TEM e HabOpOM MOJIEKYIISIPHBIX JECK-
PHUITOPOB M OJHMMHU U TEMH ke HabopaMu JaHHBIX. Mozenb, OCHOBaHHAsl Ha IPaJIMEHTHOM OYCTHHTrE, TIpe-
BOCXOIUT HEHPOHHYIO CETh C OIHUM CKPBITBIM citoeM ais moaMHoxkecTB NIST 17 u mis Habopa >¢hupHBIX
macen. OCHOBaHHas Ha TPAANEHTHOM OYCTHHIE MOJETb COIOCTaBUMA WM JIaKe MPEBOCXOAUT TI0 TOYHOCTH
JIpyTHE COBPEMEHHBIC MOJIENH MPEACKa3aHus MHIEKCOB yAepKUBaHMSA, ONMCaHHbIE B JquTepaType. Cpennee
OTHOCHTENILHOE OTKJIOHEHHE cocTaBisieT ~3.0%, MequaHHOE OTHOCHUTENILHOE OTKJIOHEHNE cocTaBiseT ~1.7%
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s monmHOXkecTB NIST 17. CpenHee aOCONIOTHOE OTKIIOHEHHE COCTABISET ~34 eAMHUIBI HHIEKCA YICPKH-
BaHMs. PacCMOTpEHBI TOJIBKO HEMOJSIPHBIE JKUIIKUE HEMOABMKHBIC (ha3bl (TaKue KaK MMOJIHIMMETHIICUIOKCAaH,
5% dennn 95% noNMAMMETUIICUIIOKCAH, CKBaJIaH). B xoz1e 1aHHOW paboOThl HE NENAIOCh Pa3InYUs MEXKIY
pa3UYHBIMHA BUIAMH HETOJSIPHBIX XKUAKUX (a3. OumbKH, MOydeHHbIE ¢ TIOMOIIBIO Pa3HbIX METOJIOB Ma-
IIMHHOTO O0YYCHHS U OJMHAKOBOrO HabOpa IECKPUIITOPOB, CHIILHO KOPPETUPYIOT MEKIY COOOI.

KaroueBble ciioBa: razoBast xpomatorpadusi, HHIEKC yJIep)KUBaHUs, MAlIMHHOE 00y4YeHUe, rpaau-
€HTHBIN OYCTHHT.

Introduction

Gas chromatography is one of the most widely used methods of separation and
chemical analysis. Hyphenated method gas chromatography — mass spectrometry is widely
used for untargeted analysis, in particular for metabolomics and for the environmental
analysis. The retention time highly depends on conditions of the chromatographic experi-
ment. The retention index (RI) depends only on the chemical nature of a molecule and sta-
tionary phase. The retention index can be calculated based on the retention time [1].

Hence, reference RI can be used [2] for identification, for accepting or rejecting of
candidate structures by comparison of observed and reference RI. Unfortunately, the refer-
ence retention index is available for less than 100.000 of chemical compounds in public
databases [3]. It is several times less than a number of compounds for which the mass
spectral information is available and almost thousand times less than a number of all
known compounds.

So, the accurate and versatile RI prediction is an important task. The prediction task
is the estimation of RI based on the structural formula of the compound. It can be realized
by two approaches. The first approach is the physicochemical modeling of the chromato-
graphic system using molecular mechanics [4]. Such works are mostly made for graphi-
tized thermal carbon black. In recent years significant progress is achieved in this ap-
proach. The method can accurately predict retention for many classes of non-rigid organic
molecules [5], for polychlorobiphenyls [6]. But such approach still is not universal and li-
mited to selected classes of organic compounds, and the model has to be elaborated to sup-
port each new class. Also the method is limited to carbon stationary phases which are not
the most widely used in practice.

The second approach is machine learning and quantitative structure-retention rela-
tionships [7]. Usually some molecular descriptors (MD) are calculated. MD are numerical
values which characterize the molecule structure. MD are developed to be easy computable
based on the structure and to be highly correlated with the chemical nature of the molecule.
Different classes of MD are reviewed in [8]. An empirical function which allows to calcu-
late RI from MD is developed for the RI prediction. Function parameters are selected to fit
a training set of molecules with known RI. After parameters selection the relationship is
validated using other set of molecules with known RI. Finally, after selection of all para-
meters and settings the relationship is tested using the third set. Usage of large and diverse
sets for training (fitting of the function), validation and testing allows to achieve good ac-
curacy and to ensure that the method really works for previously unseen molecules. String
representation of a molecule structure converted to a matrix can be also used instead of
conventional MD, but this approach requires the use of a convolutional neural network [9].

There are a lot of methods of machine learning regression, i.e., methods to describe
unknown complex real-world relationships such as relationship between MD and RI. Li-
near regression [10-12], support vector regression [12-14], artificial neural networks [15],
k-nearest neighbors method [14], radial basis networks [12] are widely used for the RI pre-
diction. Methods based on decision trees are not used widely.

Decision tree is a machine learning method which uses multiple decisions based on
values of input variables for selection of a resulting value. Tree-like structure is processed
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by the algorithm from root to leaves. Each node is a «question» based on input parameters.
Depending on value of the parameters, one of the edges is selected during the processing.
The final result is calculated based on a leaf on which the processing is finished. The tree
and «tests» located in nodes are generated using a training set during the fitting.

Gradient boosting regression is a more complex method. It uses a few decision
trees. Each tree corrects the results obtained after previous trees, i.e., each tree, except the
first one, fits the residuals between a true value and a result obtained using previous trees.
The large number of trees with a limited number of nodes are generated sequentially. The
detailed explanation of these algorithms can be found in [16-18].

Gradient boosting is extremely widely used and helpful machine learning method,
but still there are no works on the use of gradient boosting for the RI prediction. The aim
of this work is to examine if gradient boosting is efficient for the RI prediction using MD.

Methods

NIST 17 database was used for training, testing and validation [3]. All RI values for
standard non-polar and semi-standard non-polar stationary phases were averaged together
for every compound. Stereoisomers were treated as identical compounds. Three random
subsets of NIST 17 RI database containing 42234, 5153 and 25589 molecules, were used
for training, validation and testing respectively. A very few compounds which have RI >
5000 were excluded.

All calculations were provided with in-house software written using Java program-
ming language. Smile (version 1.5.2) machine learning library [18] was used for gradient
boosting. 8000 consequent trees with 6 leaves each were used. Shrinkage parameter and
sampling fraction at each step were set at 0.03 and 0.7 respectively. The Huber loss func-
tion [17-18] was used. These hyperparameters were found using a grid search. The valida-
tion set was used for the hyperparameters search.

Two more RI data sets were used for testing: flavors and fragrances [10, 19] and es-
sential oils [20]. Compounds from these sets are not contained in the training set. There is
no overlapping between the training set and the sets used for testing and validation.

177 molecular descriptors calculated using Chemical Development Kit [21] were
used. The set of descriptors and the scaling factors were exactly the same as used in [15].

A neural network with one hidden layer (90 hidden nodes) was used for the com-
parison. The neural network and learning procedure were as close to the ones used in the
work [15] as possible. We used our own implementation based on Eclipse Deeplearning4;
library [22]. Hyperbolic tangent and identity were employed as activation functions for in-
put and output layers respectively. 50 epochs (full runs over the entire training data set)
were performed (Adam optimization algorithm with learning rate 0.001). The mean abso-
lute error was used as a loss function. The same data sets and the set of descriptors were
used for the neural network and gradient boosting.

Results and discussion

Preliminary tuning of hyperparameters was performed using the validation set.
Number of leaves was varied in range 2-10, number of trees in range 1000-10000, shrin-
kage parameter and sampling fraction in range 0-1. The grid search was used. For the
neural network the hyperparameters from work [15] were used. We made an attempt to
tune them, but neither changing a hidden nodes number or increasing a hidden layer num-
ber allow to significantly improve the performance of the neural network. The change of
activation functions reduces accuracy.
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Table 1 summarizes the performance of both methods for different data sets. The
root mean square error (RMSE) is much higher than the mean absolute error (MAE) in all
cases. MAE in its turn is much larger than the median absolute error (MdAE). A very few
distant outliers cause it. The same situation is with the mean percentage error (MPE) and
the median percentage error (MdPE).

Table 1. Accuracy of retention index prediction using gradient boosting and neural net-
work with one hidden layer. Four data sets are considered.

Gradient boosting Neural network with one hidden layer
Data set MdAE MdPE MAE MPE RMSE MdJAE MdPE MAE MPE RMSE
Validation set 340 1.66 57.0 3.00 110.1 37.7 191 682 343 1273

Test set 343  1.68 584 3.04 1125 381 190 685 343 1300
Flavors and 297 258 462 394 834 252 221 414 344 809
fragrances

Essential oils 367 226 51.0 3.11 650 51.0 311 545 322 705

In all cases, except the flavors and fragrances data set, gradient boosting outper-
forms the neural network. The used neural network is state-of-the-art method of the RI
prediction, which is used in METEXPERT expert system. Hence, it can be concluded that
gradient boosting performs at the same or even better level than other modern RI predic-
tion methods.

Achieved accuracy is higher than accuracy of other methods based on linear regres-
sion [10-11] and on support vector regression [13], but direct comparison is not possible
because different data sets are used in different works. Gradient boosting shows almost the
same accuracy comparing with the best at the moment RI prediction method — a deep con-
volutional neural network [9] based on string representation of a molecule. According to
[9, 11, 13-14], even lesser precision is enough for improvement of a mass spectral library
search and for rejecting of false candidates.

Figure 1 shows a correlation plot between predicted and reference RI and distribu-
tion of residuals for the test data set. The distribution of residuals can be approximated
with the equation:

p(A(RI))=0.2055exp(—|4(RI )/ 49.06)
near zero and is highly tailed farther from zero. Correlation coefficient between predicted
and reference RI is 0.97.
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Fig. 1. Distribution of residuals (a) and correlation plot (b) for retention indices
predicted using gradient boosting in comparison with reference values.
Random test subset of NIST 17 database is used.

Matyushin et al./ CopbuuonHsle 1 XxpomaTorpaduueckue mporeccsl. 2019. T. 19. Ne 6. C. 630-635



634

Figure 2 shows a correlation plot between predicted and reference RI for the flavors
and fragrances data set. Results achieved using both methods are shown. The same com-
pounds are outliers for both prediction methods. Probably for these compounds there are
wrong experimental data or the selected set of MD does not represent these compounds
well. In this work no custom MD selection was provided. More careful selection of MD,
for example using genetic algorithm or use of more sophisticated MD probably will allow
further improvement of the accuracy.

2000
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1500

1000

500 1000 1500 2000 2500

RI (predicted)
Fig. 2. Correlation plot between predicted and reference retention indices for flavors
and fragrances data set. O — gradient boosting; + — neural network with one hidden layer.

In this work we also tested other decision trees based machine learning algorithms
— single decision tree and random forest, but the achieved results were worse, maybe due
to inappropriate hyperparameters tuning. Gradient boosting shows the best results of three
decision trees based algorithms.

Conclusions

This work shows that gradient boosting can be used for the retention index predic-
tion. Optimal values of hyperparameters are given. The precision obtained with this me-
thod in most cases is better than that obtained using a neural network with one hidden
layer. Use of gradient boosting in quantitative retention-property relationships is still li-
mited, but this work clearly shows the advantages of this method for the prediction of phy-
sicochemical characteristics of chemical compounds. Errors obtained with different ma-
chine learning algorithms and with the same representation of the molecule strongly corre-
late with each other. Non-polar liquid stationary phases are considered.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.
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