

Получение и исследование каталитической активности шунгита, модифицированного наночастицами меди

Ярцев С.Д 1 ., Милюшкин А.Л 1 ., Хесина З.Б 1 ., Ревина А.А 1 ., Суворова О.В 1 ., Рёсснер Φ^2 ., Петухова Г.А 1 ., Буряк А.К 1 .

¹Институт физической химии и электрохимии им. А.Н.Фрумкина РАН, Москва ² Университет им. Карла фон Осецкого, Ольденбург, Германия

Поступила в редакцию 31.01.2017 г.

Разработан материал на основе природного минерала шунгита с нанесенными на его поверхность наночастицами меди. Рассмотрены закономерности адсорбции наночастиц из обратномицеллярных растворов шунгитом. Каталитические свойства полученного материала изучены на примере реакции карбонильных соединений с первичными аминами. Проведено сравнение шунгита, модифицированного наночастицами меди, с шунгитом, импрегнированным медью.

Ключевые слова: шунгит, наночастицы меди, катализ.

Synthesis and study of catalytical activity of shungite modified with copper nanoparticles

Iartsev S.D¹., Milyushkin A.L¹., Khesina Z.B¹., Revina A.A¹., Souvorova O.V¹., Roessner F.², Petukhova G.A¹., Buryak A.K¹.

¹A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow
²Carl v. Ossietzky University, Oldenburg, Germany

Carrying out a large number of processes in organic synthesis requires the use of expensive catalysts based on palladium, gold, silver and other metal nanoparticles. Numerous studies have focused on a search of systems that have a similar catalytic action, but lower cost. The development of catalysts based on various carbon sorbents modified with copper nanoparticles seems to be promising. Natural mineral shungite is a cheap and readily available raw carbon material, which occurrs only in Russia. This article focuses on the use of shungite as a carrier for a catalyst based on copper nanoparticles.

A known method for the synthesis of nanoparticles in reverse micellar solutions was applied to the synthesis of copper nanoparticles. A model catalyst, obtained by adsorption of nanoparticles from solutions on shungite material, was studied in this work. The catalyst was characterized by electron microprobe analysis and UV-visible spectroscopy. The activity of the catalyst obtained was evaluated by the model reaction of primary amines with carbonyl compounds.

Keywords: shungite, copper nanoparticles, catalysis.

Введение

Шунгит – природный минерал, добываемый в Карелии и содержащий в своём составе от 0.1 до 98% масс. углерода, до 70% масс. силикатов, а также разные количества соединений железа, алюминия, магния, марганца и серы.

Благодаря своим свойствам, экологической безопасности и огромным запасам месторождений, шунгит находит широкое применение в различных областях промышленности. Особое место занимают исследования, посвященные каталитическим свойствам шунгита и материалов на его основе [1, 2]. Наночастицы металлов широко используются для катализа в сочетании с углеродными материалами. Ввиду востребованности и дороговизны производства катализаторов на основе палладия и других благородных металлов, представляет интерес разработка новых систем, с использованием медных наночастиц, не уступающих в каталитической активности, но в то же время не требующих использования драгоценных металлов. В литературе описано большое число различных процессов, катализируемых медными наночастицами: синтез триазолов [3-6], арилирование фенолов (реакция Ульмана) [7, 8], аза-реакция Михаэля [9], синтез енаминонов [10], окисление спиртов [11] и другие. Для изготовления подобных катализаторов используются различные углеродные носители. Целью настоящей работы является оценка возможностей применения шунгита как основы для катализаторов. В настоящем исследовании разработан материал на основе шунгита с нанесенными на его поверхность наночастицами меди и изучены его каталитические свойства на примере взаимодействия аминов с карбонильными соединениями.

Эксперимент

Приборы и материалы. В работе использовались коммерчески доступные реактивы фирм Sigma и Merck, без последующей очистки. Для синтеза наночастиц использовали изооктан, натриевую соль бис-(2-этилгексил) сульфосукцината (АОТ), кверцетин (3,5,7,3',4'-пентагидроксифлавон), сульфат меди, водный раствор аммиака. Для оценки каталитической активности исследуемых материалов применяли метанол, бутанон, ацетилацетон, анилин, сорбент МСМ-41. В работе использовали шунгит Зажогинского месторождения, подробно изученный в работе [12]. Для измельчения образцов шунгита использовали шаровую мельницу, для получения механоактивированного шунгита использовали планетарную мельницу. Рентгеноспектральный микроанализ выполняли на микроанализаторе Camebax (Сатеса, Франция). Изображения исследуемых материалов получали с помощью растровой приставки к микроанализатору Сатевах (Сатеса, Франция). Спектры оптического поглощения регистрировали с использованием спектрофотометра Hitachi U3900, в кварцевых кюветах с длиной оптического пути 1 мм. Хроматографическое разделение выполняли на газовом хроматографе HP 5890, с колонкой HP-1701.

Синтез наночастиц Си. Восстановление ионов Cu^{2+} до Cu^0 в обратно мицеллярной системе выполняли по методике, описанной в [13]. К мицеллярному раствору (система 55 мкМ кверцетин — 0.15 М АОТ — изооктан) добавляли водный раствор $\mathrm{Cu}(\mathrm{NH_3})_4\mathrm{SO_4}$ (получаемый добавлением соответствующего количества аммиака к водному раствору сульфата меди). Концентрация соли Си в мицеллярном растворе составляла 4.1 мМ, степень гидратации w=[H₂O]/[AOT] составляла 5. Для контроля протекания процесса синтеза наночастиц меди проводили спектрофотометрический анализ, наблюдали появление характерной полосы поглощения в области 542-545 нм.

<u>Приготовление катализатора.</u> К раствору наночастиц Си добавляли измельченный шунгит, интенсивно перемешивали, выдерживали в течение 30 минут, после чего раствор фильтровали, остаток высушивали и использовали в последующих экспериментах.

<u>Импрегнирование МСМ-41 медью</u>. К 1 г МСМ-41 по каплям добавляли 1 см³ 0.1 мМ раствора нитрата меди. Полученный материал прокаливали в муфельной печи при 160°С, после чего нагревали над потоком водорода и сразу использовали.

Синтез енаминона. В пробирку на 10 см³ с завинчивающейся крышкой помещали смесь ацетилацетона (1 ммоль), анилина (2 ммоль) и метанол (4 см³). К реакционной смеси добавляли шунгит, модифицированный наночастицами меди. Смесь выдерживали при 50°С при постоянном перемешивании. Ход реакции контролировали методом газовой хроматографии. Для контроля хода реакции пробы из реакционной смеси отбирали, фильтровали и вводили в газовый хроматограф.

Обсуждение результатов

Для модифицирования шунгита наночастицами меди 1 г измельченного шунгита выдерживали в 10 см³ синтезированного раствора, содержащего наночастицы меди. Для контроля протекания процесса адсорбции наночастиц меди на поверхности шунгита проводили спектрофотометрический анализ надосадочной жидкости (рис. 1). По уменьшению интенсивности полосы поглощения в области 542-545 нм делали вывод о протекании процесса адсорбции. Установили, что адсорбция проходит практически полностью в течение 30 минут.

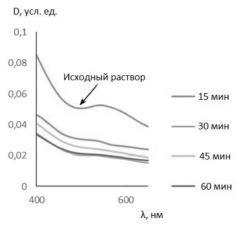


Рис. 1. Спектры оптического поглощения растворов наночастиц меди, находящихся в контакте с шунгитом в течение 15, 30, 45 и 60 минут, а также исходного раствора наночастиц меди.

Также исследовали, как размер частиц шунгита влияет на эффективность адсорбции. Опробовали шунгит с размером частиц 75-150 мкм, 150-180 мкм, 180-250 мкм и 250-500 мкм (размер определялся просеиванием через соответствующие сита). Показали, что для частиц меньшего размера адсорбция протекает с большей скоростью, однако если адсорбция проходит в течение 1 дня, то разница в эффективности адсорбции оказывается не принципиальной (рис. 2). После прохождения адсорбции в течение 1 дня модифицированный шунгит высушивали на воздухе.

Для подтверждения присутствия меди в модифицированных образцах шунгита был проведен рентгено-спектральный микроанализ (РСМА). Согласно его результатам (рис. 3), содержание меди в полученном материале составляет 7.5% (масс.). В немодифицированном шунгите содержание меди составляло менее 0.5%. Исходя из полученных данных, можно заключить, что предложенный способ обработки шунгита может быть использован для модифицирования шунгита наночастицами меди.

С помощью растрового электронного микроскопа получены изображения шунгита, модифицированного наночастицами меди (рис. 4).

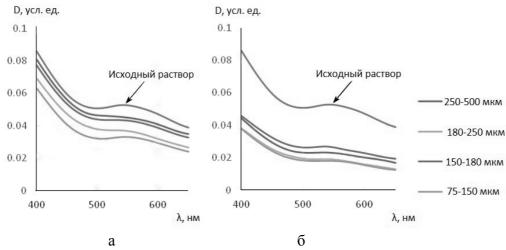


Рис. 2. Спектры оптического поглощения растворов наночастиц меди, находящихся в контакте с шунгитом с частицами разного размера (75-150, 150-180, 1 80-250, 250-500 мкм), а также спектр исходного раствора наночастиц меди. Время проведения адсорбции — 30 минут (а) и 1 сутки (б).

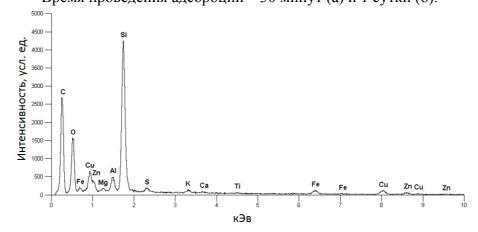


Рис. 3. Результат рентгено-спектрального микроанализа шунгита, модифицированного наночастицами меди.

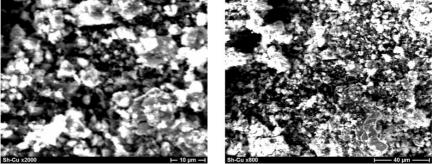


Рис. 4. Изображения шунгита, модифицированного наночастицами меди, полученные с помощью растрового электронного микроскопа. Увеличение в 2000 раз (слева) и в 800 раз (справа).

В качестве исследуемой реакции для проверки каталитической активности полученного шунгита, модифицированного наночастицами меди, было выбрано взаимодействие карбонильных соединений с первичными аминами. Для оценки ско-

рости реакции в различных условиях проводили кинетические исследования, выход продукта реакции находили как отношение площади пика продукта к площади пика карбонильного соединения, находящегося в недостатке. Результаты обобщены в табл. 1. Показано, что в случае взаимодействия бутанона и анилина предпочтительным является использование метанола в качестве растворителя, повышение температуры приводит к повышению выхода продукта. Использование бензойной кислоты не позволяет повысить выход реакции, равно как и применение сорбента МСМ-41 и шунгита (а в случае, если эти материалы импрегнированы медью, реакция протекает значимо медленнее). Наибольший выход (31.4%) удается достичь, проводя реакцию в среде метанола, при 50°C, без добавления кислоты или сорбента. Таким образом, использование шунгита, модифицированного наночаситцами меди, не позволяет увеличить выход реакции бутанона с анилином.

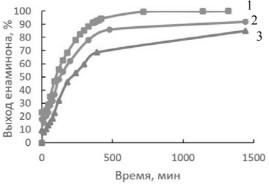
Таблица 1. Выходы реакции бутанона с анилином при различных температурах, ис-

пользуемых растворителях и катализаторах

Температура, °С	Растворитель	Катализатор	Выход, 24ч, %
25	1	-	15.6
25	1	Бензойная кислота	17.8
25	1	MCM-41	15.2
25	1	MCM-41, импрегнированный Cu	14.7
25	MeOH	-	24.8
25	MeOH	Бензойная кислота	26.2
50	MeOH	-	31.4
50	МеОН	Шунгит	27.7
50	МеОН	Шунгит, импрегнированный Си	22.0

Далее исследовали взаимодействие анилина с дикарбонильным соединением, ацетилацетоном. Эта реакция катализируется кислотами, однако в литературе описан синтез енаминонов в присутствии наночастиц меди, без добавления кислоты [14]. Схема реакции выглядит следующим образом:

Из-за наличия двух карбонильных групп в молекуле ацетилацетона реакция идет лучше, чем в случае с бутаноном, и приводит к образованию не имина, а енаминона, вследствие большей устойчивости структуры с 1,3-сопряжением. В работе сравнивались различные условия проведения реакции: растворитель, температура, наличие кислоты, добавка мезопористого сорбента МСМ-41, шунгита. В целом, в течение 24 часов практически при всех опробованных условиях выход реакции оказался выше 90%, в таблице 2 приведены выходы реакции за 90 минут в зависимости от условий проведения.


Можно отметить, что использование метанола в качестве растворителя повышает выход реакции, оптимальная температура проведения реакции составляет 50°С, однако увеличение выхода оказывается не столь значительным, поэтому все последующие эксперименты проводились при 25°С. Добавление кислоты позволяет значительно повысить скорость реакции (фактически, реакция протекает количественно уже в течение 1 часа). Кинетические кривые реакций в случае добавления сорбента МСМ-41 к реакционной смеси приведены на рис. 5. Можно заключить, что

МСМ-41 замедляет реакцию, но в случае, если МСМ-41 импрегнирован медью - реакция замедляется еще значительнее.

Таблица 2. Выходы реакции ацетилацетона с анилином при различных температу-

рах, используемых растворителях и катализаторах

		L	
Температура, °С	Растворитель	Катализатор	Выход, 90 мин, %
25	-	-	35.9
25	МеОН	-	46.5
50	MeOH	-	58.0
25	MeOH	Бензойная кислота	99.6
25	MeOH	MCM-41	36.7
25	MeOH	MCM-41, импрегнированный Cu	22.7
25	MeOH	Шунгит	15.2
25	MeOH	Шунгит, импрегнированный Си	69.0
25	МеОН	Шунгит, модифицированный наночастицами Cu	19.6

80 100 80 1000 1500 Время реакции, мин

Рис. 5. Кинетические кривые реакции ацетилацетона с анилином без добавления сорбента (1), с добавлением МСМ-41(2) и с добавлением МСМ-41, импрегнированного медью(3)

Рис. 6. Кинетические кривые реакции ацетилацетона с анилином без добавления шунгита (1), с добавлением шунгита(2), с добавлением шунгита, импрегнированного медью(3) и с добавлением шунгита, модифицированного наночастицами меди(4)

Исследовалось влияние шунгита на описываемую реакцию. Соответствующие кинетические кривые приведены на рис. 6. Так же, как и в случае с МСМ-41, добавление шунгита замедляет реакцию, однако использование шунгита, импрегнированного медью, позволяет значительно увеличить скорость реакции (выход реакции за 90 минут составил 69%, что является наилучшим результатом, за исключением того, в котором к реакционной смеси добавлялась бензойная кислота). Однако использование шунгита, модифицированного наночастицами меди, не позволило добиться более высоких выходов. Это может быть вызвано несовершенством процедуры синтеза катализатора, в частности, с его поверхности не удалялся избыток АОТ. Также при приготовлении шунгита, модифицированного наночастицами меди, не проводили термическую обработку и обработку нагретым водородом (как в случае приготовления шунгита, импрегнированного медью).

Заключение

Таким образом, в работе предложен подход к созданию катализатора на основе шунгита, модифицированного наночастицами меди. Полученный материал охарактеризован методами спектрофотометрии и РСМА. Оценена каталитическая активность материала в реакциях первичных аминов с карбонильными соединениями. Полученный модельный катализатор не позволяет повысить скорость и выход в исследованных реакциях. Это может быть вызвано несовершенством процедуры синтеза катализатора, в частности, с его поверхности не удалялся избыток АОТ, не проводили термическую обработку и обработку нагретым водородом. Влияние этих стадий подготовки катализатора на его эффективность требуют дальнейшего исследования.

Работа выполнена в рамках 7 Рамочной Программы EC по конкурсу FP7-PEOPLE-IRSES и при финансовой поддержке РФФИ (грант 15-08-08006)

Список литературы

- 1. Токпаев Р.Р., Нечипуренко С.В., Аккужиев А.С., Ефремов С.А., и др.// *Вестник КазНУ. Серия химическая*. 2011. №4 (64). С. 193-196.
- 2. Токпаев Р.Р., Атчабарова А.А., Кабулов А.Т., Кишибаев К.К. и др. // Вестник Каз-HTУ. 2015. № 5. С. 412-418.
- 3. Sharghi H., Khalifeh R., Doroodmand M.M. // *Adv. Synth. Catal.* 2009. Vol. 351. pp. 207-218. Doi: 10.1002/adsc.200800612
- 4. Alonso F., Moglie Y., Radivoy G., Yus M. // *Tetr. Lett.* 2009. Vol. 50. pp. 2358-2362. Doi:10.1016/j.tetlet.2009.02.220
- 5. Park I.S., Kwon M.S., Kim Y., Lee J.S. Park J. // Org. Lett. 2008. Vol. 10. No. 3. pp. 497-500. Doi: 10.1021/ol702790w
- 6. Sarkar A., Mukherjee T., Kapoor S. // *J. Phys. Chem. C.* 2008. Vol. 112. pp. 3334-3340. Doi: 10.1021/jp077603i
- 7. Kidwai M., Kumar N. M., Bansal V., Kumar A. et al. // *Tetr. Lett.* 2007. Vol. 48. pp. 8883-8887. Doi:10.1016/j.tetlet.2007.10.050
- 8. Isomura Y., Narushima T., Kawasaki H., Yonezawab T. et al. // *Chem. Commun.* 2012.

- Vol. 48. pp. 3784-3786. Doi: 10.1039/c2cc30975k
- 9. Verma A.K., Kumar R., Chaudhary P., Saxena A. et al. // *Tetr. Lett.* 2005. Vol. 46. pp. 5229-5232. doi:10.1016/j.tetlet.2005.05.108
- 10. Kidwai M., Bhardwaj S., Kumar N. M, Bansal V. et al. // *Catalysis Comm.* 2009. Vol. 10. pp. 1514-1517. doi:10.1016/j.catcom.2009.04.006
- 11. Mitsudome T., Mikami Y., Ebata K., Mizugaki T. et al. // *Chem. Commun.* 2008. Vol. 39. pp. 4804-4806. 10.1039/B809012B
- 12. Голуб С.Л., Ульянов А.В., Буряк А.К., Луговская И.Г. и др. // Сорбционные и хроматографические процессы. 2006. Т. 6. № 5. С. 748-763.
- 13. Ревина А.А. Патент РФ, № 2322327, 2006
- 14. Bhatte K.D., Tambade pp.J., Dhake K.pp., Bhanage B.M. // *Catalysis Comm.* 2010. Vol. 11. pp. 1233-1237. Doi:10.1016/j.catcom.2010.06.011

References

- 1. Tokpayev R.R., Nechipurenko S.V., Akkuzhyev A.S., Yefremov S.A. et al., *KazNU Bull. Chem.*, 2011, No 4 (64), pp. 193-196.
- 2. Tokpayev R.R., Atchabarova A.A., Kabulov A.T., Kishibayev K.K. et al., *KazNTU Bull.*, 2015, No 5, pp. 412-418.
- 3. Sharghi H., Khalifeh R., Doroodmand M.M., *Adv. Synth. Catal.*, 2009, Vol. 351, pp. 207-218. DOI: 10.1002/adsc.200800612
- 4. Alonso F., Moglie Y., Radivoy G., Yus M., *Tetrahedron Letters*, 2009, Vol. 50, pp. 2358-2362. doi:10.1016/j.tetlet.2009.02.220

- 5. Park I.S., Kwon M.S., Kim Y., Lee J.S. et al., *Org. Lett.*, 2008, Vol. 10, No 3, pp. 497-500. Doi: 10.1021/ol702790w
- 6. Sarkar A., Mukherjee T., Kapoor S., *J. Phys. Chem. C. 2008*, Vol. *112*, pp. 3334-3340. Doi: 10.1021/jp077603i
- 7. Kidwai M., Kumar N.M., Bansal V., Kumar A. et al., *Tetr. Lett.*, 2007, Vol. 48, pp. 8883-8887. Doi:10.1016/j.tetlet.2007.10.050
- 8. Isomura Y., Narushima T., Kawasaki H., Yonezawab T. et al., *Chem. Commun.*, 2012, Vol. 48, pp. 3784-3786. Doi: 10.1039/c2cc30975k
- 9. Verma A.K., Kumar R., Chaudhary P., Saxena A. et al., *Tetr. Lett.*, 2005, Vol. 46, pp. 5229-5232. doi:10.1016/j.tetlet.2005.05.108

Ярцев Степан Дмитриевич – аспирант 2 года обучения, ИФХЭ РАН, Москва

Милюшкин Алексей Леонидович – аспирант 2 года обучения, ИФХЭ РАН, Москва.

Хесина Зоя Борисовна – инженерисследователь, ИФХЭ РАН, Москва.

Ревина Александра Анатольевна – профессор, д.х.н., ведущий научный сотрудник, ИФ-ХЭ РАН, Москва.

Суворова Ольга Валентиновна - научный сотрудник, ИФХЭ РАН, Москва

Рёсснер Франк – профессор кафедры технической химии университета им. Карла фон Осецкого, Ольденбург, Германия.

Петухова Галина Анатольевна – к.х.н., заведующая лабораторией, ИФХЭ РАН, Москва

Буряк Алексей Константинович – профессор, д.х.н., заведующий лабораторией физико-химических основ хроматографии и хроматомасс-спектрометрии, ИФХЭ РАН, Москва

- 10. Kidwai M., Bhardwaj S., Kumar N. M, Bansal V. et al., *Catalysis Comm.*, 2009,. Vol. 10, pp. 1514-1517. doi:10.1016/j.catcom.2009.04.006
- 11. Mitsudome T., Mikami Y., Ebata K., Mizugaki T. et al., *Chem. Commun.*, 2008, Vol. 39, pp. 4804-4806. 10.1039/B809012B
- 12. Golub S.L., Ulyanov A.Vol., Buryak A.K., Lugovskaja I.G. et al., *Sorbtsionnye i khromatograficheskie protsessy*, 2006, Vol. 6, No 5, pp. 748-763.
- 13.Revina A.A. Patent RF, no 2322327, 2006. 14.Bhatte K.D., Tambade pp.J., Dhake K.P., Bhanage B.M., *Catalysis Comm.*, 2010, Vol. 11, pp. 1233-1237. Doi:10.1016/j.catcom.2010.06.011

Iartsev Stepan Dmitrievich – PhD student of the 2d year, IPCE RAS, Moscow. <u>yartsew1@yandex.ru</u>

Milyushkin Aleksey Leonidovich – PhD student of the 2d year, IPCE RAS, Moscow

Khesina Zoya Borisovna –research engineer, IPCE RAS, Moscow

Revina Aleksandra Anatol'evna – professor, the chief scientific worker, IPCE RAS, Moscow

Souvorova Olga Valentinovna – scientific worker, IPCE RAS, Moscow

Roessner Frank – Prof. Dr., Chair of Industrial Chemistry 2, Institute of Pure and Applied Chemistry, Carl v. Ossietzky University, Oldenburg, Germany

Petukhova Galina Anatol'evna – PhD, the head of the laboratory, IPCE RAS, Moscow

Buryak Aleksey Konstantinovich – Professor, the head of Laboratory of physical-chemical bases of chromatography and mass-spectrometry, IPCE RAS. Moscow