Анализ и классификация автономных робототехнических систем по параметру энергопотребления
Аннотация
В работе проведен анализ автономных робототехнических систем и разработана классификация, в которой установлены взаимосвязи между массогабаритными характеристиками, энергопотреблением и энергоемкостью источника питания рассмотренных систем. Рассмотрены существующие классификации робототехнических систем и выявлено, что большинство работ посвящены классификациям форм, свойствам и назначению роботов, а также факторам, влияющим на потребление энергии. Анализ и классификация автономных робототехнических средств по уровню потребления энергии позволит осуществлять обоснованный подбор наиболее эффективного класса и уровня мощности беспроводной системы передачи энергии для конкретного робота на этапе проектирования в зависимости от массогабаритных характеристик. Задача является особенно актуальной для активно развивающегося в настоящее время направления беспроводных систем передачи энергии мобильным роботам. В настоящем анализе основное внимание уделяется рассмотрению автономных мобильных наземных роботов, предназначенных для работы в помещениях. Рассмотрены роботы следующих типов: колесные, шагающие, антропоморфные и гибридные, включающие в себя несколько типов конструкций. Анализируемыми параметрами являются: потребляемая мощность, массогабаритные характеристики робота, используемый источник питания и его энергетические характеристики. Выделены четыре группы робототехнических систем по потребляемой мощности: потребители малой мощности (до 10 Вт), средней (от 10 до 250 Вт), высокой (от 250 до 1000 Вт) и сверхвысокой мощности (более 1000 Вт). Определены диапазоны потребляемых мощностей, линейных размеров, массы и энергоемкостей аккумуляторных батарей робототехнических средств для каждой из перечисленных групп. Построены графики зависимости потребляемой мощности от массогабаритных показателей рассмотренных роботов.
Скачивания
Литература
2. GOST (2019) Р 60.0.0.4-2019/ISO 8373:2012 [Robots and robotic devices. Terms and definitions. Standardinform.
3. Sokolov I. А., Misharin А. S., Kupriyanovsky V. P., Pokusaev О. Н., Kupriyanovsky Y. V. (2018) Robots, Autonomous Robotic Systems, Artificial Intelligence and the Transformation of The Market of Transport and Logistics Services in the Digitalization of The Economy. International Journal of Open Information Technologies. 6(4). P. 92–108 (in Russian).
4. Bychkov I. V., Kenzin M. Yu., Maksimkin N. N. (2019) A two-level evolutionary approach to the routing of a group of underwater robots under conditions of periodic rotation of the composition. Proceedings of SPIIRAS. 18(2). P. 267–301 (in Russian).
5. IEEE Std 1872-2015, IEEE Standard Ontologies for Robotics and Automation, 2015. Available from: doi:10.1109/IEEESTD.2015.7084073.
6. Krestovnikov K., Cherskikh E., Smirnov P. (2019) Wireless Power Transmission System Based on Coreless Coils for Resource Reallocation Within Robot Group. International Conference on Interactive Collaborative Robotics. P. 193–203. Available from: doi:10.1007/978-3-030-26118-4_19.
7. Qiu C., Chau K. T., Liu C., Chan C. C. (2013) Overview of wireless power transfer for electric vehicle charging. World electric vehicle symposium and exhibition (EVS27). P. 1–9. Available from: doi: 10.1109/EVS.2013.6914731.
8. Wang Y., Qiao J., Du J., Wang F., Zhang W. (2018) A view of research on wireless power transmission Journal of Physics: Conference Series. 1074(1). Available from: doi:10.1088/1742-6596/1074/1/012140.
9. Pellitteri F. (2016) Wireless Charging Systems for Electric Vehicle Batteries: PhD Thesis. Palermo.
10. Dobra A. (2014) General classification of robots. Size criteria. 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). 1–6. Available from: doi:10.1109/RAAD.2014.7002249.
11. Spyridon M. G., Eleftheria M. (2012) Classification of domestic robots. Proceedings in ARSA-Advanced Research in Scientific Areas. 1(7). P. 1693.
12. Schaefer K. E., Sanders T. L., Yordon R. E., Billings D. R., Hancock P. A. (2012) Classification of robot form: Factors predicting perceived trustworthiness. Proceedings of the human factors and ergonomics society annual meeting. 56(1). P. 1548–1552. Available from: doi:10.1177/1071181312561308.
13. Fong T., Nourbakhsh I., Dautenhahn K. (2003) A survey of socially interactive robots. Robotics and autonomous systems. 42(3–4). P. 143–166. Available from: doi:10.1016/S0921-8890(02)00372-X.
14. Campion G., Bastin G., Dandrea-Novel B. (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE transactions on robotics and automation. 12(1). P. 47–62. Available from: doi:10.1109/70.481750.
15. Shin E., Kwak S. S., Kim M. S. (2008) A study on the elements of body feature based on the classification of social robots. RO-MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication. P. 514–519. Available from: doi:10.1109/ROMAN.2008.4600718.
16. Kraevsky S. V., Rogatkin D. A. (2010) Medical robotics: the first steps of medical robots. Russian Journal: Technologies of live systems. 7(4). P. 3–14.
17. Xie L., Herberger W., Xu W., Stol K. A. (2016) Experimental validation of energy consumption model for the four-wheeled omnidirectional Mecanum robots for energy-optimal motion control. In 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC). P. 565–572. Available from: doi:10.1109/AMC.2016.7496410.
18. Pavliuk N., Kharkov I., Zimuldinov E., Saprychev V. (2020) Development of Multipurpose Mobile Platform with a Modular Structure. In Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. P. 137–147. Available from: doi:10.1007/978-981-13-9267-2_12.
19. Ripel T., Hrbáček J., Krejsa J. (2011) Design of the Frame for Autonomous Mobile Robot with Ackerman Platform. Proceedings Engineering Mechanics. P. 515–518.
20. Parasuraman R., Kershaw K., Pagala P., Ferre M. (2014) Model based on-line energy prediction system for semi-autonomous mobile robots. 2014 5th International Conference on Intelligent Systems, Modelling and Simulation. P. 411–416. Available from: doi:10.1109/ISMS.2014.76.
21. Caprari G., Balmer P., Piguet R., Siegwart R. (1998) The Autonomous Micro Robot “Alice”: a platform for scientific and commercial applications. MHA’98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. Creation of New Industry. P. 231–235. Available from: doi:10.1109/MHS.1998.745787.
22. Song G., Yin K., Zhou Y., Cheng X. (2009) A surveillance robot with hopping capabilities for home security. IEEE Transactions on Consumer Electronics. 55(4). P. 2034–2039. Available from: doi: 10.1109/TCE.2009.5373766.
23. Wu J., Tang S. Y., Fang T., Li W., Li X., Zhang S. (2018) A Wheeled Robot Driven by a Liquid-Metal Droplet. Advanced materials. 30(51). Available from: doi: 10.1002/adma.201805039.
24. Kovač M., Schlegel M., Zufferey J. C., Floreano D. (2009) A miniature jumping robot with self-recovery capabilities. IEEE/RSJ International Conference on Intelligent Robots and Systems. P. 583–588. Available from: doi: 10.1109/IROS.2009.5354005.
25. Morales J., Martínez J. L., Mandow A., Pequeño-Boter A., García-Cerezo A. (2010) Simplified power consumption modeling and identification for wheeled skid-steer robotic vehicles on hard horizontal ground. IEEE/RSJ International Conference on Intelligent Robots and Systems. – 2010. – P. 4769–4774. Available from: doi: 10.1109/IROS.2010.5649292.
26. Jun C., Deng Z., Jiang S. (2004) Study of locomotion control characteristics for six wheels driven in-pipe robot. IEEE International Conference on Robotics and Biomimetics. P. 119–124. Available from: doi: 10.1109/RO-BIO.2004.1521762.
27. Bayar G., Koku A. B., ilhan Konukseven E. (2009) Design of a configurable all terrain mobile robot platform. International journal of mathematical models and methods in applied sciences. 3(4). P. 366–373.
28. Guo T., Guo J., Huang B., Peng H. (2019) Power consumption of tracked and wheeled small mobile robots on deformable terrains-model and experimental validation. Mechanism and Machine Theory. 133. P. 347–364. Available from: doi: 10.1016/j.mechmachtheory.2018.12.001.
29. Ayob M. A. B., Zakaria M. F. (2011) 3WD omni-wheeled mobile robot using ARM processor for line following application. IEEE Symposium on Industrial Electronics and Applications. P. 410–414. Available from: doi: 10.1109/ISIEA.2011.6108741.
30. Kalra S., Patel D., Stol K. Design and hybrid control of a two wheeled robotic platform. Australasian Conference on Robotics and Automation. Article ID: 8721107.
31. Documentation Synchronous Servomotor AM3100. (2012) Available from: https://download.beckhoff.com/download/document/motion/am3100_ba_en.pdf (accessed 5th September 2020).
32. Asiri S., Khademianzadeh F., Monadjemi A., Moallem P. (2019) The Design and Development of a Dynamic Model of a Low-Power Consumption. Two-Pendulum Spherical Robot. IEEE/ASME Transactions on Mechatronics. 24(5). P. 2406–2415. Available from: doi: 10.1109/TMECH.2019.2934180.
33. Jeong K. W., Lee J., Lee M. C. (2017) Energy-saving trajectory planning for an inverse ball drive robot with Mecanum wheels. International Journal of Control, Automation and Systems. 15(2). P. 752–762. Available from: doi: 10.1007/s12555-015-0259-9.
34. Saputra R. P., Rijanto E., Saputra H. M. (2012) Trajectory scenario control for the remotely operated mobile robot LIPI platform based on energy consumption analysis. International Journal of Applied Engineering Research. 7(8). P. 851–866.
35. Rijanto E., Saputra R. P., Saputra H. M. (2013) Positioning control for the mobile robot LIPI articulated robot arm based on PD control approach. International Journal of Applied Engineering Research. 8(4). P. 423–433.
36. Liu S., Sun D. (2014) Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning. IEEE/ASME Transactions on Mechatronics. 19(2). P. 401–411. Available from: doi:10.1109/tmech.2013.2241777.
37. Sakayori G., Ishigami G. (2017) Energy efficient slope traversability planning for mobile robot in loose soil / G. Sakayori, G. Ishigami // International Conference on Mechatronics (ICM). P. 99–104. Available from: doi: 10.1109/ICMECH.2017.7921087.
38. Dogru S., Marques L. (2018) Physics-Based Power Model for Skid-Steered Wheeled Mobile Robots. 34(2). P. 421–433. Available from: doi:10.1109/tro.2017.2778278.
39. Mandow A., Gomez-de-Gabriel J. M., Martinez J. L., Munoz V. F., Ollero A., Garcia-Cerezo A. (1996) The autonomous mobile robot AURORA for greenhouse operation. IEEE Robotics and Automation Magazine. 3(4). P. 18–28. Available from: doi: 10.1109/100.556479.
40. Grzelczyk D., Stanczyk B., Awrejcewicz J. (2017) Kinematics, dynamics and power consumption analysis of the hexapod robot during walking with tripod gait. International Journal of Structural Stability and Dynamics. 17(5). Available from: doi: 10.1142/S0219455417400107.
41. Kottege N., Parkinson C., Moghadam P., Elfes A., Singh S. P. (2015) Energetics-informed hexapod gait transitions across terrains. International Conference on Robotics and Automation (ICRA). P. 5140–5147. Available from: doi: 10.1109/ICRA.2015.7139915.
42. Gregorio P., Ahmadi M., Buehler M. (1997) Design, control, and energetics of an electrically actuated legged robot. Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 27(4). P. 626–634. Available from: doi: 10.1109/3477.604106.
43. Luneckas M., Luneckas T., Udris D., Ferreira N. M. F. (2014) Hexapod robot energy consumption dependence on body elevation and step height. Elektronika ir Elektrotechnika 20(7). P. 7–10. Available from: doi: 10.5755/j01.eee.20.7.8017.
44. Bodrov A., Cheah W., Green P. N., Watson S., Apsley J. (2018) Joint space reference trajectory to reduce the energy consumption of a sixlegged mobile robot. 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED). P. 1–6. Available from: doi: 10.1109/IWED.2018.8321378.
45. Documentation Dynamixel MX-28, v1.31.30. (2018) Availlable at: http://support.robotis.com/en/product/actuator/dynamixel/mx_series/mx-28(2.0).htm (accessed 5th September 2020).
46. Documentation Dynamixel MX-64, v1.31.30. (2018) Availlable at: http://support.robotis.com/en/product/actuator/dynamixel/mx_series/mx-64(2.0).htm (accessed 5th September 2020).
47. Sanz-Merodio D., Garcia E., Gonzalez-de-Santos P. (2012) Analyzing energy-efficient configurations in hexapod robots for demining applications. Industrial Robot. 39(4). P. 357–364. Available from: doi: 10.1108/01439911211227926.
48. Folgheraiter M., Aubakir B. (2018) Design and modeling of a lightweight and low power consumption full-scale biped robot. International Journal of Humanoid Robotics. 15(5). Available from: doi: 10.1142/S0219843618500226.
49. Li Y., Ma H. (2013) FPGA-based Hexapod Robot Spider. In Proceedings of the International Conference on Computer Design (CDES). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2013.
50. Tian X., Gao F., Qi C., Chen X. (2014) Reaction forces identification of a quadruped robot with parallel-serial leg structure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 229(15). P. 2774–2787. Available from: doi:10.1177/0954406214563110.
51. SPOT user guide, release 2.0.1. (2020) Available from: https://www.bostondynamics.com/sites/default/files/inline-files/spot-user-guide.pdf, https://www.bostondynamics.com/spot (accessed 5th September 2020).
52. Karumanchi S., Edelberg K., Baldwin I., Nash J., Reid J., Bergh C., Leichty J., Carpenter K., Shekels M., Gildner M., Newill-Smith D., Carlton J., Koehler J., Dobreva T., Frost M., Hebert P., Borders J., Ma J., Douillard B., Backes P., Kennedy B., Satzinger B., Lau C., Byl K., Shankar K., Burdick J. (2017) Team RoboSimian: semi‐auton-omous mobile manipulation at the 2015 DARPA robotics challenge finals/ Journal of Field Robotics. 34(2). P. 305–332. Available from: doi: 10.1002/rob.21676.
53. Lahr D. F., Yi H., Hong D. W. (2016) Biologically inspired design of a parallel actuated humanoid robot. Advanced Robotics. 30(2). P. 109–118. Available from: doi: 10.1080/01691864.2015.1094408.
54. Ott C., Roa M., Schmidt F., Friedl M., Englsberger J., Burger R., Werner A., Dietrich A., Leidner D., Henze B., Eiberger O., Beyer A., Bäuml B., Borst C., Albu-Schäffer A. (2016) Mechanisms and design of DLR humanoid robots. Humanoid Robotics: A Reference. P. 1–26. Available from: doi: 10.1007/978-94-007-7194-9_132-1.
55. Yoshiike T., Kuroda M., Ujino R., Kanemoto Y., Kaneko H., Higuchi, Komura S., Iwasaki S., Asatani M., Koshiishi T. (2019) The Experimental Humanoid Robot E2-DR: A Design for Inspec-tion and Disaster Response in Industrial Environments. Robotics and Automation Magazine. 26(4). P. 46–58. Available from: doi: 10.1109/MRA.2019.2941241.
56. Hosoda Y., Egawa S., Tamamoto J., Yamamoto K., Nakamura R., Togami M. (2006) Basic design of human-symbiotic robot EMIEW. International Conference on Intelligent Robots and Systems. 5079–5084. Available from: doi: 10.1109/IROS.2006.282596.
57. Schwarz M., Schreiber M., Schueller S., Missura M., Behnke S. (2012) NimbRo-OP humanoid teensize open platform. Proceedings of 7th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots.
58. Documentation Synchronous Servomotor MX-106, v1.31.30. Available at: https://emanual.robotis.com/docs/en/dxl/mx/mx-106/ (accessed 5th September 2020).
59. Ficht G., Allgeuer P., Farazi H., Behnke S. (2017) NimbRo-OP2: Grown-up 3D printed open humanoid platform for research. IEEE-RAS 17th International Conference on Humanoid Robotics. P. 669–675. Available from: doi: 10.1109/HUMANOIDS.2017.8246944.
60. Saeedvand S., Jafari M., Alizadeh V., Ranjbaran A., Abbaszadeh M. (2017) IRC adult size humanoid robot soccer team description paper. RoboCup humanoid robot league.
61. Attamimi M. (2019) Implementation of Ichiro Teen-Size Humanoid Robots For Supporting Autism Therapy. Journal on Advanced Research in Electrical Engineering. 3(1).
62. Dang L., Kwon J. (2009) Mechatronic design of NAO humanoid. IEEE International Conference on Robotics and Automation. P. 769–774. Available from: doi: 10.1109/ROBOT.2009.5152516
63. Allgeuer P., Farazi H., Schreiber M., Behnke S. (2015) Child-sized 3D printed Igus humanoid open platform. IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). P. 33–40. Available from: doi: 10.1109/HUMANOIDS.2015.7363519.
64. Dang L., Kwon J. (2016) Design of a new cost-effective head for a low-cost humanoid robot. IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). 1–7. Available from: doi:10.1109/UEMCON.2016.7777923.
65. Documentation Servomotor XL320. Available from: https://emanual.robotis.com/docs/en/dxl/x/xl320/ [accessed 5th September 2020].
66. ROBOTIS MINI user guide. – Available from: http://www.robotis.us/robotis-mini-intl/(accessed 5th September 2020).
67. Zapata S., Mora I. D., Suarez G. (2017) Mechatronic design of PRH: A NEW 3D printed and anthropometric humanoid robotic platform. IEEE 3rd Colombian Conference on Automatic Control (CCAC). P. 1–6.
68. Hobart C. G., Mazumdar A., Spencer S. J., Quigley M., Smith J. P., Bertrand S., Pratt J., Kuehl M., Buerger S. P. (2020) Achieving Versatile Energy Efficiency With the WANDERER Biped Robot. Transactions on Robotics. P. 959–966. Available from: doi: 10.1109/TRO.2020.2969017.
69. Dincer F., Byagowi A., Kopacek P. (2019) Communication of Cost Oriented Humanoid Robots. IFAC-PapersOnLine. 52(25). P. 100–103. Available from: doi: 10.1016/j.ifacol.2019.12.454.
70. Hernandez E., Velázquez R., Giannoccaro N. I., Gutíerrez C. A. (2017) Kinematic analysis and workspace simulation of humanoid robot KUBO. IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII). P. 1–6. Available from: doi:10.1109/CONCA-PAN.2017.8278461.
71. Documentation Servomotor RX64. – Available from: https://emanual.robotis.com/docs/en/dxl/rx/rx-64/ [accessed 5th September 2020].
72. Documentation Servomotor RX28. – Available from: https://emanual.robotis.com/docs/en/dxl/rx/rx-28/ [accessed 5th September 2020].
73. Reher J., Cousineau E. A., Hereid A., Hubicki C. M., Ames A. D. (2016) Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. IEEE International Conference on Robotics and Automation (ICRA). P. 1794–1801. Available from: doi: 10.1109/ICRA.2016.7487325.
74. Documentation Frameless Servomotor ILM. Available from: https://www.tq-group.com/filedownloads/files/products/robodrive/data-sheets/en/DRVA_DB_Servo-Kits_ILM_EN_Rev407_Web.pdf [accessed 5th September 2020].
75. Cafolla D., Wang M., Carbone G., Ceccarelli M. (2016) LARMbot: a new humanoid robot with parallel mechanisms. Symposium on Robot Design, Dynamics and Control. P. 275–283. Available from: doi: 10.1007/978-3-319-33714-2_31.
76. Wang M., Ceccarelli M., Carbone G. (2020) Design and Development of the Cassino Biped Locomotor. Journal of Mechanisms and Robotics. 12(3). Available from: doi: 10.1115/1.4045181.
77. Documentation Miniature Linear Motion Series L16. Available from: https://docs.rs-online.com/cd2d/0900766b814ad9df.pdf [accessed 5th September 2020].
78. Russo M., Cafolla D., Ceccarelli M. (2018) Design and experiments of a novel humanoid robot with parallel architectures. Robotics. 7(4). P. 79. Available from: doi: 10.3390/robotics7040079.
79. Kuindersma S., Deits R., Fallon M., Valenzuela A., Dai H., Permenter F., Koolen1 T., Marion P., Tedrake R. (2015) Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots. 40(3). P. 429–455. Available from: doi:10.1007/s10514-015-9479-3.
80. User guide ATLAS DRC Robot. – Available from: https://spectrum.ieee.org/automaton/robotics/military-robots/atlas-drc-robot-is-75-percent-new-completely-unplugged [accessed 5th September 2020].
81. Tsagarakis N. G., Caldwell D. G., Negrello F., Choi W., Baccelliere L., Loc V. G., Noorden J., Muratore L., Margan A., Cardellino A., Natale L., Mingo Hoffman E., Dallali H., Kashiri N., Malzahn J., Lee J., Kryczka P., Kanoulas D. (2017) Walk-man: A high-performance humanoid platform for realistic environments. Journal of Field Robotics, 2017. 34(7). P. 1225–1259. Available from: doi: 10.1002/rob.21702.
82. Negrello F., Settimi A., Caporale D., Lentini G., Poggiani M., Kanoulas D. Muratore L., Luberto E., Santaera G., Ciarleglio L., Ermini L., Pallottino L., Caldwell D., Tsagarakis N. G., Bicchi A., Garabin M., Catalano M. G. (2018) Walkman humanoid robot: Field experiments in a post-earthquake scenario. Robotics and Automation Magazine. 99.
83. Jung T., Lim J., Bae H., Lee K. K., Joe H. M., Oh J. H. (2018) Development of the humanoid disaster response platform DRC-HUBO+. IEEE Transactions on Robotics. 34(1). P. 1–17. Available from: doi: 10.1109/TRO.2017.2776287.
84. Smith J. A., Sharf I., Trentini M. (2006) PAW: a hybrid wheeled-leg robot. IEEE International Conference on Robotics and Automation. P. 4043–4048. Available from: doi: 10.1109/RO-BOT.2006.1642323.
85. Dalvand M. M., Moghadam M. M. (2006) Stair climber smart mobile robot (MSRox). Autonomous robots. 20(1). P. 3–14. Available from: doi: 10.1007/s10514-006-5364-4.
86. Dalvand M. M., Moghadam M. (2003) Design and modeling of a stair climber smart mobile robot (MSRox). ICAR 2003: Proceedings of the 11th International Conference on Advanced Robotics. P. 1062–1067. Available from: doi: 10.1007/s10514-006-5364-4.
87. Chen S. C., Huang K. J., Chen W. H., Shen S. Y., Li C. H., Lin P. C. (2013) Quattroped: a leg-wheel transformable robot. IEEE/ASME Transactions on Mechatronics. 19(2). P. 730–742. Available from: doi: 10.1109/TMECH.2013.2253615.
88. Eich M., Grimminger F., Kirchner F. (2008) A versatile stair-climbing robot for search and rescue applications. IEEE International Workshop on Safety, Security and Rescue Robotics. P. 35–40. Available from: doi: 10.1109/SSRR.2008.4745874.
89. Eich M., Grimminger F., Kirchner F. (2008) Adaptive stair-climbing behaviour with a hybrid legged-wheeled robot. Advances in Mobile Robotics. P. 768–775. Available from: doi: 10.1142/9789812835772_0093.
90. Kim Y. S., Jung G. P., Kim H., Cho K. J., Chu C. N. (2013) Wheel transformer: A miniaturized terrain adaptive robot with passively transformed wheels. International Conference on Robotics and Automation. P. 5625–5630. Available from: doi: 10.1109/ICRA.2013.6631385.
91. Kim Y. S., Jung G. P., Kim H., Cho K. J., Chu C. N. (2014) Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels. Transactions on Robotics. 30(6). P. 1487–1498. Available from: doi: 10.1109/TRO.2014.2365651.
92. Arena P., De Fiore S., Patané L., Pollino M., Ventura C. (2010) Insect inspired unsupervised learning for tactic and phobic behavior enhancement in a hybrid robot. The 2010 International Joint Conference on Neural Networks (IJCNN). P. 1–8. Available from: doi: 10.1109/IJCNN.2010.5596542.
93. Morrey J. M., Lambrecht B., Horchler A. D., Ritzmann R. E., Quinn R. D. (2003) Highly mobile and robust small quadruped robots. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453). 1. P. 82–87. Available from: doi: 10.1109/IROS.2003.1250609.
94. Boston Dynamics. (2017) Wheeled robot “Handle”. [Video] Available from: https://www.youtube.com/watch?v=-7xvqQeoA8c,https://www.bostondynamics.com/handle, https://robots.ieee.org/robots/handle (accessed 10th September 2020).
95. Tavakoli M., Lourenco J., Viegas C., Neto P., de Almeida A. T. (2016) The hybrid OmniClimber robot: wheel based climbing, arm based plane transition, and switchable magnet adhesion. Mechatronics. 36. P. 136–146. Available from: doi: 10.1016/j.mechatronics.2016.03.007.
96. Zakharov K., Saveliev A., Sivchenko O. (2020) Energy-Efficient Path Planning Algorithm on Three-Dimensional Large-Scale Terrain Maps for Mobile Robots. International Conference on Interactive Collaborative Robotics. P. 319–330. Available from: doi: 10.1007/978-3-030-60337-3_31.
97. Ryumin D., Kagirov I., Axyonov A., Pavlyuk N., Saveliev A., Kipyatkova I., Zelezny M., Mporas I., Karpov A. (2020) Multimodal User Interface for an Assistive Robotic Shopping Cart. Electronics. 9(12), 2093. doi: 10.3390/electronics9122093.
Copyright (c) 2021 Екатерина Олеговна Черских, Алексей Алексеевич Ерашов, Александр Норайрович Быков
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
- Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).