Редкие и редкоземельные элементы и изотопный состав Hf в цирконе из палеопротерозойских диорит-гранодиоритовых интрузий Курского блока Сарматии как индикаторы их петрогенезиса

  • Константин Аркадьевич Савко Воронежский государственный университет https://orcid.org/0000-0002-7291-7024
  • Екатерина Хафисовна Кориш Воронежский государственный университет https://orcid.org/0000-0002-6573-1272
  • Николай Сергеевич Базиков Воронежский государственный университет https://orcid.org/0000-0002-0847-6498
  • Александр Владимирович Самсонов Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН https://orcid.org/0000-0003-4101-6159
  • Мария Владимировна Червяковская Институт геологии и геохимии им. А. Н. Заварицкого, Уральского отделения Российской академии наук https://orcid.org/0000-0002-7074-5433
Ключевые слова: Курский блок, Lu-Hf изотопия, циркон, петрогенезис

Аннотация

Введение: Lu-Hf изотопия циркона из известково-щелочных диоритранодиоритовых интрузийстойло-николаевского комплекса в краевой части Курского блока является важным индикатором петрогенезиса и тектонической обстановки их формирования. Методика: Выполнено изучение Lu-Hf изотопного состава цирконов. Определены содержания Ti, распределение редких и редкоземельных элементов в цирконе. Результаты и обсуждение: Морфологические особенности циркона, отношение Th/U, распределение редкоземельных элементов и высокие температуры кристаллизации по Ti-in-Zrn термометру предполагают его магматическую природу. Изотопный состав Hf свидетельствует о недонородных, главным образом, палеоархейских источниках с широким разбросом отрицательных значений εHf(T) и модельных возрастов. Заключение: Диорит-гранодиоритовые массивы формировались в тыловой магматической дуге древней континентальной окраины.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Константин Аркадьевич Савко, Воронежский государственный университет

д.г.-м.н., профессор, заведующий кафедрой полезных ископаемых и недропользования, Воронежский государственный университет, Воронеж, Российская Федерация

Екатерина Хафисовна Кориш, Воронежский государственный университет

ведущий инженер лаборатории комплексных исследований Воронежского государственного университета, Воронеж, Российская Федерация

Николай Сергеевич Базиков, Воронежский государственный университет

к.г.-м.н., доцент кафедры полезных ископаемых и недропользования Воронежского государственного университета, Воронеж, РФ

Александр Владимирович Самсонов, Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН

д.г.-м.н., главный научный сотрудник Института геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва, РФ

Мария Владимировна Червяковская, Институт геологии и геохимии им. А. Н. Заварицкого, Уральского отделения Российской академии наук

младший научный сотрудник Института геологии и геохимии им. Академика А. Н. Заварицкого Уральского отделения РАН, Екатеринбург, РФ

Литература

1. El-Bialy M.Z., Ali K.A. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian-Nubian Shield. Chem. Geol., 2013, vol. 360, pp. 54–73. DOI
2. Grimes C.B., John B.E., Cheadle M.J., Mazdab F.K., Wooden J. L., Swapp S., Schwartz J.J. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Mineral. Petrol., 2009, vol. 158, no. 6, pp. 757–783. DOI
3. Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Zircon, Eds. Hanchar, J,M., Hoskin, P.W.O.. Washington, DC, Mineralogical Society America, 2003, vol. 53, pp. 27−62. DOI
4. Harrison T.M., Watson E.B., Aikman A.B. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 2007, vol. 35, no. 7, pp. 635–638. DOI
5. Zhang C., Liu D.D., Zeng J.H., Jiang S., Luo Q., Kong X.Y., Liu L.F. Nd–O–Hf isotopic decoupling in S-type granites: Implications for ridge subduction. Lithos, 2019, vol. 332, pp. 261–273. DOI
6. Zhang C., Santosh M., Luo Q., Jiang S., Liu L., Liu D. Impact of residual zircon on Nd–Hf isotope decoupling during sediment recycling in subduction zone. Geoscience Frontiers, 2019, vol. 10, no. 1. pp. 241–251. DOI
7. Belousova E.A., Griffin W.L., O'Reilly S.Y., Fisher N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 2002, vol. 143, no. 5, pp.602–622. DOI
8. Aoki S., Aoki K., Tsujimori T., Sakata S., Tsuchiya Y. Oceanic arc subduction, stagnation, and exhumation: Zircon U–Pb geochronology and trace-element geochemistry of the Sanbagawa eclogites in central Shikoku, SW Japan. Lithos, 2020, vol. 358–359, 105378. DOI
9. Niu L., Hong T., Xu X.-W., Wang X.-H., Li H., Ke Q., Ma Y.-C. Geochronology and trace elements of zircon in the Southern Chinese Altay: Implications for tectonic setting. Geol. J, 2021, vol. 56, no. 7, pp. 3605–3625. DOI
10. Grimes C.B., Wooden J.L., Cheadle M.J., John B.E. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol., 2015, vol. 170, no. 46. DOI
11. Ewing T.A., Hermann J., Rubatto D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during hightemperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib. Mineral. Petrol., 2013, vol. 165, no. 4, pp. 757–779. DOI
12. Watson E.B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 2006, vol. 151, no. 4. pp. 413–433. DOI
13. Ferry J.M., Watson E.B.. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 2007, vol, 154, no. 4, pp. 429–437. DOI
14. Wang Q., Zhu D.C., Zhao Z.D., Guan Q., Zhang X.Q., Sui Q.L., Mo X.X. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 2012, vol. 53, pp. 59–66. DOI
15. Golivkin N.I. Petrografiya i petrokhimiya porod stoilonikolaevskogo gabbro-dioritovogo kompleksa [Petrography and petrochemistry of the Stoilo-Nikolaevsky gabbro-diorite complex]. Materialy po geologii i poleznym iskopaemym tsentral'nykh raionov evropeiskoi chasti SSSR − Materials on the geology and mineral resources of the Central regions of the European part of the USSR, Moscow, 1962, vol. V, pp. 25–33 (In Russ.)
16. Krestin E.M., Leonenko E.I. Petrologiya i potentsial'naya rudonosnost' gabbro-diorit-granodioritovoi formatsii rannego dokembriya KMA [Petrology and potential ore content of the gabbro-diorite-granodiorite formation of the Kursk Magnetic Anomaly early Precambrian]. Izvestiâ vysših učebnyh zavedenij. Geologiâ i razvedka − Proceedings of higher educational establishments. Geology and Exploration, 1978, no. 8. pp. 33–45. (In Russ.)
17. Chernyshov N.M., Bocharov V.L., Molotkov S.P. Magmaticheskie formatsii i rudonosnost' rannego dokembriya VKM [Igneous formation and ore content of Early Precambrian of the Voronezh Massif]. «Petrologiya i metallogeniya magmaticheskikh i metamorficheskikh kompleksov KMA i smezhnykh raionov» − “Petrology and metallogeny of the igneous and metamorphic complexes of KMA”, Voronezh, VSU, 1983, pp. 3–49. (In Russ.)
18. Kholin V.M. Geologiya, geodinamika i metallogenicheskaya otsenka ranneproterozoiskikh struktur KMA Diss. kand. geol.- min. nauk [Geology, geodynamics and metallogenic estimation of the Paleoproterozoic KMA Structures. PhD in geology and mineralogy sci. diss.], Voronezh, 2001, 24 p. (In Russ.)
19. Artemenko G.V. Geokhronologicheskaya korrelyatsiya vulkanizma i granitoidnogo magmatizma yugo-vostochnoi chasti Ukrainskogo shchita i Kurskoi magnitnoi anomalii [Geochornological correlation of the volcanism and granitoid magmatism of south-eastern part of the Ukrainian Schield and Kursk Magnetic Anomaly. Geokhimiya i rudoobrazovanie − Geochemistry and ore formation, 1995, vol. 21, pp. 129–154 (In Russ.)
20. Korish E.Kh., Savko K.A., Samsonov A.V., Chervyakovskaya M.V. Paleoproterozoic diorites of the Trosnyansky Massif within the Kursk Block of Sarmatia: U-Pb age, isotope systematics and sources of melts. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Geologija − Proceedings of Voronezh State University. Series: Geology, 2020, no. 1, pp. 87–99. DOI
21. Savko K.A., Samsonov A.V., Bazikov N.S., Kozlova E.N. Paleoproterozoiskie granitoidy Tim-Yastrebovskoi struktury Voronezhskogo kristallicheskogo massiva: geokhimiya, geokhronologiya i istochniki rasplavov [Palaeoproterozic granitoids of the Tim-Yastrebovskaya structure, Voronezh Crystalline Massif: Geochemistry, geochronology, and melt sources]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Geologija − Proceedings of Voronezh State University. Series: Geology, 2014, no. 2, pp. 56–78. URL
22. Savko K.A., Korish E.Kh., Bazikov N.S., Tsybulyaev S.V., Chervyakovskiy V.S., Kholina N.V., Hussain I. Paleoproterozoic I-type granodiorites of the Lunevsky massif, Kursk Block, Sarmatia: U-Pb age, isotopic systematics and sources of melt. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Geologija = Proceedings of Voronezh State University. Series: Geology, 2021, no. 4, pp. 4–23. DOI
23. Savko K.A., Samsonov A.V., Kotov A.B., Sal‟nikova E.B., Korish E.H., Larionov A.N., Anisimova I.V., Bazikov N. S. The early Precambrian metamorphic events in Eastern Sarmatia. Precambrian Res., 2018, vol. 311, pp. 1–23. DOI
24. Korish E.Kh., Savko K.A., Sal'nikova E.B., Samsonov A.V., Ivanova A.A., Larionov A.N., Tsybulyaev S.V. Paleoproterozoiskii diorit-granodioritovyi magmatizm Kurskogo bloka Sarmatii: rasshifrovka sblizhennykh vo vremeni geologicheskikh sobytii [Paleoproterozoic diorite-granodiorite magmatism of the Kursk block of Sarmatia: decoding of geological events close in time]. Trudy Karel'skogo nauchnogo tsentra RAN − Proccedings of the Karelian Scientific Center of RAS, 2022, no. 5, pp. 60–63. DOI
25. Savko K.A., Bazikov N.S., Artemenko G.V. Geochemical evolution of the banded iron formations of the Voronezh crystalline massif in the early Precambrian: Sources of matter and geochronological constraints. Stratigraphy and Geological Correlation, 2015, vol. 23, no. 5, pp. 451–467. DOI
26. Terentiev R.A., Savko K.A., Santosh M., Korish E.H., Sarkisyan L.S., Paleoproterozoic granitoids of the Losevo terrane, East European Craton: Age, magma source and tectonic implications. Precam. Res., 2016, vol. 287, pp. 48–72. DOI
27. Terentiev R.A, Savko K.A., Santosh M. Post-collisional two-stage magmatism in the East Sarmatian Orogen, East European Craton: evidence from the Olkhovsky ring complex. J. Geol. Soc., 2018, vol. 175, pp. 86–99. DOI
28. Terentiev R.A., Savko K.A., Santosh M., Petrakova M.E., Korish E.H. Paleoproterozoic granitoids of the Don terrane, East-Sarmatian Orogen: age, magma source and tectonic implications. Precam. Res., 2020, vol. 346, 105790. DOI
29. Savko K.A., Samsonov A.V., Kholin V.M., Bazikov N.S. The Sarmatia megablock as a fragment of the Vaalbara supercontinent: Correlation of geological events at the Archaean-Paleoproterozoic transition. Stratigraphy and Geological Correlation, 2017, vol. 25, no. 2, pp. 123–145. DOI
30. Black L.P., Gulson B.L. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. J. Austral. Geol. Geophys., 1978, vol. 3, pp. 227–232.
31. Jackson S.E., Norman J.P., William L.G., Belousova E.A. The application of laser ablation-inductively coupled plasmamass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol., 2004, vol. 211, pp. 47–69. DOI
32. Giovanardi T., Lugli, F. The Hf-INATOR: a free data reduction spreadsheet for Lu/Hf isotope analysis. Earth Sci. Informat., 2017, pp. 1–7. DOI
33. Terent'ev R.A., Savko K.A. Geokhimiya tsirkonov iz metaplagioriolitov i trond'emitov Losevskoi strukturno-formatsionnoi zony Voronezhskogo kristallicheskogo massiva [The geochemistry of zircons from metalplagiorhyolite and trondhjemite of Losevo structural and formational zone, Voronezh Crystalline Massif]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Geologija −Proceedings of Voronezh State University. Series: Geology, 2015, no. 2, pp. 53–62. URL
34. Rubatto D. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 2017, vol. 83, no. 1, pp. 261–295. DOI
35. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghøj K., Schwartz J.J. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology, 2007, vol. 35, pp. 643–646. DOI
Опубликован
2023-03-23
Как цитировать
Савко, К. А., Кориш, Е. Х., Базиков, Н. С., Самсонов, А. В., & Червяковская, М. В. (2023). Редкие и редкоземельные элементы и изотопный состав Hf в цирконе из палеопротерозойских диорит-гранодиоритовых интрузий Курского блока Сарматии как индикаторы их петрогенезиса. Вестник ВГУ. Серия: Геология, (1), 4-17. https://doi.org/10.17308/geology/1609-0691/2023/1/4-17
Раздел
Общая и региональная геология

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>