Аномальные магнитные свойства палеопротерозойских железистых кварцитов Курского блока (Воронежский кристаллический массив)
Аннотация
Введение: палеопротерозойские железисто-кремнистые формации играют ключевую роль в формировании аномального магнитного поля Курского блока Воронежского кристаллического массива (ВКМ). Целью данного исследования является изучение петромагнитных характеристик железистых кварцитов Курского блока ВКМ, ориентированное на решение задач построения геологически содержательных магнитных моделей литосферы региона.
Методика: изучены образцы керна железистых кварцитов из скважины на фланге Стойленского месторождения КМА. Выполнены измерения величины магнитной восприимчивости, её анизотропии и температурной зависимости. Определялось значение естественной остаточной намагниченности и параметров петель гистерезиса образцов пород. Выполнено петрографическое описание минерального состава рудной компоненты породы для образцов с наиболее контрастными петромагнитными свойствами.
Обсуждение результатов: магнитная восприимчивость образцов варьирует в диапазоне от 0.32 до 1.45 ед. СИ со средним значением 0.87 ед. СИ и анизотропией от 24 до 136%. Естественная остаточная намагниченность характеризуется аномально высокими значениями до 2645 А/м при среднем значении 660 А/м. Отношение Кёнигсбергера для изученных образцов изменяется от 8 до 34. Величина намагниченности насыщения колеблется в пределах от 1.30 до 12.34 мAм2. Коэрцитивная сила изменяется в пределах от 2.52 до 21.01 мТл, а остаточная коэрцитивная сила от 10.73 до 62.36 мТл. Термомагнитные определения указывают на преобладание в изученных образцах ферромагнитной фазы с точкой Кюри около 568°С.
Заключение: полученные оценки магнитной восприимчивости показывают, что при моделировании рудных объектов, сложенных железистыми кварцитами, обязательно следует учитывать эффект размагничивания на формирование внешнего магнитного поля. Оценка аномальной величины остаточного намагничения может выступать как верхнее ограничение на искомые решения обратной задачи магнитометрии, учитывающей индуктивную/остаточную намагниченность и эффект размагничивания. Наличие однодоменных зёрен магнетита и высокое значение коэрцитивной силы способствует консервации вектора естественной остаточной намагниченности пород железисто-кремнистой формации Курского блока.
Скачивания
Литература
2. Shmidt N. G. Opyt primeneniya geofizicheskih metodov dlya celej geologicheskogo kartirovaniya kristallicheskogo fundamenta KMA [Experience in the application of geophysical methods for the purposes of geological mapping of the crystal foundation of the KMA]. Sovetskaya geologiya – Soviet Geology, 1957, no. 58, pp. 138−139 (In Russ.)
3. Zhelezorudnye formacii dokembriya KMA i ih perspektivnaya ocenka na zheleznye rudy [Iron ore formations of the Precambrian of the KMA and their prospective assessment for iron ores]. Ed. N. I. Golivkin. Moscow, Nedra publ., 1982, 227 p. (In Russ.)
4. Shchegolev I. N. Zhelezorudnye mestorozhdeniya dokembriya i metody ih izucheniya [Iron ore deposits of the Precambrian and methods of their study]. Moscow, Nedra publ., 1985, 197 p. (In Russ.)
5. Kopaev V. V. O regional'nyh magnitnyh anomaliyah KMA i prilegayushchih rajonov [On Regional Magnetic Anomalies of the KMA and Adjacent Areas]. Materialy po geologii i poleznym iskopaemym Central'nyh rajonov Evropejskoj chasti SSSR – Materials on Geology and Minerals of the Central Regions of the European Part of the USSR, 1959, pp. 214−221 (In Russ.)
6. Erinchek Yu. M., Litvinova T. P. (Eds.). Karta anomal'nogo magnitnogo polya Rossii, uvyazannaya s kartami po territorii stran SNG. Masshtab 1:2500000 [Map of the anomalous magnetic field of Russia, linked to maps on the territory of the CIS countries. Scale 1:2500000]. Saint Petersburg, VSEGEI, 2008. (In Russ.).
7. Maus S., Barckhausen U., Berkenbosch H., Bournas N., Brozena J., Childers V., Dostaler F., Fairhead J. D., Finn C., von Frese R. R. B., Gaina C., Golynsky S., Kucks R., Lühr H., Milligan P., Mogren S., Müller R. D., Olesen O., Pilkington M., Saltus R., Schreckenberger B., Thébault E., Tontini F. C. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, 2009, 10 (8), Q08005. DOI: 10.1029/2009GC002471
8. Meyer B., Saltus R., Chulliat A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information, 2017. DOI: 10.7289/V5H70CVX
9. Sabaka T. J., Olsen N., Purucker M. E. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophysical Journal International, 2004, 159, pp. 521–547. DOI: 10.1111/j.1365-246X.2004.02421.x
10. Thebault E., Vigneron P., Langlais B., Hulot G. A Swarm lithospheric magnetic field model to SH degree 80. Earth Planets Space, 2016, 68, no. 126, pp. 1−3. DOI: 10.1186/s40623-016-0510-5
11. McEnroe S. A., Langenhorst F., Robinson P., Bromiley G., Shaw C. What is magnetic in the lower Crust? Earth and Planetary Science Letters, 2004, 226, no. 1−2, pp. 175−192. DOI: 10.1016/j.epsl.2004.07.020
12. McEnroe S. A., Fabian K., Robinson P., Gaina C., Brown L. L. Crustal magnetism, lamellar magnetism and rocks that remember. Elements, 2009, vol. 5, pp. 241–246. DOI: 10.2113/gselements.5.4.241
13. Brown L. L., McEnroe S. A., Peck W. H., Nilsson L. P. Anorthosites as Sources of Magnetic Anomalies . In: E.Petrovsk et al. (eds.). The Earth’s Magnetic Interior. IAGA Special Sopron Book Series, 2011. DOI: 10.1007/978-94-007-0323-0_23
14. Launay N., Quesnel Y., Rochette P., Demory F. Iron formations as the source of the West African magnetic crustal anomaly. Frontiers in Earth Science, 2018, vol. 6:32. DOI: 10.3389/feart.2018.00032
15. Maat G. W., Church N. S., Oda H., Pastore Z., McEnroe S. A. Characterization and imaging magnetic minerals from ultramafic roots of a LIP: implication for deep crustal magnetic sources. Geophysical Journal International, 2024, 236, no. 3, pp. 1577–1595. DOI: 10.1093/gji/ggad479
16. Kopaev V. V., Martynova T. A. O magnitnoj vospriimchivosti zhelezistyh kvarcitov Starooskol'skogo zhelezorudnogo rajona KMA [On the magnetic susceptibility of ferruginous quartzites of the Stary Oskol iron ore region of the KMA]. Izvestiya AN SSSR. Ser. Geofizika – Proceedings of the Academy of Sciences of the USSR. Ser. Geophysics, I960, no. 7, pp. 988−997 (In Russ.)
17. Krutikhovskaya Z. A., Zavoisky V. N., Podolyanko S. M., Savenko B. Y. Namagnichennost' porod zhelezorudnyh formacij Bol'shogo Krivogo Roga i KMA [Magnetization of Rocks of Iron Ore Formations of Big Krivoy Rog and KMA]. Kiev, Naukova Dumka publ., 1964. 158 p. (In Russ.)
18. Afanasyev N. S., Pavlovsky V. I. Fizicheskie svojstva porod fundamenta VKM. Petrografija dokembrija Russkoj platformy [Physical properties of the basement rocks of the VKM. Petrography of the Precambrian of the Russian platform]. Kiev, Naukova Dumka publ., 1970, pp. 421−427 (In Russ.)
19. Zhavoronkin I. A., Krasovitskaya R. S., Krivtsov I. I., Filaretov G. I., Afanasyev N. S., Pavlovsky V. I. Petrofizicheskaya harakteristika porod dokembriya Voronezhskogo kristallicheskogo massiva i ee ispol'zovanie pri sostavlenii geologo-geofizicheskih skhem [Petrophysical characteristics of Precambrian rocks of the Voronezh crystalline massif and its use in the compilation of geological and geophysical schemes]. Petrofizicheskaja harakteristika Sovetskoj chasti Baltijskogo shhita − Petrophysical characteristics of the Soviet part of the Baltic Shield, Apatity: Kola Branch AS SSSR, 1976, pp. 28−29 (In Russ.)
20. Antonov Yu. V., Slyusarev S. V. Izuchenie magnitnyh svojstv zhelezistyh kvarcitov pri razvedke zhelezorudnyh mestorozhdenij [Study of the Magnetic Properties of Ferruginous Quartzites in the Exploration of Iron Ore Deposits] Geophysical Studies at the Kursk Magnetic Anomaly. Voronezh, VSU publ., 1981, pp. 117−124 (In Russ.)
21. Afanasyev N. S. Petrofizika dokembrijskih obrazovanij i geologicheskoe stroenie Voronezhskogo kristallicheskogo massiva. Dis. … d-ra geol.-min. nauk. [Petrophysics of Precambrian Formations and Geological Structure of the Voronezh Crystal Massif. Diss. Dr. geol. min. sciences]. Voronezh: VSU publ., 1982. 310 p. (In Russ.)
22. Genshaft Yu. S., Lykov A. V., Mironova N. A., Saltykovsky A. Ya., Afanasyev N. S. Petromagnitnoe izuchenie porod fundamenta Voronezhskogo kristallicheskogo massiva [Petromagnetic study of the foundation rocks of the Voronezh crystalline massif]. Fizika Zemli – Physics of the Earth, 1997, no. 9, pp. 38−45 (In Russ.)
23. Afanasyev N. S. Petrofizika zemnoj kory VKM. Litosfera Voronezhskogo kristallicheskogo massiva po geofizicheskim i petrofizicheskim dannym [Petrophysics of the Earth's crust of the VCM. Lithosphere of the Voronezh crystalline massif based on geophysical and petrophysical data]. Voronezh: Scientific Book, 2012, pp. 21−88 (In Russ.)
24. Zhavoronkin V. I., Terentyev R. A., Kondaurova K. A. Petrofizicheskie i petrologicheskie osobennosti elkinskogo intruzivnogo massiva (VKM) [Petrophysical and Petrological Features of the Elkinsky Intrusive Massif (VCM)]. Fiziko-himicheskie i petrofizicheskie issledovanija v naukah o Zemle: materialy konferencii [Physicochemical and Petrophysical Studies in Earth Sciences: coll. art. conference]. Moscow, IGEM RAN publ., 2019, pp. 108−111 (In Russ.)
25. Zhavoronkin V. I., Kondaurova K. A. Petrofizicheskie harakteristiki magmatitov elanskogo intruzivnogo kompleksa (Voronezhskij kristallicheskij massiv) [Petrophysical characteristics of magmatites of the Elan intrusive complex (Voronezh crystal massif)]. Voprosy teorii i praktiki geologicheskoj interpretacii geofizicheskih polej: materialy 47 sessii Mezhdunarodnogo seminara im. D. G. Uspenskogo [Issues of theory and practice of geological interpretation of geophysical fields: materials of the 47th session of the D. G. Uspensky International Seminar]. Voronezh, Scientific Book publ., 2020, pp. 121−123 (In Russ.)
26. Muravina O. M., Zhavoronkin V. I., Kharin A. Yu., Ponomarenko I. A. Petrofizicheskie parametry gabbrodoleritov novogol'skogo kompleksa (Voronezhskij kristallicheskij massiv) [Petrophysical parameters of gabbrodolerites of the Novogolsky complex (Voronezh crystal massif)]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya – Proceedings of Voronezh State University. Series: Geology, 2023, no. 4, pp. 134−139 (In Russ.). DOI: 10.17308/geology/1609-0691/2023/4/134-139
27. Muravina O. M., Glaznev V. N., Zhavoronkin V. I., Mints M. V. Reflection of the Petrophysical Basement Rocks Models in Geophysical Fields. Springer Proceedings in Earth and Environmental Sciences: Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields, 2019, pp. 49−54. DOI: 10.1007/978-3-319-97670-9_6
28. Zhavoronkin I. A., Strakhov V. N. Ob interpretacii slozhnyh magnitnyh anomalij Belgorodskogo rajona KMA [On the interpretation of complex magnetic anomalies of the Belgorod region of the KMA]. Prikladnaya geofizika – Applied geophysics, 1961, vol. 31, pp. 248−256 (In Russ.)
29. Strakhov V. N., Lapina M. I., Zhavoronkin I. A. Sovremennaya metodika interpretatsii magnitnykh i gravitational'nykh anomalii tipa KMA [Modern methods of interpretation of magnetic and gravitational anomalies of the KMA type]. Izvestiya Akademii nauk SSSR. Fizika Zemli – Proceedings of the USSR Academy of Sciences. Physics of the Earth, 1971, no. 3, pp. 49−66 (In Russ.)
30. Boydachenko V. N., Wasserman I. S., Zhavoronkin I. A., Zaltsmanovich I. I. Geofizicheskie metody pri prognozirovanii, poiskah i razvedke zhelezorudnyh mestorozhdenij KMA [Geophysical methods in forecasting, search and exploration of iron ore deposits of KMA]. Kiev, IGFM publ., 1986, 53 p. (In Russ.)
31. Glaznev V. N., Zhavoronkin V. I., Muravina O. M., Antonova I. Yu., Voronova T. A., Chereshinsky A. V., Kholin P. V. Stroenie verhnej kory eleckogo uchastka Losevskogo terrejna (Voronezhskij kristallicheskij massiv) po dannym plotnostnogo modelirovaniya [Structure of the upper crust of the Yelets section of the Losev terrain (Voronezh crystal massif) according to density modeling data]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya – Proceedings of Voronezh State University. Series: Geology, 2019, no. 3, pp. 74−83 (In Russ.). DOI: 10.17308/geology.2019.3/1815
32. Blokh Yu. I. Teoreticheskie osnovy kompleksnoj magnitorazvedki [Theoretical Foundations of Complex Magnetic Exploration]. Moscow publ., 2012, 160 p. (In Russ.).
33. Teknik V. Estimation of the depth to the magnetic basement in Europe using the spectral method. Pure and Applied Geophysics, 2024, 181 (4), pp. 1259–1279. DOI: 10.1007/s00024-024-03459-3
34. Savko K. A., Bazikov N. S., Artemenko G. V. Geohimicheskaya evolyuciya zhelezisto-kremnistyh formacij Voronezhskogo kristallicheskogo massiva v rannem dokembrii: istochniki veshchestva i geohronologicheskie ogranicheniya [Geochemical evolution of ferruginous-siliceous formations of the Voronezh crystalline massif in the early Precambrian: sources of matter and geochronological limitations]. Stratigrafiya. Geologicheskaya korrelyaciya – Stratigraphy. Geological correlation, 2015, vol. 25, no. 5, pp. 3–21 (In Russ.)
35. Savko K. A., Samsonov A. V., Korish E. Kh., Bazikov N. S., Larionov A. N. Paleoproterozojskie dajki dacitov Voroncovskogo terrejna Volgo-Donskogo orogena: geohimiya, vozrast i petrogenezis [Paleoproterozoic dikes of the Vorontsovsky terrane of the Volga-Don orogen: geochemistry, age and Petrogenesis]. Petrologiya – Petrology, 2024, vol. 32, no. 2, pp. 139−153 (In Russ.). DOI: 10.31857/S0869590324020018
36. Kholin V. M. Geologiya, geodinamika i metallogenicheskaya ocenka ranneproterozojskih struktur KMA. Avtoref. diss. … kand. geol. min. nauk. [Geology, geodynamics and metallogenic assessment of the Early Proterozoic structures of the KMA. Avtoref. … geol. min. sciences]. Voronezh, VSU publ., 2001. 24 p. (In Russ.)
37. Tsybulyaev S. V., Savko K. A., Samsonov A. V., Korish E. Kh. Paleoproterozojskie riftogennye vulkanity OIB- i MORB-tipa Kurskogo bloka vostochnoj Sarmatii: petrologiya i geodinamika [Paleoproterozoic rifting volcanoes of the OIB- and MORB-type Kursk block of eastern Sarmatia: petrology and geodynamics]. Petrologiya – Petrology, 2021, vol. 29, no. 2, pp. 136−171 (In Russ.). DOI: 10.31857/S0869590321020060
38. Savko K. A., Kholina N. V., Kholin V. M., Larionov A. M. Vozrast neoarhejskih ul'trakalievyh riolitov – vazhnyj geohronologicheskij reper evolyucii rannedokembrijskoj kory Voronezhskogo kristallicheskogo massiva [Age of Neoarchaean ultrapotassium rhyolites – an important geochronological reference point for the evolution of the Early Precambrian crust of the Voronezh crystalline massif]. Izotopnoe datirovanie geologicheskih processov: novye rezul'taty, podhody i perspektivy: materialy konferencii [Isotope Geochronology: coll. art. all-Russian conference], Saint-Petersburg, Sprinter publ., 2015, pp. 247–249 (In Russ.)
39. Molotkov S. P., Kostyukov V. I., Lositsky V. I., Krivtsov I. I., Zolototrubova E. I., Ponomareva R. N. Geologicheskaya karta Voronezhskogo kristallicheskogo massiva masshtaba 1:500000 [Geological map of the Voronezh crystalline massif at a scale of 1:500000] Ministry of Natural Resources of the Russian Federation, AO “Voronezhgeologia”, AO “Belgorodgeologia”, Voronezh State University, “Khors”. Voronezh publ., 1999 (In Russ.)
40. Tyuremnov V. A., Glaznev V. N., Osipenko L. G. Issledovanie vliyaniya tekhnogennyh nagruzok i akusticheskih kolebanij na namagnichennost' zhelezistyh kvarcitov [Study of the effect of technogenic loads and acoustic vibrations on the magnetization of ferruginous quartzites]. Geofizicheskij zhurnal – Geophysical Journal, 2006, vol. 28, no. 5, pp. 190−195 (In Russ.)
41. Tyuremnov V. A., Glaznev V. N., Osipenko L. G. Magnitouprugie effecti v hromsoderzaschih porodax massiva Pados-tundra (Kol’skii poluostrov) [Magnetoelastic effects in chromium-containing rocks of the Pados-tundra massif (Kola Peninsula)]. Geofizicheskij zhurnal – Geophysical Journal, 2008, vol. 30, no. 6, pp. 141−147 (In Russ.)
42. Tauxe L, Banerjee S. K., Butler R. F., van der Voo R. Essentials of Paleomagnetism, 5th Web Edition, 2021.
43. Day R., Fuller M., Schmidt V. A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 1977, vol. 13, pp. 260–267. DOI: 10.1016/0031-9201(77)90108-X
44. Dunlop D. J. Theory and application of the Day plot (Mrs / Ms versus Hcr / Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 2002, vol. 107(B3), 2056. DOI: 10.1029/2001JB000487
45. Dunlop D. J. Theory and application of the Day plot (Mrs / Ms versus Hcr / Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research, 2002, vol, 107(B3), 2057. DOI: 10.1029/2001JB000486
46. Petrofizika. Spravochnik (v tryoh knigah). Kniga pervaya. Gornye porody i polezny iskopaemye [Petrophysics. Handbook (in three books. Book One. Rocks and minerals]. Ed. N. B. Dortman. Moscow, Nedra publ., 1992, 391 p. (In Russ.)
47. Hunt C. P., Moskowitz B. M., Banerjee S. K. Magnetic properties of rocks and minerals. In T.J. Ahrens (Ed.). Rock Physics and Phase Relations, 1995, pp. 189−204. DOI: 10.1029/RF003p0189
48. Clark D. A. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. Journal of Australian Geology and Geophysics, 1997, vol. 17, no 2, pp. 83−103.
49. Clark D. A., Schmidt P.W. Magnetic properties and magnetic signatures of BIFs of the Hamersley Basin and Yilgarn Block, Western Australia. Geophysical signatures of Western Australian mineral deposits. The University of Western Australia, 1994, no. 26, pp. 343−354.
50. Lozovsky I. N., Varentsov I. M. Vliyanie neodnorodnosti magnitnoj pronicaemosti na magnitotelluricheskie otkliki: 1D- i 2D-modeli [Influence of Magnetic Permeability Inhomogeneity on Magnetotelluric Responses: 1D and 2D Models]. Fizika Zemli – Physics of the Earth, 2022, no. 5, pp. 14–25 (In Russ.). DOI: 10.31857/S0002333722050209
51. Patterson B., Austin J., Pearce M. Constrained 3D modelling and geochemical analyses of the Horseshoe Range BIF: tools for evaluating magnetic signatures under cover. ASEG Extended Abstracts, 2018, no. 1, pp. 1−8. DOI: 10.1071/ASEG2018abW8_1E
52. Zhang Y., Shikun Dai S., Zhang Q., Ling J. Iterative algorithm for computing magnetic field considering remanent magnetization and demagnetization. Geophysical Journal International, 2025, vol. 240, pp. 362–385. DOI: 10.1093/gji/ggae385
53. Butler R. F. Paleomagnetism. Magnetic domains to geologic terranes. Boston. Blackwell Scientific, 1992. 288 p.
54. Paterson G. A., Zhao X., Jackson M., Heslop D. Measuring, processing, and analyzing hysteresis data. Geochemistry, Geophysics, Geosystems, 2018, vol. 19, pp. 1925–1945. DOI: 10.1029/2018GC007620











