Metabasites of the Keleinogubsky massif of the Belomorian mobile belt of the Fennoscandian shield: composition, structure and metamorphic conditions
Abstract
Introduction: Basite intrusions are important in the process of decoding the history of the formation of folded areas. Within our study we studied in detail the peculiarities of the geological structure as well as mineralogical and petrological characteristics of the Keleinogubsky massif, one of the key objects to be studied when decoding the history of the development of the Belomorian mobile belt of the Fennoscandian shield. Methodology: The parameters of metamorphism expressed in the formation of corona structures in the centre of the Keleinogubsky massif were assessed using the TWEEQU multi-equilibrium thermobarometry method in the TWQ program. The conditions of metamorphic transformations that led to the formation of new mineral parageneses on the edge of the intrusion were calculated in the NCTiFMMnASHO system using the chemical composition of the rocks (the method of pseudosections) in Perple_X. Results and discussion: Mineralogical and petrological study of the Keleinogubsky massif of the Belomorian mobile belt showed that the rocks of the intrusion had various level of preservation, from intensively metamorphised rocks of the edges to those with the preserved relicts of the primary-magmatic minerals and corona structures of the rocks in the centre of the intrusion. One of the rock-forming minerals of the massif is olivine: magmatic olivine was preserved in the rocks in the centre of the massif and along its edges and metamorphic olivine was present only in the edges of the intrusion. Both types of olivine have similar magnesium content but metamorphic olivine is different as it has higher concentrations of Mn and contains inclusions of metamorphic minerals, such as diopside, amphibole, and orthopyroxene. The assessment of the conditions of the formation of metamorphic olivine showed that its crystallisation could occur at Т~900°С and Р ≥ 8 kbar. The assessment of the conditions of metamorphic transformations in the rocks in the centre of the massif demonstrated that relict early metamorphic orthopyroxene-clinopyroxene rims around the magmatic olivine were formed at T ~850–950°С and P = 3–4 kbar. Conclusions: As a result of the study of metabasites of the Keleinogubsky massif, two stages of granulite metamorphism were identified. The early metamorphic stage corresponding to the conditions of the granulite facies of low pressure (Т=850–950oС, Р=3–4 kbar) is expressed by the formation of corona structures preserved in the central part of the massif. The late granulite metamorphism of high pressure was recorded along the garnet rims of the central part of the intrusion and intensive metamorphic processing (Т=900 oС, Р ≥ 8 kbar) of the rocks of the massif edge with the formation of secondary olivine.
Downloads
References
2. Slabunov A. I., Volodichev O. I., Svetov S. A., Stepanov V. S., Lobach-Zhuchenko S. B., Chekulaev V. P., Arestova N. A., Bibikova E. V., Balagansky V.V., Sorjonen-Ward P., Shchipansky A.A. The Archean of the Baltic Shield: Geology, Geochronology, and Geodynamic settings. Geotectonics, 2006, vol. 40, no. 6, pp. 409–433. DOI
3. Slabunov A. I., Volodichev O. I., Balaganskij V. V., Bibikova E. V., Stepanov V. S., Stepanova A. V. Belomorskii podvizhnyi poyas: Obshchie cherty geologicheskogo stroeniya i evolyutsii. [Belomorian mobile belt: Common features of geological structure and evolution]. Belomorskii podvizhnyi poyas i ego analogi: Geologiya, geokhronologiya, geodinamika, minerageniya [W Belomorian mobile belt and its analogues: Geology, geochronology, geodynamics, minerageny]. Petrozavodsk, IG KarNTs RAN, 2005, pp. 6–12. (in Russ.)
4. Stepanova A. V., Stepanov V. S., Larionov A. N., Salnikova E. B., Samsonov A. V., Azimov P., Egorova S.V., Larionova Y. O., Sukhanova M. A., Kervinen A. V., Maksimov O. A., Relicts of Paleoproterozoic LIPs in the Belomorian province, eastern Fennoscandian Shield: barcode reconstruction for a deeply eroded collisional orogen. Spec. Publ. Geological Society of London. 2021. DOI
5. Stepanov V. S. Osnovnoi magmatizm dokembriya Zapadnogo Belomor'ya [The Precambrian Mafic Magmatism in the Western White Sea Region]. Leningrad, Nauka publ., 1981. 216 p. (in Russ.).
6. Sharkov E. V, Smolkin V. F, Krassivskaya I. S. Early Proterozoic Igneous province of Siliceous High-Mg Boninite-like Rocks in the Eastern Baltic Shield. Petrology, 1997, vol. 5, pp. 448–465.
7. Sharkov E. V, Krassivskaya I. S., Chistyakov A. V. Dispersed mafic – ultramafic intrusive magmatism in Early Palaeoproterozoic mobile zones of the Baltic Shield: an example of the Belomorian drusite (coronite) complex. Petrology, 2004, vol. 12, pp. 561–582.
8. Stepanova A. V., Stepanov V. S. Paleoproterozoic mafic dyke swarms of the Belomorian Province, eastern Fennoscandian Shield. Precambrian Research, 2010, vol.183, pp. 602– 616.
9. Daly J. S., Balagansky V. V., Timmerman M. J., Whitehouse M. J. The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Gee D. G., Stephenson R. A. (eds). European Lithosphere Dynamics. Geological Society, London. Memoirs, 32. 2006, pp. 579–598.
10. Babarina I. I., Stepanova A. V., Azimov P. Y., Serebryakov N. S. Heterogeneous basement reworking during Palaeoproterozoic collisional orogeny within the Belomorian province, Fennoscandian Shield. Geotectonics, 2017, vol. 51, pp. 463–478. DOI
11. Balaganskii V. V., Mints M. V., Deili Dzh. S. Paleoproterozoiskii Laplandsko-Kol'skii orogen. [Paleoproterozoic Lapland Kola orogen]. Stroenie i dinamika litosfery Vostochnoi Evropy: rezul'taty issledovanii po programmam EVROPROBY [The structure and dynamics of the lithosphere of Eastern Europe: research results under the EUROPROBA programs]. Moscow, GEOKART, GEOS publ., 2006, pp. 142–155. (in Russ.)
12. Li X., Zhang L., Wei C., Slabunov A.I. Metamorphic PT path and zircon U–Pb dating of Archean eclogite association in Gridino complex, Belomorian province, Russia. Precambrian Research, 2015, vol. 268, pp. 74–96.
13. Berezin A. V, Skublov S. G., Marin Y. B., Mel'nik A. E., Bogomolov E. S. New occurrence of eclogite in the Belomorian mobile belt: Geology, metamorphic conditions, and isotope age. Doklady Earth Sciences, 2013, vol. 448, pp. 43–53. DOI
14. Travin V. V, Kozlova N. E. Local shear deformations ascause of eclogitization: Evidence from the Gridino melange zone, Belomorian Mobile Belt. Doklady Earth Sciences, 2005, vol. 405, pp. 1275–1278.
15. Volodichev O. I., Parfenova O. I., Kuzenko T. I. Paleoproterozoiskie eklogity Belomorskogo podvizhnogo poyasa (ob eklogitizatsii gabbro v daike kompleksa lertsolit-gabbronoritov) [Paleoproterozoic eclogites of the Belomorian mobile belt (on the eclogization of gabbro in the dike of the lercolite-gabbronorite complex)]. Geologija i poleznye iskopaemye Karelii. [Geology and minerals resource of Karelia]. Vol. 11, 2008, pp. 37–62. (in Russ.).
16. Morgunova A. A., Perchuk A. L. Petrology of Precambrian metaultramafites of the Gridino high-pressure complex (Karelia). Russian Geology and Geophysics,. 2012, vol. 53(2), pp. 131–146.
17. Mel'nik A. E. Eklogity severo-zapadnoi chasti Belomorskogo podvizhnogo poyasa: geokhimicheskaya kharakteristika i vremya metamorfizma. Diss. kand. geol.-min. nauk [Eclogites of the northwestern part of the Belomorian mobile belt: geochemical characteristic and metamorphism. PhD geol. and min. sci. diss]. Saint Petersburg, 2015, 196 p (in Russ.).
18. Podvin P. Ni-Mg partitioning between synthetic olivines and orthopyroxenes: Application to geothermometry. American Mineralogist, 1988, vol. 73, pp. 274–280.
19. Berman R. G. Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications; in, Quantitative methods in petrology: an issue in honor of Hugh J. Greenwood; Eds. Gordon, T M; Martin, R F. Canadian Miner, 1991, vol. 29, pp. 833–855.
20. Berman R. G., Aranovich L. Ya. Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib. Miner. Petrol, 1996, vol. 126, pp. 1–24.
21. Aranovich L. Ya., Berman R. G. Optimized standard state and solution properties of minerals: II. Comparisons, predictions, and applications. Contrib. Mineral. Petrol, 1996, vol. 126, pp. 25–37.
22. Connolly J.A.D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett, 2005, vol. 236 (1–2), pp. 524–541.
23. Holland T.J.B., Powell R. An internally-consistent thermodynamic dataset for phases of petrological interest. J. Metamorph. Geol, 1998, vol. 16, pp. 309–344.
24. Kolonskikh N. S. Osobennosti veshchestvennogo sostava i geokhimicheskie poiskovye priznaki malosul'fidnoi platinometall'noi mineralizatsii v bazit-giperbazitovykh massivakh Karelo-Kol'skogo regiona i polyarnogo Urala. Diss. kand. geol.- min. nauk [Features of the material composition and geochemical search signs of low-sulfide platinum-metal mineralization in the basite-hyperbasite intrusion of the Karelian-Kola region and the polar Urals. PhD geol. and min. sci. diss]. Saint Petersburg, 2009, 136 p. (in Russ.).
25. Systra Yu. I. Tektonika Karel'skogo regiona. [Tectonics of the Karelian region]. Saint Petersburg, Nauka publ., 1991, 175 p. (in Russ.).
26. Bogdanova S.V., Gorbatschev R., Garetsky R. G. EUROPE|East European Craton. In: Encyclopedia of Geology, Volume 2. Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam, 34–49, 2016. DOI
27. Stepanova A. V., Stepanov V. S., Azimov P. Ya., Babarina I. I., Egorova S. V., Larionov A. N., Larionova Yu. «Drusites» of the Belomorian province, Eastern Fennoscandia: a series of short distinct igneous events. EPG, Petrozavodsk, 2017, pp. 242–244.
28. Sobolev A. V., Hofmann A. W., Sobolev S. V, Nikogosian I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005, no. 7033 (434), pp. 590–597.
29. Erofeeva K. G., Samsonov A. V., Stepanova A. V., Larionova Yu. O., Dubinina E. O., Egorova S. V., Arzamastsev A. A., Kovalchuk E. V., Abramova V. D. Olivine and Clinopyroxene Phenocrysts as a Proxy for the Origin and Crustal Evolution of Primary Mantle Melts: a Case Study of 2.40 Ga Mafic Sills in the Kola–Norwegian Terrane, Northern Fennoscandia. Petrology, 2020, vol. 28(4), pp. 338–356. DOI











