Artificial intelligence: problems of application in the integration of sustainable development factors into a merger and acquisition performance analysis model

  • Darya A. Koroleva Financial University under the Government of the Russian Federation
Keywords: deep learning, machine learning, analysis, efficiency, mergers and acquisitions, non-financial risks, ESG

Abstract

Importance: the development of artificial intelligence and its application in investment analysis contributes to the inclusion of non-financial risks in the analysis of the effectiveness of mergers and acquisitions. Purpose: to study the possibilities of using artificial intelligence technologies in mergers and acquisitions and identify problematic aspects when integrating sustainable development factors into the analysis of the effectiveness of mergers and acquisitions. Research design: the research is conducted in the form of an analytical and systematic review of the literature based on the scientific databases of ScienceDirect, Business Source Premier, Scopus, Web of Science, IEEE, Google Scholar, using keywords such as mergers and acquisitions, performance analysis, risk, uncertainty , risk analysis, qualitative risk assessments, sustainability factors, artificial intelligence and neural networks. Results: the author identified and described the problematic aspects of the use of artificial intelligence in the analysis of the effectiveness of mergers and acquisitions in the integration of sustainable development factors. The results of this study systematize the ideas developed by the scientific community on the use of artificial intelligence in the analysis of the effectiveness of mergers and acquisitions.

Downloads

Download data is not yet available.

Author Biography

Darya A. Koroleva, Financial University under the Government of the Russian Federation

graduate student, senior lecturer

References

Ефимова О.В. Об учете факторов устойчивого развития в финансовом моделировании инвестиционных проектов // Вестник Воронежского государственного университета. Серия: Экономика и управление, 2021, no. 2, с. 99-111.

Ефимова О.В. Развитие инструментария финансового анализа и его информационного обеспечения для целей обоснования принимаемых решений //Экономика и управление: проблемы, решения, 2019, Т. 15, no. 3, с. 12-20.

Рожнова О.В. и др. Информация финансовой и нефинансовой отчетностей как основа для стратегических решений бизнеса, 2020.

Aaldering L.J., Leker J., Song C.H. Recommending untapped M&A opportunities: A combined approach using principal component analysis and collaborative filtering // Expert systems with applications, 2019, t. 125, рр. 221-232.

Acuña-Carvajal F. et al. An integrated method to plan, structure and validate a business strategy using fuzzy DEMATEL and the balanced scorecard // Expert systems with applications, 2019, t. 122, рр. 351-368.

Amankwah-Amoah J., Adomako S. Big data analytics and business failures in data-Rich environments: An organizing framework // Computers in Industry, 2019, t. 105, рр. 204-212.

Côrte-Real N. et al. Unlocking the drivers of big data analytics value in firms // Journal of Business Research, 2019, t. 97, рр. 160-173.

Dong Q., Slovin M.B., Sushka M.E. Private equity exits after IPOs // Journal of Corporate Finance, 2020, t. 64, р. 101696.

Duan Y., Edwards J.S., Dwivedi Y.K. Artificial intelligence for decision making in the era of Big Data-evolution, challenges and research agenda // International journal of information management, 2019, t. 48, рр. 63-71.

Ghosh P. AAAS: Machine learning ‘causing science crisis’ // BBC News, 2019.

López-Robles J.R. et al. 30 years of intelligence models in management and business: A bibliometric review // International journal of information management, 2019, t. 48, рр. 22-38.

Mikalef P. et al. Big data analytics and firm performance: Findings from a mixedmethod approach // Journal of Business Research, 2019, t. 98, рр. 261-276.

Ransbotham S. et al. Winning with AI // MIT Sloan management review, 2019, t. 61180.

Safhi H.M., Frikh B., Ouhbi B. Assessing reliability of big data knowledge discovery process // Procedia computer science, 2019, t. 148, рр. 30-36.

Surbakti F.P.S. et al. Factors influencing effective use of big data: A research framework // Information & Management, 2020, t. 57, no. 1, р. 103146.

Published
2022-12-28
How to Cite
Koroleva, D. A. (2022). Artificial intelligence: problems of application in the integration of sustainable development factors into a merger and acquisition performance analysis model. Modern Economics: Problems and Solutions, 11, 8-19. https://doi.org/10.17308/meps/2078-9017/2022/11/8-19
Section
Mathematical and Instrumental Methods in Economics