Распознавание изображений элементов зерновых смесей методами глубокого обучения с использованием библиотек keras и tensorflow
Аннотация
Методом вычислительного эксперимента исследована возможность использования нейросетей глубокого обучения для распознавания изображений элементов зерновых смесей. Проведено сравнение результатов для трех различных архитектур, реализованных в пакетах VGG16, VGG19 и MobileNet на наборе изображений зёрен различных растений. Выявлен относительный вклад морфологических, цветовых и текстурных признаков в решение задачи классификации изображений зерен с помощью нейросетей глубокого обучения.
Скачивания
Литература
2. Tillet, R. D. Image analysis for agricultural processes: A review of potential opportunities / R. D. Tillet // Journal of Agricultural Engineering Research. – 1991. – No 50. – P. 247–258.
3. Barker, D. A. The use of ray parameters for the discrimination of Australian wheat varieties / Barker D. A., Vouri T. A., Hegedus M. R. and My-ers D. G. // Plant Varieties and Seeds. – 1992. – No 5(1). – P. 35–45.
4. Barker, D. A. The use of slice and aspect ra-tio parameters for the discrimination of Australian wheat varieties / D. A. Barker, T. A. Vouri, and D.G. Myers // Plant Varieties and Seeds. – 1992. – No 5(l). – P. 47–52.
5. Barker, D. A. The use of Fourier descriptors for the discrimination of Australian wheat varieties / D. A. Barker, T. A. Vouri and D. G. Myers // Plant Varieties and Seeds. – 1992.– No 5(2). – P. 93–102.
6. Barker, D. A. The use of Chebychev coefficients for the discrimination of Australian wheat varieties / D. A. Barker, T. A. Vouri, M. R. Hegedus and D.G. Myers // Plant Varieties and Seeds. – 1992. – No 5(2). – P. 103–111.
7. Crowe, T. G. Color line-scan imaging of cereal grain kernels / T. G. Crowe, X. Y. Luo, D. S. Jayas and N. R. Bulley // Applied Engineer-ing in Agriculture. – 1997. – No 13(5). – P. 689–694.
8. Draper, S. R. Preliminary observations with a computer based system for analysis of the shape of seeds and vegetative structures / S. R. Draper and A. J. Travis // Journal of the National Insti-tute of Agricultural Botany. – 1984. – No16(3). – P. 387–395.
9. Keefe, P. D. An automated machine vision system for the morphometry of new cultivars and plant genebank accessions / P. D. Keefe and S. R. Draper // Plant Varieties and Seeds 1(1): 1–11.
10. Keefe, P. D. The measurement of new char-acters for cultivar identification in wheat using machine vision / P. D. Keefe and S. R. Draper // Seed Science and Technology. – 1986. – No14(3). – P. 715–724.
11. Lai, F. S. Application of pattern recogni-tion techniques in the analysis of cereal grains / F. S. Lai, I. Zayas, and Y. Pomeranz // Cereal chemistiy. 1986. – No63(2). – P. 168–172.
12. Majumdar, S. Textural features for au-tomated grain identification / S. Majumdar, D. S. Jayas, S. J. Symons and N.R. Bulley // CSAE Paper No. 96-602. Saskatoon, SK: CSAE, 1996.
13. Majumdar, S. Classification of various grains using optical properties / S. Majumdar, D. S. Jayas, J. L. Hehn and N. R. Bulley // Canadi-an Agricultural Engineering. – 1996. – No.38(2). – P. 139–144.
14. Majumdar, S. Single-kernel mass deter-mination for grain inspection using machine vision / S. Majumdar and D. S. Jayas // Applied Engineering in Agriculture. – 1999. – No15(4). – P. 357–362.
15. Majumdar, S. Classification of bulk samples of cereal grains using machine vision / S. Majum-dar and D. S. Jayas. // Journal of Agricultural En-gineering Research. – 1999. – No73(l). – P. 35–47.
16. Majumdar, S. Classification of cereal grains using machine vision. I. Morphology models / S. Majumdar and D. S. Jayas // Transactions of the ASAE. – 2000. – No 43(6). – P. 1669–1675.
17. Majumdar, S. Classification of cereal grains using machine vision. II. Color models / S. Majumdar and D. S. Jayas // Transactions of the ASAE. – 2000. – No43(6). – P.1677–1680.
18. Majumdar, S. Classification of cereal grains using machine vision. III. Texture models / S. Majumdar and D. S. Jayas // Transactions of the ASAE. – 2000. – No43(6). – P.1681–1687.
19. Majumdar, S. Classification of cereal grains using machine vision. IV. Combined morphology, color, and texture models / S. Majumdar and D. S. Jayas. // Transactions of the ASAE. – 1988. – No 43(6). – P. 1689–1694.
20. Myers, D. G. The application of image processing techniques to the identification of Australian wheat varieties / D. G. Myers and K. J. Edsall // Plant Varieties and Seeds. – 1989. – No 2(2). – P. 109–116.
21. Neuman, M. Discrimination of wheat class and variety by digital image analysis of whole grain samples / M. Neuman, H. D. Sapirstein, E. Shwedyk and W. Bushuk // Journal of Ce-real Science. – 1987. – No 6(2). – P. 125–132.
22. Paliwal J. Grain kernel identification using kernel signature / J. Paliwal, N. S. Shashidhar and D. S. Jayas // Transactions of the ASAE. – 1999. – No42(6). – P.1921–1924.
23. Sapirstein, H. D. Quantitative determination of foreign material and vitreosity in wheat by digital image analysis / H. D. Sapirstein and W. Bushuk // lnICC’89 Symposium: Wheat End-Use Properties. H. Salovaara (ed.). Lahiti, Finland, 1989.
24. Sapirstein, H. D. An instmmental system for cereal grain classification using digital image analysis / H. D. Sapirstein, M. Neuman, E. H. Wright, E. Shwedyk and Bushuk W. // Journal of Cereal Science. – 1987. – No 6(1). – P. 3–14.
25. Symons, S. J. Relationship between oat kernel weight and milling yield / S. J. Symons and R. G. Fulcher // Journal of Cereal Science. – 1988. – No7(3). – P. 215–217.
26. Symons, S. J. 1988b. Determination of variation in oat kernel morphology by digital image analysis / S. J. Symons and R. G. Fulcher // Journal of Cereal Science. – 1988. – No 7(3). – P. 219–228.
27. Zayas, I. Discrimination between wheat classes and varieties by image analysis / I. Zayas, F. S. Lai and Y. Pomeranz // Cereal Chemistry. 1986. – No63(l). – P. 52–56.
28. Zayas, I. Discrimination of whole from broken com kernels with image analysis / I. Zayas, H. Converse and J. Steele // Transactions of the ASAE. – 1990. – No35(5). – P. 1642–1646.
29. Zayas, I. Discrimination between Arthur and Arc an wheats by image analysis / I. Zayas, Y. Pomeranz and F. S. Lai // Cereal Chemistry. – 1985. – No 62(6). – P. 478–480.
30. Zayas, I. Discrimination of wheat and non-wheat components in grain samples by digital image analysis / I. Zayas, Y. Pomeranz and F. S. Lai // Cereal Chemistry. – 1989. – No66(3). – P. 233–237.
31. Wigger, W. D. Classification of fungal-damaged soybeans using color-image processing / W. D. Wigger, M. R. Paulsen, J. B. Litchfield and J. B. Sinclair // ASAE Paper No. 88-3053. – 1988. – St. Joseph, MI: ASAE.
32. Karunakaran, C. Machine Vision Systems for Agricultural Products / C. Karunakaran, N. S. Visen, J. Paliwal, G. Zhang, D. S. Jayas, N. D. G. White // CSAE Paper No. 01-305. – 2001. – Mansonville QC: CSAE/SCGR.
33. Paliwal, J. Digital image analysis of grain samples for potential use in grain cleaning (Ph. D. thesis) / J. Paliwal; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, 2002. – 247 p.
34. Visen, N. S. Machine Vision Based Grain Handling System (Ph.D. thesis) / N. S. Visen; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada. – 175 p.
35. Computer Vision Technology for Food Quality Evaluation / Edited by DaWen Sun; Academic Press, Elsevier. – 2016. – 635 P.
36. Paliwal, J. Cereal grain and dockage identification using machine vision / J. Paliwal, N. S. Visen, D. S. Jayas, N. D. G. White // Biosys-tems Engineering. – 2003. – No85(1). – P. 51–57.
37. Haralick, R. M. Texture features for image classification. IEEE Transactions on Systems / R. M. Haralick, K. Shanmugam and I. Dinstein // Man and Cybernetics. – 1973. – No 3(6). – P. 610–621.
38. Galloway, M. M. Texture analysis using gray level run length // Galloway M.M. // Computer graphics and image processing. – 1975. – No 4. – P. 172–179.39.Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М. : Техносфера, 2012. – 1104 с.
40. Simonyan, K. Very deep convolution-al networks for large-scale image recognition / K. Simonyan, A. Zisserman // CoRR. – 2014. – No 1409.1556. – 14 с.
41. Howard, A. G. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications / A. G. Howard [и др.] // CoRR. – 2017. – No 1704.04861. – 9 с.
- Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).