Оценка эмоциональной тональности текста: анализ проблем и путей решения

Ключевые слова: анализ тональности, обработка естественного языка, методы анализа тональности, проблемы анализа тональности, межъязыковой анализ, применение анализа тональности, уровни анализа тональности, эмоциональная оценка текста

Аннотация

Статья рассматривает современные подходы к анализу эмоциональной тональности текста — одной из ключевых задач обработки естественного языка. Особое внимание уделено различным направлениям анализа тональности, а также ряду проблем, с которым сталкивается тот или иной подход. В статье рассмотрены основные понятия, характеризующие анализ эмоциональной тональности. В том числе выделены направления предметных областей, в которых применяют рассматриваемые инструменты анализа: рыночная сфера, медицина, политика, анализ социальных сетей, спорт и т. д. При этом анализ тональности явно выделен по отношению к схожим направлениям исследований. Также определены уровни работы с данными по отношению к предмету анализа, включая документный, уровень предложения, аспектный анализ, а также мультидоменный и мультимодальный подходы. Каждое описанное направление анализа эмоциональной тональности рассмотрено в контексте современных работ, посвященных тому или иному подходу. При этом упоминаются актуальные на сегодня задачи и возможные способы их решения. В статье также обсуждаются проблемы кросс-доменного переноса знаний, управления отрицаниями, распознавания сарказма и устранения лексической неоднозначности. В заключении подчеркивается значимость дальнейших исследований, среди которых особое внимание уделено направлению по межъязыковому анализу, расширению лингвистических ресурсов для языков, относящихся к представителям с малым или средним уровнем ресурсов, и созданию адаптивных систем, способных обрабатывать тексты на различных языках с учетом их специфики. Также отмечается важность разработки масштабных корпусов данных и методов устранения предвзятости алгоритмов.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Илья Станиславович Мухин, Университет ИТМО

аспирант факультета программной инженерии и компьютерной техники, университета ИТМО

Елена Юрьевна Авксентьева, Университет ИТМО

канд. пед. наук, доцент факультета программной инженерии и компьютерной техники, университет ИТМО

Литература

1. Cui J. [et al.] (2023) Survey on sentiment analysis: evolution of research methods and topics. Artificial intelligence review. 56. P. 8469– 8510. DOI
2. Ligthart A., Catal C. and Tekinerdogan B. (2021) Systematic reviews in sentiment analysis: a tertiary study. Artificial intelligence review. 54. P. 4997–5053. DOI
3. Ullah A., Khan S. N. and Nawi N. M. (2023) Review on sentiment analysis for text classification techniques from 2010 to 2021. Multimedia Tools and Applications. 82. P. 8137–8193. DOI
4. Globenewswire. Natural Language Processing Market Size & Share Analysis - Growth Trends & Forecasts (2023–2028). URL: https://www.globenewswire.com/news-release/2023/08/18/2727931/0/en/Natural-Language-Processing-Market-Size-Share-Analysis-Growth-Trends-Forecasts-2023-2028.html (accessed: 26.11.2023).
5. Statista. Natural Language Processing – Russia. URL: https://www.statista.com/outlook/tmo/artificial-intelligence/natural-language-processing/russia (Date: 27.09.2024).
6. Li J. (2024) Introductory Chapter: The 2023 Sentiment Analysis Roadmap. In: Li J. (eds.) Advances in Sentiment Analysis – Techniques, Applications, and Challenges. London, United Kingdom, IntechOpen. P. 1–8. DOI
7. Wankhade M., Rao A. C. S. and Kilkarni C. (2022) A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review. 55. P. 5731–5780. DOI
8. Luo T. [et al.] (2013) Sentiment Analysis. In: Luo T. [et al.] (eds.) Trust-based Collective View Prediction. New York, NY, USA, Springer, P. 53–65. DOI
9. Pawar A. B., Jawale M. A. and Kyatanavar D. N. (2016) Fundamentals of Sentiment Analysis: Concepts and Methodology. In: Pedrycz W., Chen S. M. (eds.) Sentiment Analysis and Ontology Engineering. Cham, Switzerland, Springer, P. 25–48. DOI
10. Liu B. (2012) Sentiment Analysis: A Fascinating Problem. In: B. Liu (eds.) Sentiment Analysis and Opinion Mining. Cham, Switzerland, Springer. P. 1–8. DOI
11. Nandwani P. and Verma R. (2021) A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining. 11 (81). P. 1–19. DOI
12. Gunter B., Koteyko N. and Atanasova D. (2014) Sentiment Analysis: A Market-Relevant and Reliable Measure of Public Feeling? International Journal of Market Research. 56 (2). P. 231– 247. DOI
13. Alamoodi A. H. [et al.] (2020) Sentiment Analysis and Its Applications in Fighting COVID-19 and Infectious Diseases: A Systematic Review. Expert systems with applications. 167. P. 1–30. DOI
14. Valle E. and Fuente L. (2023) Sentiment Analysis Methods for Politics and Hate Speech Contents in Spanish Language: A Systematic Review. IEEE Latin America Transactions. 21 (3). P. 408–418. DOI
15. Kumar E. R. [et al.] (2020) Suicidal ideation prediction in twitter data using machine learning techniques. Journal of Interdisciplinary Mathematics. 23 (1). P. 117–125. DOI
16. Mehta P. and Pandya S. (2020) A Review On Sentiment Analysis Methodologies, Practices And Applications. International journal of scientific & technology research. 9 (2). P. 601–609.
17. Sudhir P. and Suresh V. D. (2021) Comparative study of various approaches, applications and classifiers for sentiment analysis. Global Transitions Proceedings. 2 (2). P. 205–211. DOI
18. Abualigah L. [et al.] (2019) Sentiment Analysis in Healthcare: A Brief Review. In: Elaziz M. A. [et al.] (eds.) Recent Advances in NLP: The Case of Arabic Language. Cham, Switzerland, Springer. P. 129–141. DOI
19. Wunderlich F. and Memmert D. (2020) Innovative Approaches in Sports Science—Lexicon-Based Sentiment Anaysis as a Tool to Analyze Sports-Related Twitter Communication. Applied Sciences. 10 (2). P. 1–12. DOI
20. Matrazali N. [et al.] (2021) Opinion mining for national security: techniques, domain applications, challenges and research opportunities. Journal of Big Data. 8 (150). P. 1–46. DOI
21. Mehraliyev F., Chan I. C. C. and Kirilenko A. P. (2021) Sentiment analysis in hospitality and tourism: a thematic and methodological review. International Journal of Contemporary Hospitality Management. 34 (1). P. 1–32. DOI
22. Bhonde S. and Prasad J. R. (2015) Sentiment Analysis – Methods, Applications & Challenges. International Journal of Electronics Communication and Computer Engineering. 6 (6). P. 634–640.
23. Soleymani M. [et al.] (2017) A survey of multimodal sentiment analysis. Image and Vision Computing. 65. P. 3–14. DOI
24. Abdullah N. A. [et al.] (2019) Challenges and Recommended Solutions in Multi-Source and Multi-Domain Sentiment Analysis. IEEE Access. 7. P. 1–15. DOI
25. Hatzivassiloglou V. and McKeown K. R. (1997) Predicting the Semantic Orientation of Adjectives. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics. Madrid, Spain. P. 174–181. DOI
26. Wiebe J. M. (2000) Learning subjective adjectives from corpora. AAAI. 17, 1–6.
27. Turney P. D. (2002) Thumbs Up or Thumbs Down? {S}emantic Orientation Applied to Unsupervised Classification of Reviews. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia, Pennsylvania, USA. P. 417–424. DOI
28. Pang B., Lee L. and Vaithyanathan S. (2002) Thumbs up? Sentiment Classification using Machine Learning Techniques. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. P. 76–86. DOI
29. Hu M. and Liu B. (2004) Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. Seattle, WA, USA. P. 168–177. DOI
30. Gupta S., Ranjan R. and Singh S. N. (2024) Comprehensive Study on Sentiment Analysis: From Rule-based to modern LLM based system. arXiv. P. 1–16. DOI
31. Krizhevsky A., Sutskever I. and Hinton G. (2017) ImageNet classification with deep convolutional neural networks. Communications of the ACM. 60 (6). P. 84–90. DOI
32. Rong W. [et al.] (2013) Semi-supervised Dual Recurrent Neural Network for Sentiment Analysis. In IEEE 11th International Conference on Dependable, Autonomic and Secure Computing. Chengdu, China. P. 438–445. DOI
33. Hoang M., Bihorac O. A. and Rouces J. (2019) Aspect-Based Sentiment Analysis using BERT. In Proceedings of the 22nd Nordic Conference on Computational Linguistics. Turku, Finland. P. 187–196.
34. Yang Z. [et al.] (2019) XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv. P. 1–18. DOI
35. Liu Y. [et al.] (2019) RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv. P. 1–13. DOI
36. Diaz G. O., Zhang X. and Ng V. (2020) Aspect-Based Sentiment Analysis as Fine-Grained Opinion Mining. In Proceedings of the 12th Language Resources and Evaluation Conference. Marseille, France. P. 6804–6811.
37. Hua Y. C. [et al.] (2024) A systematic review of aspect-based sentiment analysis: domains, methods, and trends. Artificial Intelligence Review. 57 (296). P. 1–43. DOI
38. Gandhi A. [et al.] (2023) Multimodal Sentiment Analysis: A Systematic review of History, Datasets, Multimodal Fusion Methods, Applications, Challenges and Future Directions. Information Fusion. 91. P. 424–444. DOI
39. Das R. and Singh T. D. (2023) Multimodal Sentiment Analysis: A Survey of Methods, Trends and Challenges. ACM Computing Surveys. 55 (13). P. 1–38. DOI
40. Kumar A. and Garg G. (2020) Systematic literature review on context-based sentiment analysis in social multimedia. Multimedia Tools and Applications. 79. P. 15349–15380. DOI
41. Li T. [et al.] (2020) Cross-domain sentiment classification with contrastive learning and mutual information maximization. arXiv. P. 1–5. DOI
42. Xu Y. [et al.] (2022) A Survey of Cross-lingual Sentiment Analysis: Methodologies, Models and Evaluations. Data Science and Engineering. 7. P. 279–299. DOI
43. Sagnika S. [et al.] (2020) A Review on Multi-Lingual Sentiment Analysis by Machine Learning Methods. Journal of Engineering Science and Technology Review. 13 (2). P. 154–166. DOI
44. Yacoub A. D., Slim S. O. and Aboutabl A. E. (2024) A Survey of Sentiment Analysis and Sarcasm Detection: Challenges, Techniques, and Trends. International journal of Electrical and computer engineering systems. 15 (1). P. 69–78. DOI
45. Fu H., Liu H. and Wang H. (2024) Multi-Modal Sarcasm Detection with Sentiment Word Embedding. Electronics. 13 (5). P. 1–12. DOI
46. Asyrofi M. H. [et al.] (2021) BiasFinder: Metamorphic Test Generation to Uncover Bias for Sentiment Analysis Systems. IEEE Transactions on Software Engineering. 48 (12). P. 5087– 5101. DOI
47. Kamiran F., Iqbal M. and Karim A. (2015) Bias-aware lexicon-based sentiment analysis. In Proceedings of the 30th Annual ACM Symposium on Applied Computing. Salamanca, Spain. P. 845– 850. DOI
48. Farooq U., Mansoor H. and Nongaillard A. (2016) Negation Handling in Sentiment Analysis at Sentence Level. Journal of Computers. 12 (5). P. 470–478. DOI
49. Sharif W. [et al.] (2017) Effect of Negation in Sentiment Analysis. International Journal of Computational Linguistics Research. 8 (2). P. 47–56.
50. Peng Q., Zhong M. (2014) Detecting Spam Review through Sentiment Analysis. Journal of Software. 9 (8). P. 2065–2072. DOI
51. Arif M. H. [et al.] (2018) Sentiment analysis and spam detection in short informal text using learning classifier systems. Soft computing. 22. P. 7281–7291. DOI
52. Navigli R. (2012) A Quick Tour of Word Sense Disambiguation, Induction and Related Approaches. In SOFSEM 2012: Theory and Practice of Computer Science. Heidelberg, Germany, P. 115–129. DOI
53. Loureria D. and Jorge A. (2019) Language Modelling Makes Sense: Propagating Representations through WordNet for Full-Coverage Word Sense Disambiguation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy. P. 5682–5691. DOI
54. Bevilacqua M. and Navigli R. (2020) Breaking Through the 80% Glass Ceiling: Raising the State of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph Information. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle, Washington, USA. P. 2854–2864. DOI
55. Aliyu Y. [et al.] (2024) Sentiment Analysis in Low-Resource Settings: A Comprehensive Review of Approaches, Languages, and Data Sources. IEEE Access. 12. P. 66883–66909. DOI
56. Pires T., Schlinger E. and Garrette D. (2019) How multilingual is Multilingual BERT? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy. P. 4996–5001. DOI
57. Pingle A., Vyawahare A. and Joshi I. (2023) Robust Sentiment Analysis for Low Resource languages Using Data Augmentation Approaches: A Case Study in Marathi. arXiv. P. 1–9. DOI
58. Wan Y. and Nakayama M. (2022) A Sentiment Analysis of Star-rating: a Cross-Cultural Perspective. In Proceedings of the Annual Hawaii International Conference on System Sciences. Honolulu, Hawaii, USA. P. 4666–4674. DOI
59. Lou Y. [et al.] (2020) Emoji-Based Sentiment Analysis Using Attention Networks. ACM Transactions on Asian and Low-Resource Language Information Processing. 19. P. 1–13. DOI
60. Miller H. [et al.] (2016) “Blissfully happy” or “ready to fight”: Varying Interpretations of Emoji. In Proceedings of the 10th International Conference on Web and Social Media. Cologne, Germany. P. 259–268.
61. Shaik A. [et al.] (2023) Recurrent neural network with emperor penguin-based Salp swarm (RNN- EPS2) algorithm for emoji based sentiment analysis. Multimed Tools Appl. 83. P. 35097–35116. DOI
62. Alfreihat M., Almousa O. S. and Tashtoush Y. (2024) Emo-SL Framework: Emoji Sentiment Lexicon Using Text-Based Features and Machine Learning for Sentiment Analysis. IEEE Access. 12. P. 81793–81812. DOI
63. Cao X., Bi X. and Meng T. (2025) ALSEM: aspect-level sentiment analysis with semantic and emotional modeling. International Journal of Machine Learning and Cybernetics. DOI
64. Hang Y. [et al.] (2021) A Unified Generative Framework for Aspect-based Sentiment Analysis. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Bangkok, Thailand. P. 2416–2429. DOI
65. Lee H., Sunilijit S. and Ong Y. S. (2025) Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification. arXiv. P. 1–4. DOI
66. Xinjing L. [et al.] (2025) Multimodal Aspect-Based Sentiment Analysis under Conditional Relation. In Proceedings of the 31st International Conference on Computational Linguistics. Abu Dhabi, UAE. P. 313–323.
67. Elmitwalli S. and Mehegan J. (2024) Sentiment analysis of COP9-related tweets: a comparative study of pre-trained models and traditional techniques. Front. Big Data. 7. P. 1–18. DOI
68. Krasitskii M. [et al.] (2025) Comparative Approaches to Sentiment Analysis Using Datasets in Major European and Arabic Languages. In Proceedings of the 11th International Conference on Advances in Computer Science and Information Technology. Zurich, Switzerland. P. 1–13. DOI
69. Nazir M. K. [et al.] (2025) Leveraging Multilingual Transformer for Multiclass Sentiment Analysis in Code-Mixed Data of Low-Resource Languages. IEEE Access. 13. P. 7538–7554. DOI
70. Tan Y. Y. [et al.] (2023) Sentiment Analysis and Sarcasm Detection using Deep Multi-Task Learning. Wireless Personal Communications. 129. P. 2213–2237. DOI
71. Potamias R. A., Siolas G. and Stafylopatis A. G. (2020) A transformer-based approach to irony and sarcasm detection. Neural Computing and Applications. 32. P. 17309–17320. DOI
72. Goldfarb-Tarrant S. [et al.] (2023) Bias Beyond English: Counterfactual Tests for Bias in Sentiment Analysis in Four Languages. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023. Toronto, Canada. P. 4458–4468. DOI
73. Punetha N. and Jain G. (2023) Optimizing Sentiment Analysis: A Cognitive Approach with Negation Handling via Mathematical Modelling. Cognitive Computation. 16. P. 624–640. DOI
74. Ilmawan L. B., Muladi and Prasetya D. D. (2024) Negation handling for sentiment analysis task: approaches and performance analysis. International Journal of Electrical and Computer Engineering (IJECE). 14 (3). P. 3382–3393. DOI
75. Khammasova L. S. and Nesterov S. A. (2023) Recognition of spam messages using machine learning methods. System analysis in design and management. P. 362–368.
76. Abdulhasan M. M. [et al.] (2024) Real-Time Sentiment Analysis and Spam Detection Using Machine Learning and Deep Learning. In the Proceedings of the Data Science and Big Data Analytics. IDBA 2023. Springer, Singapore. P. 507–533. DOI
77. Zhang X. [et al.] (2023) Neurosymbolic Sentiment Analysis with Dynamic Word Sense Disambiguation. In the Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023. Singapore. P. 8772–8782.
78. Kravchenko Y. A., Mansour A. M. and Mohammad J. H. (2021) Modified word sense disambiguation method based on distributed representation methods. Proceedings of the Southern Federal University. Technical sciences. P. 92–101.
79. Koto F. [et al.] (2024) Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon. In the Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics. St. Julian’s, Malta. P. 298–320. DOI
80. Rogers A. [et al.] (2018) RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. In the Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA. P. 755–763.
81. Singh G. V. [et al.] (2024) Predicting multi-label emojis, emotions, and sentiments in code-mixed texts using an emojifying sentiments framework. Scientific Reports. 14. P. 1–24. DOI
82. Lai S. [et al.] (2020) SentEmojis: Sentiment Classification Using Emojis. In the Proceedings of ICIMMI 2019. Jaipur, Rajasthan, India. P. 293–300. DOI
Опубликован
2025-09-02
Как цитировать
Мухин, И. С., & Авксентьева, Е. Ю. (2025). Оценка эмоциональной тональности текста: анализ проблем и путей решения. Вестник ВГУ. Серия: Системный анализ и информационные технологии, (2), 157-179. https://doi.org/10.17308/sait/1995-5499/2025/2/157-179
Раздел
Компьютерная лингвистика и обработка естественного языка