Hydrothermal hematite veins and breccias with rare earth elements mineralization at the Cape Korabl’ amethyst deposit (Kola region)
Abstract
Introduction: The article presents the results of geological and mineralogical studies of the first discovered iron oxide occurrences (hematite veins and breccias in the sandstones of the Tersky formation) with associated rare earth mineralization on the Tersky coast (Kola region) in the eastern part of the Cape Korabl’ amethyst deposit. Methodology: A scanning electron microscope was used to study the morphology and internal structure of minerals. Chemical analysis of hematite was performed using an electron probe microanalyzer. Chemical analysis of rare earth minerals, barite, apatite, and rutile was performed using a scanning electron microscope. Results and discussion: Three varieties of iron oxide minerals have been identified (titanomagnetite, porous and lamellar hematite). Titanomagnetite was found exclusively in host sandstones and was comparable in size to rock-forming minerals (quartz, feldspar), which indicates the allotigenic nature of the mineral. Porous hematite formed during the diagenesis stage, had a porous structure and filled the interstices between quartz and feldspar and acts as cement in the host sandstones. Lamellar hematite formed during hydrothermal processes, made up the bulk of hematite veins and breccias, and also occurs as single grains in the host wall sandstones. REE oxides, phosphates and carbonates were found in veins, breccias and wall-bearing sandstones and are represented by loparite-(Ce), monazite-(Ce), parisite-(Ce), bastnaesite-(Ce). Other accessory minerals were barite and rutile. According to preliminary data, a hydrothermal-metasomatic method of formation of iron oxide manifestations that occurred during the post-Riphean tectonothermal activation of the Kandalaksha aulacogen could be suggested. Based on the data obtained, a model for the formation of hematite veins and breccias was proposed. According to textural characteristics and mineral composition, the iron oxide occurrences in the eastern part of the Cape Korabl’ deposit were similar to the classic iron oxide gold-copper deposit type (IOCG) - Olympic Dam (Australia), which suggests a similar mechanism of their formation. Conclusions: Iron-saturated solutions were formed during the dissolution of authigenic porous hematite in the host sandstones of the Tersk formation by hydrothermal fluids. Porous hematite, the formation of which occurred at the stage of diagenesis, was characterized by an increased content of Ti, which probably entered the mineral-forming system during the dissolution of allotigenic titanomagnetite. During tectonic unloading, (meso)epithermal veins and breccias of anchimonineral hematite composition were formed. Hydrothermal hematite has a characteristic lamellar morphology and was characterized by the absence of Ti and an increased content of W and V.
Downloads
References
2. Banks D. A., Boyce A. J., Samson I. M. Constraints on the origins of fluids forming Irish Zn-Pb-Ba deposits: evidence from the composition of fluid inclusions. Econ. Geol, 2002, vol. 97(3), pp. 471–480.
3. Boiron M. C., Cathelineau M., Richard A. Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluid, 2010, vol. 10, pp. 270–292.
4. Carignan J., Gariépy C., Hillaire-Marcel C. Hydrothermal fluids during Mesozoic reactivation of the St. Lawrence rift system, Canada: C, O, Sr and Pb isotopic characterization. Chem. Geol, 1997, vol. 137, pp. 1–21.
5. Grandia F., Canals A., Cardellach E., Banks D. A., Perona J. Origin of ore forming brines in sediment-hosted Zn–Pb deposits of the Basque-Cantabrian basin, Northern Spain. Econ. Geol, 2003, vol. 98, pp. 1387–1411.
6. Leach D. L., Marsh E., Emsbo P., Rombach C. S., Kelley K. D., Anthony M. Nature of hydrothermal fluids at the shale-hosted red dog Zn-Pb-Ag deposits, Brooks Range, Alaska. Econ. Geol, 2004, vol. 99 (7), pp. 1449–1480.
7. Subías I., Fernández-Nieto C. Hydrothermal events in the Valle de Tena (Spanish Western Pyrenees) as evidenced by fluid inclusions and trace-element distribution from fluorite deposits. Chem. Geol, 1995, vol. 124 (3–4), pp. 267–282.
8. Walter B. F., Burisch M., Fusswinkel T., Marks M.A.W., Steele-MacInnis M., Wälle M., Apukhtina O., Markl G. Multireservoir fluid mixing processes in rift-related hydrothermal veins, Schwarzwald, SW-Germany. Geochemical Exploration, 2018, vol. 186, pp. 158–186.
9. Crocker I. T. Volcanogenic fluorite-hematite deposits and associated pyroclastic rock suite at Vergenoeg, Bushveld complex. Econ. Geol, 1985, vol. 80, pp. 1181–1200.
10. Graupner T., Mühlbach C., Schwarz-Schampera U., HenjesKunst F., Melcher F., Terblanche H. Mineralogy of high-fieldstrength elements (Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa. Ore Geology Reviews, 2015, vol. 64, pp. 583–601.
11. Zhu X. K., Sun J., Pan C. Sm–Nd isotopic constraints on rareearth mineralization in the Bayan Obo ore deposit, Inner Mongolia, China. Ore Geology Reviews, 2015, vol. 64, pp. 543–553.
12. Ehrig K., McPhie J., Kamenetsky V. S. Geology and mineralogical zonation of the Olympic Dam Iron Oxide Cu-U-Au-Ag deposit, South Australia. Society of Economic Geologists, 2012, vol. 16, pp. 237–267.
13. Ehrig K., Kamenetsky V. S., McPhie J., Macmillan E., Thompson J., Kamenetsky M., Maas R. Staged formation of the supergiant Olympic Dam uranium deposit, Australia. Geology, 2021, vol. 49, pp. 1312–1316. DOI
14. Subías I., Fanlo I., Billström K. Ore-forming timing of polymetallic-fluorite low temperature veins from Central Pyrenees: a Pb, Nd and Sr isotope perspective. Ore Geology Reviews, 2015, vol. 70, pp. 241–251.
15. Walter B. F., Jensen J. L., Coutinho P., Laurent O. Formation of hydrothermal fluorite-hematite veins by mixing of continental basement brine and redbed-derived fluid: Schwarzwald mining district, SW Germany. Geochemical Exploration, 2020, vol. 212, 106512.
16. Babaei A. H., Ganji A. Characteristics of the Ahmadabad hematite/barite deposit, Iran – studies of mineralogy, geochemistry and fluid inclusions. Geologos, 2018, vol. 24(1), pp. 55–68.
17. Skirrow R. G. Iron oxide copper-gold (IOCG) deposits - A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geology Reviews, 2022, vol. 140, 104569. DOI
18. Zhirov D. V. Mestorozhdenie ametista Mys Korabl'. Seriya Kol'skie samotsvety [Amethyst deposit Cape Ship. Kola Gems Series]. Saint Petersburg, «Terra BaiT» publ., 2007, 33 p. (In Russ.)
19. Kievlenko E. YA, Senkevich N. N., Gavrilov A. P. Geologiya mestorozhdenii dragotsennykh kamnei [Geology of gem deposits]. Moscow, Nedra publ., 1982, 279 p. (In Russ.)
20. Frishman N. I. Ametistovyi bereg [Amethyst Coast]. Saint Petersburg, Russian collection publ., 2007, 96 p. (In Russ.)
21. Frishman N. I. Geologo-tektonicheskie usloviya formirovaniya i genezis mestorozhdeniya ametista «Mys Korabl'» (Murmanskaya oblast') [Geological and tectonic conditions of formation and genesis of the “Cape Korabl'” amethyst deposit (Murmansk region)]. Geologiya i razvedka – Geology and exploration, 2001, no. 5, pp. 156–158 (In Russ.)
22. Zozulya D. R., Solovjova A. N., Chikiryov I. V. Unikal'nye gematitovye zhily Terskogo poberezh'ya, Kol'skii region: sostav, strukturno-teksturnye osobennosti i genezis [Unique hematite veins of Tersky Coast, Kola region: composition, structural-textural features and genesis]. Trudy Fersmanovskoi nauchnoi sessii GI KNTS RAN [Proceeding of Fersman scientific session of GI KSC RAS], Apatity, GI KSC RAS publ., 2021, vol. 18, pp. 177– 182 (In Russ.)
23. Solovjova A.N., Zozulya D.R., Savchenko Ye.E., Chikiryov I.V. Osobennosti formirovaniya gematitovykh brekchii mysa Korabl' (Kol'skii region) po mineralogicheskim dannym [Formation features of hematite breccias of Cape Korabl’ (Kola region) according to mineralogical data]. Trudy Fersmanovskoi nauchnoi sessii [Proceeding of Fersman scientific session of GI KSC RAS], Apatity, GI KSC RAS publ., 2023, vol.20, pp. 459– 467 (In Russ.)
24. Sergeeva EH. I., Timofeev B. V., Sergeev A. S. Litobiostratigraficheskaya kharakteristika tur'inskoi i terskoi svit [Литобиостратиграфическая характеристика турьинской и терской свит]. Mikrofossilii proterozoya i rannego paleozoya SSSR – Microfossils of the Proterozoic and Early Paleozoic of the USSR. Leningrad, 1974, pp. 24–27 (In Russ.)
25. Lyubtsov V. V., Mikhailova N. S., Predovskii A. A. Litostratigrafiya i mikrofossilii pozdnego dokembriya Kol'skogo poluostrova [Lithostratigraphy and microfossils of the Late Precambrian of the Kola Peninsula]. Apatity, AN SSSR. Kola branch. publ., 1989, 130 p. (In Russ.)
26. Kuznetsov N. B., Baluev A. S., Terekhov E. N., Kolodyazhnyi S. Yu., Przhiyalgovskii E. S., Romanyuk T. V., Dubensky A. S., Sheshukov V. S., Lyapunov S. M., Bayanova T. B., Serov P. A. O vremeni formirovaniya Kandalakshskogo i Keretskogo grabenov paleoriftovoi sistemy Belogo morya v svete novykh dannykh izotopnoi geokhronologii [Time constraints on the formation of the Kandalaksha and Keretsk grabens of the White Sea paleo-rift system from new isotopic geochronological data]. Geodynamics & Tectonophysics, 2021, vol. 12(3), pp. 570– 607 (In Russ.). DOI
27. Baluev A. S., Zhuravlev V. A., Terekhov E. N., Przhiyalgovsky E. S. Responsible Editor Dr M. G. Leonov. Tektonika Belogo morya i prilegayushchikh territorii (Ob"yasnitel'naya zapiska k «Tektonicheskoi karte Belogo morya i prilegayushchikh territoriI» masshtaba 1:1500000) [Tectonics of the White Sea and adjacent areas (The explanatory notes to “The Tectonic Map of the White S and Adjacent Areas”, at a Scale of 1:1500 000)]. Moscow, GEOS publ., 2012, 104 p. (In Russ.)
28. Neradovsky Yu. N. Rekonstruktsiya uslovii formirovaniya krasnotsvetnykh peschanikov Terskogo berega na osnove sravnitel'nogo analiza struktury drevnikh i sovremennykh otlozhenii (Kol'skii poluostrov) [Reconstruction of the conditions for the formation of red-colored sandstones of the Tersky coast based on a comparative analysis of the structure of ancient and modern deposits (Kola Peninsula)]. Vestnik MGTU – Proceedings of MSTU, 2023, vol. 26(2), pp. 180–190. (In Russ.) DOI
29. Mikhailova J. A., Pakhomovsky, Y. A., Selivanova E. A., Kompanchenko A. A. Polymineralic Inclusions in Loparite-(Ce) from the Lovozero Alkaline Massif (Kola Peninsula, Russia): Hydrothermal Association in Miniature. Minerals, 2023, vol. 13, 715 p. DOI
30. Smirnov V. I. Geologiya poleznykh iskopaemykh [Geology of minerals]. Moscow, Nedra publ., 1982, 668 p. (In Russ.)
31. Avdonin V. V., Starostin V. I. Geologiya poleznykh iskopaemykh [Geology of minerals]. Moscow, Academy publ., 2010, 384 p. (In Russ.)
32. Barnes H. L. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley Inс, 1979, 798 p.
33. Barton M. D. Iron Oxide (–Cu–Au–REE–P–Ag–U–Co) Systems. Treatise on Geochemistry, 2014, vol. 13, pp. 515–540. DOI
34. Courtney-Davies L., Ciobanu C. L., Verdugo-Ihl M. R., Dmitrijeva M., Cook N. J., Ehrig K., Wade B. P. Hematite geochemistry and geochronology resolve genetic and temporal links among iron-oxide copper gold systems, Olympic Dam district, South Australia. Precambrian Research, 2019, vol. 335, 105480.
35. McPhie J., Kamenetsky V. S, Chambefort I., Ehrig K., Green N. Origin of the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia: Was a sedimentary basin involved? Geology, 2011, vol.39 (8), pp. 795–798. DOI
36. Skirrow R. G., Murr J., Schofield A., Huston D. L., van der Wielen S., Czarnota K., Coghlan R., Highet L. M., Connolly D., Doublier M., Duan J. Mapping iron oxide Cu-Au (IOCG) mineral potential in Australia using a knowledge-driven mineral systemsbased approach. Ore Geology Reviews, 2019, vol. 113, 36 p. DOI











