P-T conditions, fluid evolution, and time of formation of staurolite-containing parageneses in the rocks of the metamorphic complex of the Northern Ladoga region

Keywords: staurolite, paragenesis, fluid regime, metamorphism

Abstract

Introduction: This paper presents the results of a study of the staurolite-bearing rocks of the Northern Ladoga metamorphic complex, including P-T conditions and fluid regime features of their formation, supplemented by data on the age of metamorphism of these rocks using the U-Pb isotope dating method of monazite.

Methods: The work used multi-equilibrium mineral geothermobarometry of rocks (winTWQ), Raman spectrometry of fluid inclusions from synmetamorphic quartz veins, U-Pb (ID-TIMS) dating of monazite from staurolite-bearing rocks.

Results and discussion: Within the staurolite zone of the Northern Ladoga region, three blocks (subzones) are distinguished, which differ in the P-T conditions of rock formation: Western block: T = 585–615°C, P = 3.7–5.2 kbar, Central: T = 645–650°C, P = 5.3–6.0 kbar and Eastern: T = 510–592°C, P = 3.7–6.5 kbar. The composition of the gas part of fluid inclusions in synmetamorphic quartz veins of the staurolite zone is determined mainly by CO2 and CH4. In the Eastern block the composition often contains the gas phase N2 with impurities CH4 and H2. The density of CO2 fluid inclusions (0.58–0.82 g/cm3) and estimates of metamorphic pressure from them (1–3 kbar) are lower than those obtained from thermobarometric data of rocks (4–6 kbar). The U-Pb age of monazite from staurolite-bearing schists is 1787 ± 5 Ma.

Conclusion: The revealed P-T parameters of rock metamorphism in different parts of the staurolite zone of the Northern Ladoga region and the fluid composition features in them reflect lateral heterogeneity: higher P-T parameters were recorded for the rocks of the Central block, which may indicate a greater erosion of this block with the opening of underlying more high-temperature and high-pressure rocks. The composition of fluid inclusions in quartz veins reflects the specific fluid regime at the late regressive stages of rock metamorphism. The time of staurolite parageneses formation (~ 1.79 Ga) corresponds to the stage of completion of orogenic events in the region.

Downloads

Download data is not yet available.

Author Biographies

Evgenia B. Borisova, Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg. St. Petersburg State University

Research fellow in laboratory petro- and oregenesis of Institute of Precambrian Geology and Geochronology Russian Academy of Sciences. Graduate Student of Institute of Earth sciences of St. Petersburg State University, Saint-Petersburg, Russian Federation

Shauket K. Baltybaev, Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg. St. Petersburg State University

Dr. habil. in Geol.-Min., Professor of Institute of Earth sciences of St. Petersburg State University. Chief of laboratory petro- and oregenesis of Institute of Precambrian Geology and Geochronology Russian Academy of Sciences, Saint-Petersburg, Russian Federation

Vladimir N. Bocharov, St. Petersburg State University

specialist of Resource Center of Scientific Park, St. Petersburg State University, Saint-Petersburg, Russian Federation

References

1. Barrow G. On an intrusion of muscovite-biotite gneiss in the southeast Highlands of Scotland and its accompanying metamorphism. Quarterly Journal of the Geological Society of London, 1893, vol. 19, pp. 33‒58.
2. Alekseev I. A., Amantov A. V., Amantova M. G., Babichev A. V., Baltybaev Sh. K., Bugaenko I. V. Ladozhskaya proterozo-iskaya struktura (geologiya, glubinnoe stroenie i minerageniya) [Proterozoic Ladoga structure (geology, deep structure and min-eral genesis)]. Ed. Sharov N. V. Publisher Karelian Research Centre of the RAS publ., 2020, 435 p. (In Russ.)
3. Sudovikov N. G. Tektonika, metamorfizm, migmatizaciya i granitizaciya porod ladozhskoj formacii [Tectonics, metamorphism, migmatization and granitization of rocks of the Ladoga formation]. Trudy LAGED AS USSR publ., 1954, 198 p. (In. Russ.)
4. Sudovikov N. G., Glebovickij V. A., Petrov V. P., Sergeev A. S., Haritonov A. L. Geologicheskoe razvitie glubinnyh zon podvizhnyh poyasov (Severnoe Priladozh'e) [Geological development of deep zones of mobile belts (Northern Ladoga region)]. Moscow, AS USSR publ., 1970, 228 p. (In Russ.)
5. Kicul V. I. Petrologiya karbonatnyh porod ladozhskoj formacii [Petrology of carbonate rocks of the Ladoga formation]. Moscow, AS USSR publ., 1963, 171 p. (In Russ.)
6. Nagajcev Yu. V. K harakteristike zonal'nosti metamorfizma ladozhskoj formacii [To characterize the zonality of metamorphism of the Ladoga formation]. Vestnik Leningradskogo gosudarstvennogo universiteta ‒ Proceedings of Leningrad State University, Leningrad publ., 1965, vol. 3, no. 18 (In Russ.)
7. Nagajcev Yu. V. Petrologiya metamorficheskih porod ladozhskogo i belomorskogo kompleksov [Petrology of metamorphic rocks of the Ladoga and White Sea complexes]. Leningrad, LSU publ., 1974, 160 p. (In Russ.)
8. Predovskij A. A., Petrov V. P., Belyaev O. A. Geohimiya rudnyh elementov metamorficheskih serij dokembriya (na primere Severnogo Priladozh'ya) [Geochemistry of ore elements of Precambrian metamorphic series (on the example of the Northern Ladoga region)]. Leningrad, Nauka publ., 1967, 139 p. (In Russ.)
9. Velikoslavinskij D. S. Metamorficheskie zony v Severnom Priladozh'e i ocenka temperatur metamorfizma kianitovogo i andaluzitovogo tipov regional'nogo metamorfizma [Metamorphic zones in the Northern Ladoga region and assessment of the temperatures of metamorphism of kyanite and andalusite types of regional metamorphism] Metamorficheskie poyasa SSSR [Metamorphic belts of the USSR]. Leningrad, Nauka publ., 1971, pp. 61–70. (In Russ.)
10. Velikoslavinskij D. A. Sravnitel'naya harakteristika regional'nogo metamorfizma umerennyh i nizkih davlenij [Comparative characteristics of regional metamorphism of moderate and low pressures]. Leningrad, Nauka publ., 1972, 190 p. (In Russ.)
11. Baltybaev Sh. K., Glebovickij V. A., Kozyreva I. V., Konopelko D.L., Levchenkov O. A., Sedova I. S., Shuldiner V. I. Geologiya i petrologiya svekofennid Priladozh'ya [Geology and petrology of svecofennids of the Ladoga region]. Saint Petersburg, Saint Petersburg State University publ., 2000, 198 p. (In Russ.)
12. Baltybaev Sh. K., Levchenkov O. A., Levskij L. K. Svekofennskij poyas Fennoskandii: prostranstvenno-vremennaya korrelyaciya ranneproterozojskih endogennyh processov [Svecofennian belt of Fennoscandia: spatiotemporal correlation of Early Proterozoic endogenous processes]. Saint Petersburg, Nauka publ., 2009, 328 p. (In Russ.)
13. Berman R. G. WinTWQ (version 2.3): A software package for performing internally-consistent thermobarometric calculations. Geol. Surv. Canada. Open File 5462 (revised), 2007.
14. Dolivo-Dobrovol'skij D. V. O kombinacionnom podhode v geotermobarometrii [On the combination approach in geothermobarometry]. 2006. Available at: http://www.dimadd.ru/ru/Programs/o-kombinacionnom-podhode-v-geotermobarometrii (accessed 1st February 2024)
15. Berman R. G. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.
16. Raman C. V., Krishnan K. S. The optical analog of the Compton effect. Nature, 1928, vol. 121, 711 p.
17. Frezzotti M. L., Tecce F., Casagli A. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 2012, vol. 112, pp. 1–20.
18. Rödder E. Flyuidnye vklyucheniya v mineralah. Tom 1 [Fluid inclusions in minerals. Volume 1]. Moscow, Mir publ., 1987, 560 p. (In Russ.)
19. Krogh T. E. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochem. Cosmochem. Acta., 1982, vol. 46, pp. 637–649.
20. Ludwig K. R. Isoplot/Ex: A geochronological Toolkit for Microsoft Excel. Version 2.05. Vol. 1a. Berkeley Geochronology Center, Special Publication, 1999, 49 p.
21. Ludwig K. R. Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 2001, no. 1a., 55 p.
22. Schreyer W., Horrocks P.C., Abraham K. High-magnesium staurolite in a sapphirine-garnet rock from the Limpopo Belt, Southern Africa. Contrib. Mineral. Petrol., 1984, vol. 86, pp. 200–207.
23. Donnay J. D. H., Gabrielle D. The staurolite story. Tschermaks mineralogische und petrographische Mitteilungen, 1983, vol. 31, no. 1–2, pp. 1–15.
24. Grevel K.-D., Navrotsky A., Fockenberg T., Majzlan J. The enthalpy of formation and internally consistent thermodynamic data of Mg-staurolite. American Mineralogist, 2002, vol. 87, no. 2, pp. 397–404.
25. Holdaway M. J., Mukhopadhyay B. Thermodynamic Properties of Stoichiometric Staurolites H2Fe4Al18Si8O48 and H6Fe2Al18Si8O48. American Mineralogist, 1995, vol. 80, pp. 520–533.
26. García-Casco A., Haissen F., Castro A., El-Hmidi H., Torres-Roldán R.L., Millán G. Synthesis of Staurolite in Melting Experiments of a Natural Metapelite: Consequences for the Phase Relations in Low-Temperature Pelitic Migmatites. Journal of Petrology, 2003, vol. 44, no. 10, pp. 1727–1757.
27. Thompson A. B., Connolly J. A. D. Melting of the Continental-Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings. Journal of Geophysical Research, 1995, vol. 100, pp. 15565–15579.
28. Spear F. S., Kohn M. J., Cheney J. T. P-T paths from anatectic pelites. Contrib. Mineral. Petrol., 1999, vol. 134, pp. 17–32.
29. Borisova E. B., Baltybaev Sh. K., Bocharov V. N. Ob ustojchivosti stavrolita pri izmenenii sootnosheniya H2O:CO2 vo flyuide: termodinamicheskij analiz mineral'nyh paragenezisov [On the stability of staurolite when the H2O:CO2 ratio in the fluid changes: thermodynamic analysis of mineral parageneses]. Trudy Fersmanovskoj nauchnoj sessii GI KNC RAN [Proceedings of the Fersman scientific session of the Geological Institute of the KSC RAS]. 2021, vol. 18, pp. 69–73 (In Russ.) DOI: 10.31241/FNS.2021.18.012
30. Borisova E. B., Baltybaev Sh. K. Petrochemical Criteria of Staurolite Stability in Metapelites at Medium-Temperature Lowand Medium-Pressure Metamorphism. Petrology, 2021, vol. 29, no. 4, p. 336−350. DOI: 10.1134/S0869591121040020
31. Lobach-Zhuchenko S. B., Chekulaev V. P., Afanas'eva L. I. Himicheskij sostav Ladozhskoj formacii Baltijskogo shchita i vopros o balanse veshchestva pri metamorfizme i ul'trametamorfizme [Chemical composition of the Ladoga formation of the Baltic shield and the question of the balance of matter during metamorphism and ultrametamorphism]. Geohimiya – Geochemistry, 1972, no. 3, pp. 355−362 (In Russ.)
32. Ronov A. B., Migdisov A. A., Lobach-Zhuchenko S. B. Problemy evolyucii himicheskogo sostava osadochnyh porod i regional'nyj metamorfizm [Problems of evolution of the chemical composition of sedimentary rocks and regional metamorphism]. Geohimiya – Geochemistry, 1977, no. 2, pp. 163−186 (In Russ.)
33. Abu El-Enen M. M., Will T. M., Okrusch M. P-T evolution of the Pan–African Taba metamorphic belt, Sinai, Egypt: Constraints from metapelitic mineral assemblages. J. African Earth Sci., 2004, vol. 38, pp. 59–78.
34. Baltatzis E. Staurolite–Forming Reactions in the Eastern Dalradian Rocks of Scotland. Contrib. Mineral. Petrol., 1979, vol. 69, pp. 193–200.
35. Corrie S. L., Kohn M. J. Trace–element distributions in silicates during prograde metamorphic reactions: implications for monazite formation. J. Мetamorph. Geol., 2008, vol. 26, pp. 451–464.
36. Garcia-Casco A., Torres-Roldan R. L. Natural metastable reactions involving garnet, staurolite and cordierite: implications for petrogenetic grids and the extensional collapse of the Betic–Rif Belt. Contrib. Mineral. Petrol., 1999, vol. 136, pp. 131–153.
37. Liu Jia–Hui., Zhang Qian W. L., Li Zhen M. G., Zhang Hui C. G., Chen Yi-Chao, Wu Chun-Ming. Metamorphic evolution and U-Pb geochronology of metapelite, northeastern Wutai Complex: Implications for Paleoproterozoic tectonic evolution of the Trans–North China Orogen. Precamb. Res., 2020, vol. 350, pp. 1–13.
38. Savko K.A. Zonal'nost' mineralov i progressivnye metamorficheskie reakcii v srednetemperaturnyh metapelitah voroncovskoj serii (Voronezhskij kristallicheskij massiv) [Zoning of minerals and progressive metamorphic reactions in medium-temperature metapelites of the Vorontsov series (Voronezh crystalline massif)]. Izv. AN SSSR, ser. Geologija ‒ Izv. USSR Academy of Sciences, 1990, no. 11, pp. 79–87. (In Russ.)
39. Hölttä P., Kivisaari T., Huhma H., Rollinson G., Kurhila M., Butcher A. R. Paleoproterozoic Metamorphism of the Archean Tuntsa Suite, Northern Fennoscandian Shield. Minerals, 2020, vol. 10, 1034 p. DOI:10.3390/min10111034
Published
2024-03-29
How to Cite
Borisova, E. B., Baltybaev, S. K., & Bocharov, V. N. (2024). P-T conditions, fluid evolution, and time of formation of staurolite-containing parageneses in the rocks of the metamorphic complex of the Northern Ladoga region. Proceedings of Voronezh State University. Series: Geology, (1), 74-88. https://doi.org/10.17308/geology/1609-0691/2024/1/74-88
Section
Petrology, Volcanology, Geochemistry