Zonality and relationship between radonometric activity of faults and gas content of Donbass coals

Keywords: radonometry, gas content, anomalous accumulations of methane, emanations, faults

Abstract

Introduction: in the vicinity of faults, along which the boundaries of coal mine fields are drawn, thick, insignificant in length and relatively isolated gas-bearing reservoirs are formed, which by their filtration properties approach and sometimes exceed the reservoirs of known gas fields. Methane degassing in them is compensated by deep gas flow along geodynamically active fault fragments. Such formations are considered as anomalous accumulations of methane confined to zones of dynamic influence of faults. The study of such accumulations in the interwell space, as well as the current stress-strain state of the upper horizon of the rock massif, identification of geodynamically active zones is possible with the use of radonometric studies.

Methodology: in the field of the mine «Kalinovskaya-Vostochnaya» of Donetsk-Makeevskiy coal-bearing region profile emanation survey was carried out to study the current stress-strain state of the upper horizon of the rock massif and to identify geodynamic zones of influence of faults. The separate content of radon and thoron in the soil air was studied using the scintillation emanometer «Radon» at the area of conjunction of Timoshenko and Frantczusky overthrusts. The values of radon and thoron concentration in soil air, radon-thoron ratio and contrast coefficient of anomalies were calculated. Anomalies of coal gas content anomalies by seams were identified.

Results and discussion: plots of changes in values of radon and thoron concentrations, radon-thoron ratio along the profiles were constructed. Areas of increased and decreased values of radon and thoron concentrations were singled out. Maps of distribution of values of radon and thoron concentration, radon-thoron ratio and contrast coefficient of anomalies are constructed. The compression zones with low fault activity were identified, which are characterised by low values of radon content, radon-thoron ratio, anomaly contrast ratio and high values of thoron content. The compression condition is confirmed by increased gas content of coal seams due to anomalously high formation pressure in the coal-rock massif.

Conclusion: the areas of high values of radon concentration together with low thoron content, high values of radon-thoron ratio and high contrast coefficient of the anomaly, which are geodynamic zones of stretching of active large discontinuity, are identified in the study area. The areas of low values of radon concentration, radon-toron ratio and contrast ratio together with high values of thoron concentration correspond to compression zones with low geodynamic activity. The zone of positive anomalies of gas content in the area of the Frantczusky overthrust and Timoshenko overthrust interlocking on the earth's surface is combined with the radonometric compression zone. Anomalously high gas pressure in coal seams, determined by the level of gas content of coals, is associated with the compression zone, identified by radonometric data.

Downloads

Download data is not yet available.

Author Biographies

Andrey V. Antsiferov, RANIMI, Donetsk

Corresponding member of the NASU, PhD. Dr. habil. in Tech., Professor, Scientific supervisor, RANIMI, Donetsk, Russian Federation

Leonid A. Ivanov, RANIMI, Donetsk

PhD in Geol.-Min., Associate professor, Leading Researcher, RANIMI, Donetsk, Russian Federation

Ivan Yu. Nikolaev, RANIMI, Donetsk

PhD in Geol., Leading Researcher, RANIMI, Donetsk, Russian Federation

References

1. Ivanov L. A. Geologicheskie pokazateli modeli anoma-l'nogo skopleniya metana [Geological indicators of the model of abnormal accumulation of methane]. Trudy RANIMI ‒ Transactions of RANIMI, 2023, vol. 22 (37), pp. 9–18 (In Russ).
2. Vozzhenikov G. S., Belyshev Yu. V. Radiometriya i yadernaya geofizika [Radiometry and nuclear geophysics]. Ekaterinburg, Izd-vo UrO RAN publ., 2000, 305 p. (In Russ).
3. Ryaboshtan Yu. S. Metodicheskie rekomendatsii po strukturno-geodinamicheskomu kartirovaniyu [Methodologi-cal recommendations on structural-geodynamic mapping]. Donetsk, MUP SSSR, PO «Ukruglegeologiya» publ., 1988, 204 p. (In Russ).
4. Seminskii K. Zh., Bobrov A. A. Sootnoshenie radonovoi i seismicheskoi aktivnosti v Baikal'skoi riftovoi zone po dannym emanatsionnogo monitoringa [Correlation of radon and seismic activity in the Baikal rift zone according to ema-nation monitoring data]. Geodinamika i tektonofizika ‒ Geo-dynamics & Tectonophysics, 2024, vol. 15 (1), pp. 1–14 (In Russ). DOI: https://doi.org/10.5800/GT-2024-15-1-0744.
5. Andreev A. I., Kovkin A. A., Medvedeva M. B. Radon kak indikator seismogeodinamicheskoi aktivnosti [Radon as an indicator of seismogeodynamic activity]. Bezopasnost' v tekhnosfere ‒ Safety in technosphere, 2011, vol. 5. pp. 8–14 (In Russ).
6. Tumanov V. V., Ivanov L. A., Savchenko A. V., Martynov G. P., Bogak M. Yu., Yalputa E. A. Geodinamicheskie, gorno-geologicheskie i inzhenerno-geologicheskie issledovaniya geofizicheskimi metodami, provodimye v RANIMI [Geody-namic, Mining-and-Geological and Geotechnical Surveys Conducted in RANIMI Using Geophysical Methods]. Trudy RANIMI ‒ Transactions of RANIMI, 2019, vol. 8 (23/2). pp. 75–84 (In Russ).
7. Utkin V. I., Yurkov A. K. Radon – nadezhnyi indikator geodinamicheskikh protsessov [Radon is a reliable indicator of geodynamic processes]. Vestnik KRAUNTs. Nauki o Zemle ‒ Bulletin of Kamchatka Regional Association «Educational-Scientific Center». Earth Sciences, 2009, vol. 13, no. 1, pp. 165–169 (In Russ).
8. Ivanov L. A. Geologo-geofizicheskaya sistema otsenki gazonosnosti ugol'nykh mestorozhdenii po svyazannomu gazu [Geological and Geophysical System for Estimating Gas Content of Coal Deposits by Tight Gas]. Trudy RANIMI ‒ Transactions of RANIMI, 2020, vol. 10–11 (25–26), pp. 157–172 (In Russ).
9. Antsiferov A. V., Tumanov V. V., Ivanov L. A., Savchen-ko A. V., Antsiferov V. A. Prakticheskaya proverka pogresh-nosti geologo-geofizicheskoi sistemy otsenki gazonosnosti uglei [Practical Verification of Geological and Geophysical System Error for Estimating Gas Content of Coals]. Trudy RANIMI ‒ Transactions of RANIMI, 2020, vol. 10–11 (25–26), pp. 125–132 (In Russ).
10. Ivanov L. A. Geneticheskaya model' gazonosnosti uglei [Genetic Model of Coal Gas Content]. Trudy RANIMI ‒ Transactions of RANIMI, 2019, vol. 8 (23/2), pp. 132–146 (In Russ).
11. Levenshtein M. L., Spirina O. I. Komplekt kart meta-morfizma uglei Donetskogo basseina [Set of maps of coal metamorphism in the Donetsk Basin]. Kiev, TsTE publ., 1991, 104 p. (In Russ).
12. Ivanov L. A. Glubina kak faktor gazonosnosti uglei [Depth as a Factor of Coal Gas Content]. Trudy RANIMI ‒ Transactions of RANIMI, 2020, vol. 9 (24), p. 48–54 (In Russ).
13. Antsiferov A. V., Tirkel' M. G., Khokhlov M. T., Privalov V. A., Golubev A. A., Maiboroda A. A., Antsiferov V. A. Gazonosnost' ugol'nykh mestorozhdenii Donbassa [Gas con-tent of Donbass coal deposits]. Kiev, Naukova dumka publ., 2004, 231 p. (In Russ).
14. Kuz'min Yu. O. Sovremennaya geodinamika razlomnykh zon [Recent geodynamics of fault zones]. Fizika Zemli ‒ Physics of the Solid Earth, 2004, vol. 10, pp. 95–111 (In Russ).
15. Seminskii K. Zh., Borov A. A., Demberel S. Radonovaya i tektonicheskaya aktivnost' razlomov zemnoi kory (na primere Tsentral'noi Mongolii) [Radon and tectonic activities of crustal faults: the case of Central Mongolia]. Geologiya i geofizika ‒ Russian Geology and Geophysics, 2019, vol. 60, no. 2, pp. 243–255 (In Russ). DOI: https://doi.org/10.15372/GiG2019016.
16. Korchemagin V. A. Geologicheskaya struktura i polya napryazhenii v svyazi s evolyutsiei endogennykh rezhimov Donbassa: dis. dr. geol. min. nauk [Geological structure and stress fields in connection with the evolution of endogenous regimes in Donbass. PhD diss]. Moscow publ., 1984, 380 p. (In Russ).
17. Ivanov L. A., Tumanov V. V., Savchenko A. V. Strukturno-geodinamicheskie predposylki ispol'zovaniya mikroseism dlya poiska anomal'nykh skoplenii metana [Struc-tural and geodynamic prerequisites for using microseisms to search for anomalous methane accumulations]. Trudy RANI-MI ‒ Transactions of RANIMI, 2022, vol. 16–17 (31–32), pp. 46–59 (In Russ).
Published
2024-12-27
How to Cite
Antsiferov, A. V., Ivanov, L. A., & Nikolaev, I. Y. (2024). Zonality and relationship between radonometric activity of faults and gas content of Donbass coals. Proceedings of Voronezh State University. Series: Geology, (4), 4-16. https://doi.org/10.17308/geology/1609-0691/2024/4/4-16
Section
General and Regional Geology