Anodic oxide coatings with a hierarchical micronanostructure on sintered titanium powders
Abstract
TiO2 nanotubes formed by electrochemical anodising of Ti (titanium foil) are normally X-ray amorphous. To improve their functional properties, they are usually converted into crystalline nanotubes by annealing at T ≈ 400–500 °С. What is more, under certain conditions, oxide films with a hierarchical micronanostructure can be formed on titanium foil by anodising in fluorine-containing electrolytes. Such films contain nanostructured microcones whose atomic structure corresponds to anatase (a-TiO2). It is interesting to find out whether it is possible to form anodic oxide coatings with a hierarchical micronanostructure on the surface of sintered powders of titanium sponge, which should have much larger specific surfaces and a wider range of applications. This paper is aimed at the study of the process of anodising porous samples of sintered
powders of titanium sponge in an aqueous electrolyte (1 М Н2SO4 + 0.15 wt % HF).
The object of our study were sintered titanium powders in the form of samples of porous powder materials with a specific area of Ssp = 1,350 cm2/g. Anodising was conducted in a 1 М Н2SO4 + 0.15 wt % HF electrolyte at various values of current density (jm). Surface morphology before and after anodising was investigated by scanning electron microscopy and atomic force microscopy. X-ray diffractometry was used to study the phase composition.
The research involved the study of the influence of conditions for the galvanostatic anodising of samples of porous powder materials made from titanium sponge on the growth, morphology, and atomic structure of anodic oxide coatings. For the first time, it was shown that anodising at the values of current density jm = (230÷1,890) mA/g leads to the appearance of nanostructured a-TiO2 microcones (with base diameters and heights of up to 4 μm) in an amorphous nanoporous/nanotube oxide matrix (with an effective pore/tube diameter of about 50 nm). Since such coatings have a high specific area and a hierarchical micronanostructure, they are promising for the design of devices for photocatalytic environment purification
and production of superhydrophobic surfaces.
Downloads
References
Riboni F., Nguyen N. T., So S., Schmuki P. Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties. Nanoscale Horizons. 2016;1: 445–466. https://doi.org/10.1039/C6NH00054A
Yakovleva N. M., Kokatev A. N., Chupakhina E. A., Stepanova K. V., Yakovlev A. N., Vasil’ev S.G., Shul’ga A. M. Surface nanostructuring of metals and alloys. Part 2. Nanostructured anodic oxide films on Ti and Ti alloys. Condensed Matter and Interphases. 2016;18(1): 6–27. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=25946608
Lee K., Mazare A., Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chemical Reviews. 2014;114(1): 9385−9454. https://doi.org/10.1021/cr500061m
Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. TiO2 nanotubes: selforganized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science. 2007;11: 3–18. https://doi.org/10.1016/j.cossms.2007.08.004
Kulkarni M. , Mazare A. , Gongadze E. , Perutkova Š., Kralj-Iglic V., Milošev I., Schmuki P., Iglic А., Mozetic М. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26: 1−18. https://doi.org/10.1088/0957-4484/26/6/062002
Kowalski D., Kim D., Schmuki P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today. 2013;8(3): 235—264 https://doi.org/10.1016/j.nantod.2013.04.010
Kokatev A. N., Stepanova K. V., Yakovleva N. M., Tolstik V. E., Shelukhina A. I., Shulga A. M. Selforganization of a bioactive nanostructured oxide layer at the surface of sintered titanium sponge powder subjected to electrochemical anodization. Technical Physics. 2018;63(9): 1334–1340. https://doi.org/10.1134/S1063784218090062
Yoriya S., Mor G. K., Sharma S., Grimes C. A. Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes. Journal of Materials Chemistry. 2008;18(28): 3332–3336. https://doi.org/10.1039/B802463D
Xiao X. F., Ouyang K. G., Liu R. F, Liang J. H. Anatase type titania nanotube arrays direct fabricated by anodization without annealing. Applied Surface Science. 2008;255(6): 3659–3663. https://doi.org/10.1016/j.apsusc.2008.10.014
Allam N. K., Grimes C. A. Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties. Langmuir. 2009;25(13): 7234–7240. https://doi.org/10.1021/la9012747
Liao Y., Wang X., Ma Y., Li J., Wen T., Jia L., Zhong Z., Wang L., Zhang D. New mechanistic insight of low temperature crystallization of anodic TiO2 nanotube array in water. Crystal Growth & Design. 2016;16(4): 1786–1791. https://doi.org/10.1021/acs.cgd.5b01234
Lamberti A., Chiodoni A., Shahzad N., Bianco S., Quaglio M., Pirri C. F. Ultrafast room-temperature crystallization of TiO2 nanotubes exploiting watervapor treatment. Scientific Reports. 2015;5(1): 7808–7013. https://doi.org/10.1038/srep07808
Wang X., Zhang D., Xiang Q., Zhong Z., Liao Y. Review of water-assisted crystallization for TiO2 nanotubes. Nano-Micro Letters. 2018;10(4): 77–105. https://doi.org/10.1007/s40820-018-0230-4
Wang C., Wang M., Xie K., Wu Q., Sun L., Lin Z., Lin C. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization. Nanotechnology. 2011;22(30): 305607. https://doi.org/10.1088/0957-4484/22/30/305607
Huang J., Lai Y., Wang L., Li S., Ge M., Zhang K., Fuchs H., Chi L. Controllable wettability and adhesion on bioinspired multifunctional TiO2 nanostructure surfaces for liquid manipulation. Journal of Materials Chemistry A. 2014;2(43): 8531–18538. https://doi.org/10.1039/C4TA04090B
Li S., Li Y., Wang J., Nan Y., Ma B., Liu Z., Gu J. Fabrication of pinecone-like structure superhydrophobic surface on titanium substrate and its self-cleaning property. Chemical Engineering Journal. 2016;290: 82–90. https://doi.org/10.1016/j.cej.2016.01.014
Rhee O., Lee G., Choi J. Highly ordered TiO2 microcones with high rate performance for enhanced lithium-ion storage. ACS Applied Materials & Interfaces. 2016;8(23): 14558–14563. https://doi.org/10.1021/acsami.6b03099
Park J., Lee G., Choi J. Key anodization factors for determining the formation of TiO2 microcones vs nanotubes. Journal of The Electrochemical Society. 2017; 164(9): D640–D644. https://doi.org/10.1149/2.1601709jes
Park J., Choi J. Formation of well dispersed TiO2 microcones; the 20% surface occupation. Applied Surface Science. 2018;448: 212–218. https://doi.org/10.1016/j.apsusc.2018.04.033
Park J., Kim S., Lee G., Choi J. RGO-coated TiO2 microcones for high-rate lithium-ion batteries. ACS Omega.
;3(8): 10205−10210. https://doi.org/10.1021/acsomega.8b00926
Xing J., Xia Z., Hu J., Zhang Y., Zhong L. Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corrosion Science. 2013;75: 212–219. https://doi.org/10.1016/j.corsci.2013.06.004
Xing J., Li H., Xia Z., Hu J., Zhang Y., Zhong L. Formation and crystallization of anodic oxide films on sputter-deposited titanium in potentiostatic and potential-sweep modes. Journal of The Electrochemical Society. 2013;160(10): C503–C510. https://doi.org/10.1149/2.066310jes
Xing, J.-H. Xia Z.-B., Hu J.-F., Zhang Y.-H., Zhong L. Growth and crystallization of titanium oxide films at different anodization modes. Journal of The Electrochemical Society. 2013;160(6): 239–246. https://doi.org/10.1149/2.070306jes
Palma D. P. da S., Nakazato R. Z., Codaro E. N., Acciari H. A. Morphological and structural variations in anodic films grown on polished and electropolished titanium substrates. Materials Research. 2019;22: 1–98. https://doi.org/10.1590/1980-5373-MR-2019-0362
Zhang L., Duan Y., Gao R., Yang J., Wei K., Tang D., Fu T. The effect of potential on surface characteristic and corrosion resistance of anodic oxide film formed on commercial pure titanium at the potentiodynamic-aging mode. Materials. 2019;12(3): 370. https://doi.org/10.3390/ma12030370
Yoo H., Lee G., Choi J. Binder-free SnO2–TiO2 composite anode with high durability for lithium-ion batteries. RSC Advances. 2019;9: 6589–6595. https://doi.org/10.1039/C8RA10358E
Kim Y.-T., Youk J. H., Choi J. Inverse-direction growth of TiO2 microcones by subsequent anodization in HClO4 for increased performance of lithium-ion batteries. ChemElectroChem. 2020;7(5): 1057–1285. https://doi.org/10.1002/celc.202000114
Savich V. V, Bobrovskaya A. I., Taraikovich A. M., Bedenko S. A. Micro- and nanostructures surface foam particles of titanium powder and its influence on properties of porous materials from them. Nanotechnologies of functional materials (NFM – 2012): proceeding of the international scientific and technical conference, 27–29 June 2012. St. Petersburg: Polytechnic University Publ.; 2012. p. 523–529. (in Russ., abstract in Eng.)
Savich V. V. Metods of porous structure regulation of sintered materials from spongy powders of titanium. Poroshkovaya metallurgiya. 2016; 70–76. (in Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=37590838
Shelukhina A. I., Stepanova K. V., Kokatev A. N., Tolstik V. E. Surface modification of porous materials made of sponge titanium powder by means of anodic oxidation. Poroshkovaya metallurgiya. 2015;38: 180–184. (in Russ., abstract in Eng.)
Yakovleva N. M., Shul’ga A. M., Lukiyanchuk I. V., Stepanova K. V. , Kokatev A. N. Growth and crystallization of anodic oxide films on sintered titanium powders. In: Powder metallurgy: Surface Engineering, New Powder Composite materials. Welding. Proc. 12th Int. Sym.., 7–9 April 2021, Minsk. In 2 p. Part 2. Minsk: Belaruskaya nauka Publ.; 2021. p. 421–429. (in Russ., abstract in Eng.)
Yakovleva N. M., Shulga A. M., Stepanova K. V., Kokatev A. N., Rudnev V. S., Lukiyanchuk I. V., Kuryavyi V. G. Microcone anodic oxide films on sintered niobium powders. Condensed Matter and Interphases. 2020;22(1): 124–134. https://doi.org/10.17308/kcmf.2020.22/2536
Stepanova K. V., Yakovleva N. M., Kokatev A. N., Pettersson Kh. Nanoporous anodic oxide films on Ti–Al owder alloy. Proceedings of Petrozavodsk State University. Natural and Engineering Sciences. 2015;147(2): 81–86. (in Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=23306599
Habazaki H., Uozumi M., Konno H., Shimizu K., Skeldon P., Thompson G. E. Crystallization of anodic titania on titanium and its alloys. Corrosion Science. 2003;45: 2063–2073. https://doi.org/10.1016/S0010-938X(03)00040-4
Habazaki H., Uozumi H., Konno Н., Shimizu K., Skeldon P., Thompson G. E., Wood G. C. Breakdown of anodic films on titanium and its suppression by alloying. Journal of Corrosion Science and Engineering. 2003;6: 107. Available at: https://www.jcse.org/viewPaper/ID/206/fajeUDexa2dF4qbiJP7Hh6yvJ8mTNE
Nagesh Ch. R. V. S., Ramachandran C. S., Subramanyam R. B. Methods of titanium sponge production. Transactions of the Indian Institute of Metals. 2008;61(5): 341–348. https://doi.org/10.1007/s12666-008-0065-7
Beranek R., Hildebrand H., Schmuki P. Selforganized porous titanium oxide prepared in H2SO4/ HF electrolytes. Electrochemical and Solid-State Letters. 2003;6(3): 12–14. https://doi.org/10.1149/1.1545192
Mazzarolo A., Curioni M., Vicenzo A., Skeldon P., Thompson G. E. Anodic growth of titanium oxide: Electrochemical behaviour and morphological evolution. Electrochimica Acta. 2012;75: 288–295. https://doi.org/10.1016/j.electacta.2012.04.114
Liu Z. J., Zhong X., Walton J., Thompson G. E. Anodic film growth of titanium oxide using the 3-electrode electrochemical technique: effects of oxygen evolution and morphological characterizations. Journal of The Electrochemical Society. 2016;163 (3): E75–E82. https://doi.org/10.1149/2.0181603jes
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.