Coulometric analysis method for determining the concentration and degree of oxidation of vanadium in the electrolyte of a vanadium flow battery using a hydrogen vanadium cell

  • Elina A. Petukhova Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation; InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation https://orcid.org/0000-0003-2875-0324
  • Valeria S. Ershova Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation https://orcid.org/0009-0003-8261-3475
  • Alexander V. Terentyev Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation; InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation https://orcid.org/0000-0002-7591-9973
  • Evgeniy A. Ruban Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation https://orcid.org/0000-0003-3832-1611
  • Roman D. Pichugov InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation; D. I. Mendeleev Russian University of Chemical Technology, 9 Miusskaya pl., Moscow 125047, Russian Federation https://orcid.org/0000-0001-7353-2938
  • Dmitry V. Konev Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation https://orcid.org/0000-0002-2188-9254
  • Andrey A. Usenko Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation; InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation https://orcid.org/0000-0002-4119-5292
Keywords: Vanadium electrolyte, Vanadium flow batteries, Coulometry, Hydrogen electrode, Concentration, Degree of oxidation of vanadium

Abstract

Determining the vanadium content and the average degree of oxidation of vanadium ions in an electrolyte is a highly important task, both in the production and operation of vanadium flow batteries and in scientific research aimed at improving the performance characteristics of electrolytes throughout their entire life cycle. This article proposes a solution to this issue using the coulometric analysis of electrolyte samples circulating through a cell with a membrane-electrode unit consisting of a gas diffusion hydrogen electrode, a proton exchange membrane, and a liquid flow electrode. The coulometric analysis involves the oxidation of the sample to the highest degree of vanadium oxidation with further reduction to an oxidation state of +4. The parameters of the procedure (polarization modes and completion conditions) were chosen in order to minimize the relative error in determining the concentration of vanadium up to 5% and the average degree of oxidation up to 2% based on model composition electrolytes with different concentrations and degrees of vanadium oxidation, including sulfuric acid, as well as mixed acid (H2SO4 + HCl) compositions

Downloads

Download data is not yet available.

Author Biographies

Elina A. Petukhova, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation; InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation

Research Engineer, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (Chernogolovka, Russian Federation)

Valeria S. Ershova, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation

Laboratory Assistant, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (Chernogolovka, Russian Federation)

Alexander V. Terentyev, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation; InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation

Engineer, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (Chernogolovka, Russian Federation)

Evgeniy A. Ruban, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation

Junior Research Fellow, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (Chernogolovka, Russian Federation)

Roman D. Pichugov, InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation; D. I. Mendeleev Russian University of Chemical Technology, 9 Miusskaya pl., Moscow 125047, Russian Federation

Cand. Sci. (Phys.–Math.), Associate Professor, D. I. Mendeleev Russian University of Chemical Technology (Moscow, Russian Federation)

Dmitry V. Konev, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation

Cand. Sci. (Chem.), Senior Research Fellow, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (Chernogolovka, Russian Federation)

Andrey A. Usenko, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, 1 Academician Semenov ave., Chernogolovka 142432, Russian Federation; InEnergy LLC, 2-nd Kotlyakovskiy Lane 18, Moscow 115201, Russian Federation

Cand. Sci. (Phys.–Math.), Research Fellow, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (Chernogolovka, Russian Federation)

References

Lourenssen K., Williams J., Ahmadpour F., Clemmer R., Tasnim S. Vanadium redox flow batteries: A comprehensive review. Journal of Energy Storage. 2019;25: 100844.https://doi.org/10.1016/j.est.2019.100844

Aluko A., Knight A. A review on vanadium redox flow battery storage systems for large-scale power systems application. IEEE Access. 2023;11: 13773–13793. https://doi.org/10.1109/ACCESS.2023.3243800

Daniel M., Byron N. P., Krowne C. M. Harnessing redox flow batteries for industrial applications: Opportunities and future directions. Journal of Power Sources. 2024;591: 233889. https://doi.org/10.1016/j.jpowsour.2023.233889

Jiang H. R., Sun J., Wei L., Wu M. C., Shy W., Zhao T. S. A high power density and long cycle life vanadium redox flow battery. Energy Storage Materials. 2020;24: 529–540. https://doi.org/10.1016/j.ensm.2019.07.005

Li J., Wang Q., Zhang J. Design and development of large-scale vanadium redox flow batteries for engineering applications. Journal of Power Sources. 2024;591: 233855. https://doi.org/10.1016/j.jpowsour.2023.233855

Minke C., Turek T. Techno-economic modelling and evaluation of flow batteries. In: Flow batteries: from fundamentals to applications. Volume 2. C. Roth, J. Noack, M. Skyllas-Kazacos (eds.). Wiley, VCH GmbH; 2023. p. 463–485. https://doi.org/10.1002/9783527832767.ch20

Sum E., Skyllas-Kazacos M. A study of the V (II)/V (III) redox couple for redox flow cell applications. Journal of Power Sources. 1985;15(2-3): 179–190. https://doi.org/10.1016/ 0378-7753(85)80071-9

Rahman F., Skyllas-Kazacos M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. Journal of Power Sources 1998;72(2): 105–110. https://doi.org/10.1016/S0378-7753(97)02692-X

Li W., Zaffou R., Sholvin C. C., Perry M. L., She Y. Vanadium redox-flow-battery electrolyte preparation with reducing agents. ECS Transactions. 2013;53(7): 93. https://doi.org/10.1149/05307.0093ecst

Skyllas-Kazacos M., Cao L., Kazacos M., Kausar N., Mousa A. Vanadium electrolyte studies for the vanadium redox battery—a review. ChemSusChem. 2016;9(13): 1521–1543. https://doi.org/10.1002/cssc.201600102

Fenton A. M., Jha R. K., Neyhouse B. J., … Brushett F. R. On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries. Journal of Materials Chemistry A. 2022;10(35): 17988–17999. https://doi.org/10.1039/D2TA00690A

Lei Y., Zhang B. W., Zhang Z. H., Bai B. F., Zhao T. S. An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries. Applied Energy. 2018;215: 591–601. https://doi.org/10.1016/j.apenergy.2018.02.042

Cecchetti M., Toja F., Casalegno A., Zago M. A comprehensive experimental and modelling approach for the evaluation of cross-over fluxes in vanadium redox flow battery. Journal of Energy Storage. 2023;68: 107846. https://doi.org/10.1016/j.est.2023.107846

Sun C. N., Delnick F. M., Baggetto L., Veith G. M., Zawodzinski T. A. Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries. Journal of Power Sources. 2014;248: 560–564. https://doi.org/10.1016/j.jpowsour.2013.09.125

Wei L., Zhao T. S., Xu Q., Zhou X. L., Zhang Z. H. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries. Applied Energy. 2017;190: 1112–1118. https://doi.org/10.1016/j.apenergy.2017.01.039

Schilling M., Zeis R. Investigating the V (II)/V (III) electrode reaction in a vanadium redox flow battery – a distribution of relaxation times analysis. Electrochimica Acta. 2024;477: 143771. https://doi.org/10.1016/j.electacta.2022.141058

Bhattarai A., Ghimire P. C., Whitehead A., Schweiss R., Scherer G. G., Wai N., Hng H. H. Novel approaches for solving the capacity fade problem during operation of a vanadium redox flow battery. Batteries. 2018;4(4): 48. https://doi.org/10.3390/batteries4040048

Yan L., Li D., Li S., Xu Z., Dong J., Jing W., Xing W. Balancing osmotic pressure of electrolytes for nanoporous membrane vanadium redox flow battery with a draw solute. ACS Applied Materials & Interfaces. 2016;8(51): 35289–35297. https://doi.org/10.1021/acsami.6b12068

Cao L., Skyllas-Kazacos M., Menictas C., Noack J. A review of electrolyte additives and impurities in vanadium redox flow batteries. Journal of Energy Chemistry. 2018;27(5): 1269–1291. https://doi.org/10.1016/j.jechem.2018.04.007

Loktionov P., Konev D., Pichugov R., Petrov M., Antipov A. Calibration-free coulometric sensors for operando electrolytes imbalance monitoring of vanadium redox flow battery. Journal of Power Sources. 2023;553: 232242. https://doi.org/10.1016/j.jpowsour.2022.232242

Noack J., Roznyatovskaya N., Pinkwart K., Tübke J. Vanadium proton exchange membrane water electrolyser. Journal of Power Sources. 2017;349: 144–151. https://doi.org/10.1016/j.jpowsour.2017.03.039

Feng W., Zeng Y., Deng F., Yang P., Dai S. A hydrogen-vanadium rebalance cell based on ABPBI membrane operating at low hydrogen concentration to restore the capacity of VRFB. Journal of Energy Storage. 2023;74: 109363. https://doi.org/10.1016/j.est.2023.109363

Kim B. G., Lee S. J. Method for preparing electrolyte for vanadium redox flow battery using vanadium oxide. Патент US: № 9406961B2. Опубл. 02.08.2016.

Rudolph S., Schröder U., Bayanov I. M. On-line controlled state of charge rebalancing in vanadium redox flow battery. Journal of Electroanalytical Chemistry. 2013;703: 29–37. https://doi.org/10.1016/j.jelechem.2013.05.011

Haisch T., Ji H., Weidlich C. Monitoring the state of charge of all-vanadium redox flow batteries to identify crossover of electrolyte. Electrochimica Acta. 2020; 36: 135573. https://doi.org/10.1016/j.electacta.2019.135573

Li L., Liu Y., Sun C. Methods for determining and/or adjusting redox-active element concentrations in redox flow batteries. Патент US: № 9846116B2. Опубл. 17.12.2019.

Wu H., Liu S., Liu C. Method for online detection of concentration of electrolyte of vanadium battery. Патент CN: № 102621085B. Опубл. 06.11.2013.

Wu X., Wang J., Liu S., Wu X., Li S. Study of vanadium (IV) species and corresponding electrochemical performance in concentrated sulfuric acid media. Electrochimica Acta. 2011;56(27): 10197–10203. https://doi.org/10.1016/j.electacta.2011.09.006

Agarwal H., Florian J., Goldsmith B. R., Singh N. V2+/V3+ redox kinetics on glassy carbon in acidic electrolytes for vanadium redox flow batteries. ACS Energy Letters. 2019;4(10): 2368–2377. https://doi.org/10.1021/acsenergylett.9b01423

Petchsingh C., Quill N., Joyce J. T., … Buckley D. N. Spectroscopic measurement of state of charge in vanadium flow batteries with an analytical model of VIV-VV absorbance. Journal of The Electrochemical Society. 2015;163(1): A5068. https://doi.org/10.1149/2.0091601jes

Stolze C., Meurer J. P., Hager M. D., Schubert U. S. An amperometric, temperature-independent, and calibration-free method for the real-time state-of-charge monitoring of redox flow battery electrolytes. Chemistry of Materials. 2019;31(15): 5363–5369. https://doi.org/10.1021/acs.chemmater.9b02376

Neyhouse B. J., Tenny K. M., Chiang Y. M., Brushett F. R. Microelectrode-based sensor for measuring operando active species concentrations in redox flow cells. ACS Applied Energy Materials. 2021;4(12): 13830–13840. https://doi.org/10.1021/acsaem.1c02580

Yufit V., Hale B., Matian M., Mazur P., Brandon N. P. Development of a regenerative hydrogen-vanadium fuel ell for energy storage applications. Journal of The Electrochemical Society. 2013;160(6): A856. https://doi.org/10.1149/2.086306jes

Hsu N. Y., Devi N., Lin Y. I., … Chen Y. S. Study on the effect of electrode configuration on the performance of a hydrogen/vanadium redox flow battery. Renewable Energy. 2022; 190: 658–663. https://doi.org/10.1016/j.renene.2022.03.151

Pichugov R., Loktionov P., Pustovalova A., … Antipov A. Restoring capacity and efficiency of vanadium redox flow battery via controlled adjustment of electrolyte composition by electrolysis cell. Journal of Power Sources. 2023;569: 233013. https://doi.org/10.1016/j.jpowsour.2023.233013

Nolte O., Volodin I. A., Stolze C., Hager M. D., Schubert U. S. Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. Materials Horizons. 2021;8(7): 1866–1925. https://doi.org/10.1039/D0MH01632B

Zhao X., Nam J., Jung H. Y., Jung S. Real-time state of charge and capacity estimations of vanadium redox flow battery based on unscented Kalman filter with a forgetting factor. Journal of Energy Storage. 2023;74: 109146. https://doi.org/10.1016/j.est.2023.109146

Puleston T., Serra M., Costa-Castelló R. Vanadium redox flow battery capacity loss mitigation strategy based on a comprehensive analysis of electrolyte imbalance effects. Applied Energy. 2024;355: 122271. https://doi.org/10.1016/j.apenergy.2023.122271

Konev D. V., Loktionov P. A., Pichugov R. D., … Kashin A. M. Method for producing electrolyte for a vanadium redox flow battery*. Patent RF No.: 2803292C1. Pub.12.09.2023, bull. No. 26.

Published
2024-12-04
How to Cite
Petukhova, E. A., Ershova, V. S., Terentyev, A. V., Ruban, E. A., Pichugov, R. D., Konev, D. V., & Usenko, A. A. (2024). Coulometric analysis method for determining the concentration and degree of oxidation of vanadium in the electrolyte of a vanadium flow battery using a hydrogen vanadium cell. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(1), 128-138. https://doi.org/10.17308/kcmf.2025.27/12490
Section
Original articles