Graphitic carbon nitride: properties and applications in gas sensing. Review
Abstract
Purpose: Nowadays gas sensors are of great interest for disease detection and assessment of treatment efficacy based on exhaled breath analysis. One of the promising materials for gas sensors are composites of graphitic carbon nitride withmetal oxides.
Experimental: The article considers the basic properties of g-C3N4 and provides a review of methods that can be effective for obtaining its composites with metal oxides.
Conclusions: The study presents the mechanism of interaction of g-C3N4 with gases of different nature. In addition, it gives some examples of sensors based on composites of g-C3N4 with metal oxides
Downloads
References
Dey A. Semiconductor metal oxide gas sensors: a review. Materials Science and Engineering: B. 2018;229: 206–217. https://doi.org/10.1016/j.mseb.2017.12.036
Yamazoe N. Oxide semiconductor gas sensors. Catalysis Surveys from Asia. 2003;7(1): 63-75. https://doi.org/10.1023/a:1023436725457
Nikolić M. V., Milovanović V, Vasiljević Z. Ž., Stamenković Z. Semiconductor gas sensors: materials, technology, design, and application. Sensors. 2020;20(22): 6694. https://doi.org/10.3390/s20226694
Ryabko A. A., Bobkov А. А., Nalimova S. S., … Terukov E. I. Gas sensitivity of nanostructured coatings based on zinc oxide nanorods under combined activation. Technical Physics. 2020;92(5): 644-649. https://doi.org/10.21883/tp.2022.05.53683.314-21
Li Q., Zeng W., Li Y. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments. Sensors and Actuators B: Chemical. 2022;359: 131579. https://doi.org/10.1016/j.snb.2022.131579
Rabchinskii M. K., Sysoev V. V., Varezhnikov A. S., … Brunkov P. N. Toward on-chip multisensor arrays for elective
methanol and ethanol detection at room temperature: capitalizing the graphene carbonylation. ACS Applied Materials & Interfaces. 2023;15(23): 28370–28386. https://doi.org/10.1021/ acsami.3c02833
Ryabtsev S. V., Obvintseva N. Yu., Chistyakov V. V., … Domashevskaya E. P. Features of the resistive response to ozone of semiconductor PdO sensors operating in thermomodulation mode. Condensed Matter and Interphases. 2023; 25(3): 392–397. https://doi.org/10.17308/kcmf.2023.25/11263
Shaposhnik A. V., Zvyagin A. A., Dyakonova O. V., Ryabtsev S.V., Ghareeb D. A. Semiconductor metal oxide sensor for hydrogen sulphide operating under nonstationary temperature conditions. Condensed Matter and Interphases. 2021;23(4): 637–643. https://doi.org/10.17308/kcmf.2021.23/3684
Ryabko A. A., Nalimova S. S., Mazing D. S, Korepanov O. A., … Aleshin A. N. Sensitization of ZnO nanorods by AgInS2 colloidal quantum dots for adsorption gas sensors with light activation. Technical Physics. 2022;92(6): 717-722. https://doi.org/10.21883/tp.2022.06.54418.15-22
Nalimova S. S., Ryabko A. A., Maximov A. I., Moshnikov V. А. Light-activation of gas sensitive layers based on zinc oxide nanowires. Journal of Physics: Conference Series. 2020;1697(1): 012128. https://doi.org/10.1088/1742-6596/1697/1/012128
Domènech-Gil G., Samà J., Fàbrega C., … Romano-Rodrı́Guez A. Highly sensitive SnO2 nanowire network gas sensors. Sensors and Actuators B: Chemical. 2023;383: 133545. https://doi.org/10.1016/j.snb.2023.133545
Pham Q. T., Syrkov A. G., Silivanov M. O., Ngo Q. K. Preparation of zinc nanooxide and its application for ntibacterial coatings. Tsvetnye Metally. 2023;(9): 51–56. https://doi.org/10.17580/tsm.2023.09.06
Rzaij J. M., Abass A. M. Review on: TiO2 thin film as a metal oxide gas sensor. Journal of Chemical Reviews. 2020;2(2): 114–121. https://doi.org/10.33945/sami/jcr.2020.2.4
Umar A., Alduraibi M., Al-Dossary O. M. Developent of ethanol gas sensor using Α-Fe2O3 nanocubes ynthesized by hydrothermal process. Journal of Nanoelectronics and Optoelectronics. 2020;15(1): 59–64. https://doi.org/10.1166/jno.2020.2742
Dong C., Zhao R., Yao L., Yan R., Zhang X., Wang Y. A review on WO3 based gas sensors: morphology control and enhanced sensing properties. Journal of Alloys and Compounds. 2020;820: 153194. https://doi.org/10.1016/j.jallcom.2019.153194
Chaloeipote G., Prathumwan R., Subannajui K., Wisitsoraat A., Wongchoosuk C. 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature. Materials Science in Semiconductor Processing. 2021;123: 105546. https://doi.org/10.1016/j.mssp.2020.105546
Kushchenko A. N., Syrkov A. G., Ngo Q. K. Inorganic synthesis of highly hydrophobic metals containing surface compounds with electron acceptor modifiers: process features. Tsvetnye Metally. 2023;(8): 62–72. https://doi.org/10.17580/tsm.2023.08.11
Kumarage G. W. C., Comini E. Low-dimensional nanostructures based on cobalt oxide (Co3O4) in chemical-gas sensing. Chemosensors. 2021;9(8): 197. https://doi.org/10.3390/chemosensors9080197
Chumakova V., Marikutsa A., Platonov V., Khmelevsky N., Rumyantseva M. N. Distinct roles of additives in the improved sensitivity to CO of Ag- and Pd-modified nanosized LaFeO3. Chemosensors. 2023;11(1): 60. https://doi.org/10.3390/chemosensors11010060
Njoroge M. A., Kirimi N. M., Kuria K. P. Spinel ferrites gas sensors: a review of sensing parameters, mechanism and the effects of ion substitution. Critical Reviews in Solid State and Materials Sciences. 2021;47(6): 807–836. https://doi.org/10.1080/10408436.2021.1935213
An D., Wang, Q., Tong, X., … Li Y. Synthesis of Zn2SnO4 via a co-precipitation method and its gas-sensing property toward ethanol. Sensors and Actuators B: Chemical. 2015; 213:155–163. https://doi.org/10.1016/j.snb.2015.02.042
Buckley D. J., Black N. C. G., Castanon E., Melios C., Hardman M., Kazakova O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Materials. 2020; 7(3): 032002. https://doi.org/10.1088/2053-1583/ab7bc5
Platonov V., Malinin N. I., Vasiliev R. B., Rumyantseva M. N. Room temperature UV-activated NO2 and NO detection by ZnO/rGO composites. Chemosensors. 2023,11(4): 227. https://doi.org/10.3390/chemosensors11040227
Simonenko E. P., Simonenko E. P., Mokrushin A. S., … Kuznecov N. T. Application of titanium carbide MXENES in chemiresistive gas sensors. Nanomaterials. 2023,13(5): 850. https://doi.org/10.3390/nano13050850
Cui S., Li R., Pei J., Wen, Y., Li Y., Xing X. Automobile exhaust purification over g-C3N4 catalyst material. materials Chemistry and Physics. 2020;247: 122867. https://doi.org/10.1016/j.matchemphys.2020.122867
Ray D., Nepak D., Vinodkumar T., Subrahmanyam Ch. g-C3N4 promoted DBD plasma assisted dry reforming of methane. Energy. 2019;183: 630–638. https://doi.org/10.1016/j.energy.2019.06.147
Yang W., Jia L., Wu P., Zhai H., He J., Liu C. Effect of thermal program on structure–activity relationship of g-C3N4 prepared by urea pyrolysis and its application for controllable production of g-C3N4. Journal of Solid State Chemistry. 2021;304: 122545. https://doi.org/10.1016/j.jssc.2021.122545
Pati S., Acharya R. An overview on g-C3N4 as a robust photocatalyst towards the sustainable generation of H2 energy. Materials Today: Proceedings. 2021;35: 175–178. https://doi.org/10.1016/j.matpr.2020.04.178
Xiong Z., Wang Z., Murugananthan M., Zhang Y. Construction of an in-situ Fenton-like system based on a g-C3N4 composite photocatalyst. Journal of Hazardous Materials. 2019;373: 565–571. https://doi.org/10.1016/j.jhazmat.2019.03.114
Cao M., Wang K., Tudela I., Fan X. Improve photocatalytic performance of g-C3N4 through balancing the interstitial and substitutional chlorine doping. Applied Surface Science. 2021;536: 147784. https://doi.org/10.1016/j.apsusc.2020.147784
Zhao R., Wang Z., Zou T., Wang Z., Yang Y., Xing X. Synthesis and enhanced sensing performance of g-3N4/SnO2 composites toward isopropanol. Chemistry Letters. 2018;47(7): 881-882. https://doi.org/10.1246/cl.180296
Cao J., Qin C., Wang Y., Zhang H., Sun G., Zhang Z. Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials. 2017;10(6): 604. https://doi.org/10.3390/ma10060604
Li X., Li Y., Sun G., Luo N., Zhang B., Zhang Z. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials. 2019;9(5): 724. https://doi.org/10.3390/nano9050724
He F., Wang Z., Li Y., Peng S., Liu B. The nonmetal modulation of composition and morphology of g-C3N4-ased
photocatalysts. Applied Catalysis B: Environmental. 2020;269: 118828. https://doi.org/10.1016/j.apcatb.2020.118828
Zhao G., Yang H., Liu M., Xu X. Metal-free graphitic carbon nitride photocatalyst goes into two-dimensional time. Frontiers in Chemistry. 2018;6. https://doi.org/10.3389/fchem.2018.00551
Zhang Y., Gao H., Kuai Y., … You W. Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys. Materials Characterization. 2013;86: 1–8. https://doi.org/10.1016/j.matchar.2013.09.004
Naseri A., Samadi M., Pourjavadi A., Ramakrishna S. Graphitic carbon nitride (g-C3N4)-based photocatalysts or
solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A. 2017;5(45): 23406–23433. https://doi.org/10.1039/c7ta05131j
Idris A. O., Oseghe E. O., Msagati T .A. M., Kuvarega A. T., Feleni U., Mamba B. B. Graphitic carbon nitride: a highly electroactive nanomaterial for environmental and clinical sensing. Sensors. 2020;20(20): 5743. https://doi.org/10.3390/s20205743
Patra P. C., Mohapatra Y. N. Dielectric constant of thin film graphitic carbon nitride (g-C3N4) and double dielectric Al2O3/g-C3N4. Applied Physics Letters. 2021;118(10). https://doi.org/10.1063/5.0045911
Giusto P., Cruz D., Heil T., … Antonietti M. Shine bright like a diamond: new light on an old polymeric memiconductor. Advanced Materials. 2020;32(10). https://doi.org/10.1002/adma.201908140
Bian J., Li Q., Huang C., Li J., Gou Y., Zaw M., Qi F. Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications. Nano Energy. 2015;15: 353–361. https://doi.org/10.1016/j.nanoen.2015.04.012
Wang Y., Wang X., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie International Edition. 2011;51(1): 68–89. https://doi.org/10.1002/anie.201101182
Cao S., Low J., Wang Y., Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials. 2015;27(13): 2150–2176. https://doi.org/10.1002/adma.201500033
Liu M., Wageh S., Al-Ghamdi A. A., … Wang Y. Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity. Chemical Communications. 2019;55(93): 14023–14026. https://doi.org/10.1039/c9cc07647f
Li C., Sun Z., Xue Y., Yao G., Zheng S. A facile synthesis of g-C3N4/TiO2 hybrid photocatalysts by sol–gel method and its enhanced photodegradation towards methylene blue under visible light. Advanced Powder Technology. 2016;27(2): 330–337. https://doi.org/10.1016/j.apt.2016.01.003
Yuan X., Zhou C., Jing Q., Tang Q., Mu Y., Du A. K. Facile synthesis of g-C3N4 nanosheets/ZnO anocomposites
with enhanced photocatalytic activity in reduction of aqueous chromium (VI) under visible light. Nanomaterials. 2016;6(9): 173. https://doi.org/10.3390/nano6090173
Cheng F., Yin H., Xiang Q. Low-temperature solidstate preparation of ternary CdS/g-C3N4/CuS anocomposites
for enhanced visible-light photocatalytic H2 -production activity. Applied Surface Science. 2017;391: 432–439. https://doi.org/10.1016/j.apsusc.2016.06.169
Ge L., Han C., Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental. 2011;108–109: 100–107. https://doi.org/10.1016/j.apcatb.2011.08.014
Liang Q., Zhang M., Yao C., Liu C., Xu S., Li Z. High performance visible-light driven photocatalysts of i2MoO6-
g-C3N4 with controllable solvothermal fabrication. Journal of Photochemistry and Photobiology A: Chemistry. 2017;332: 357–363. https://doi.org/10.1016/j.jphotochem.2016.09.012
Cao S., Liu X., Yuan Y., … Xue C. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Applied Catalysis B: Environmental. 2014;147: 940-946. https://doi.org/10.1016/j.apcatb. 2013.10.029
Liu L., Qi Y., Lu J., … Cui W. A stable Ag3PO4 @g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Applied Catalysis B: Environmental. 2016;183: 133-141. https://doi.org/10.1016/j.apcatb.2015.10.035
Yang Y., Guo W., Guo Y., Zhao Y., Yuan X., Guo Y. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. Journal of Hazardous Materials. 2014;271: 150–159. https://doi.org/10.1016/j.jhazmat.2014.02.023
Peng W., Li X. Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catalysis Communications. 2014;49: 63–67. https://doi.org/10.1016/j.catcom.2014.02.008
Bhati V. S., Hojamberdiev M., Kumar M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports. 2020;6: 46–62. https://doi.org/10.1016/j.egyr.2019.08.070
Idrees F., Dillert R., Bahnemann D. W., Butt F. K., Tahir M. N. In-situ synthesis of Nb2O5/g-C3N4 geterostructures as highly efficient photocatalysts for molecular H2 evolution under solar illumination. Catalysts.
;9(2): 169. https://doi.org/10.3390/catal9020169
Yin H., Yamamoto T., Wada Y., Yanagida S. Largescale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics. 2004;83(1): 66–70. https://doi.org/10.1016/j.matchemphys.2003.09.006
Li T., Zhao L., He Y., Cai J., Luo M., Lin J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Applied Catalysis B: Environmental. 2013;129: 255–263. https://doi.org/10.1016/j.apcatb.2012.09.031
Bhati V. S., Takhar V., Raliya R., Kumar M., Banerjee R. Recent advances in g-C3N4 based gas sensors for the detection of toxic and flammable gases: a review. Nano Express. 2022;3(1): 014003. https://doi.org/10.1088/2632-959x/ac477b
Li S., Wang Z., Wang X., … Huang W. Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Research. 2017;10(5): 1710–1719. https://doi.org/10.1007/s12274-017-1423-8
Wang D., Gu W., Zhang Y., Hu Y., Zhang T., Tao X., Chen W. Novel C-rich carbon nitride for room temperature NO2 gas sensors. RSC Advances. 2014;4(35): 18003–18006. https://doi.org/10.1039/c4ra02127d
Zhai J., Wang T., Wang C., Liu D. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature. Applied Surface Science. 2018;441: 317–323. https://doi.org/10.1016/j.apsusc.2018.02.026
Hang N. T., Zhang S. Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sensors and Actuators B: Chemical. 2017;248: 940–948. https://doi.org/10.1016/j.snb.2017.01.199
Karthik P., Gowthaman P., Venkatachalam M., Saroja M. Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas. Inorganic Chemistry Communications. 2020;119: 108060. https://doi.org/10.1016/j.inoche.2020.108060
Zhang Y., Zhang D., Guo W., Chen S. The α-Fe2O3/g‑C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. Journal of Alloys and Compounds. 2016;685: 84–90. https://doi.org/10.1016/j.jallcom.2016.05.220
Yue J., Xu J., Hong B., … Wang X. Synthesis and calcination–temperature-dependent gas-sensing performance of g-C3N4/Co3O4 heterojunctions for toluene gas sensors. Journal of Materials Science: Materials in Electronics. 2023;34(21). https://doi.org/10.1007/s10854-023-10957-y
Govind A., Bharathi P., Mathankumar G., … Navaneethan M. Enhanced charge transfer in 2D carbon-rich g-C3N4 nanosheets for highly sensitive NO2 gas sensor applications. Diamond and Related Materials. 2022;128: 109205. https://doi.org/10.1016/j.diamond.2022.109205
Zhang Y., Liu J., Chu X., Liang S., Kong L. Preparation of g-C3N4–SNO2 composites for application as acetic acid sensor. Journal of Alloys and Compounds. 2020;832: 153355. https://doi.org/10.1016/j.jallcom.2019.153355
Wang D., Huang S., Li H., … Yang J. Ultrathin WO3 nanosheets modified by g-C3N4 for highly efficient acetone vapor detection. Sensors and Actuators B: Chemical. 2019;282: 961–971. https://doi.org/10.1016/j.snb.2018.11.138
Ullah M., He L., Liu Z., … Shi K. Rational fabrication of a g-C3N4/NiO hierarchical nanocomposite with a large surface area for the effective detection of NO2 gas at room temperature. Applied Surface Science. 2021;550: 149368. https://doi.org/10.1016/j.apsusc.2021.149368
Patrick D. S., Govind A., Bharathi P., … Navaneethan M. Hierarchical ZnO/g-C3N4 nanocomposites for nhanced NO2 gas sensing applications. Applied Surface Science. 2023;609: 155337. https://doi.org/10.1016/j.apsusc.2022.155337
Sun D., Wang W., Zhang N., … Ruan S. g-C3N4/In2O3 composite for effective formaldehyde detection. Sensors
and Actuators B: Chemical. 2022;358: 131414. https://doi.org/10.1016/j.snb.2022.131414
Meng F., Chang Y., Qin W., … Ibrahim M. ZnOreduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Applied Nano Materials. 2019;2(5): 2734–2742. https://doi.org/10.1021/acsanm.9b00257
Akhtar A., Cheng J., Chu X., Liang S., Dong Y., He L. Acetone sensing properties of the g-C3N4–CuO nanocomposites prepared by hydrothermal method. Materials Chemistry and Physics. 2021;265: 124375. https://doi.org/10.1016/j.matchemphys.2021.124375
Hou M., Gao J., Yang L., Guo S., Hu T., Li Y. Room temperature gas sensing under UV light irradiation for Ti3C2Tx MXene derived lamellar TiO2-C/g-C3N4 composites. Applied Surface Science. 2021;535: 147666. https://doi.org/10.1016/j.apsusc.2020.147666
Wang H., Bai J., Meng D., … Lu G. Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sensors and Actuators B: Chemical. 2020;304: 127287. https://doi.org/10.1016/j.snb.2019.127287
Han C., Li X., Liu J., … Liu Y. In2O3/g-C3N4/Au ternary heterojunction-integrated surface plasmonic and hargeseparated effects for room-temperature ultrasensitive NO2 detection. Sensors and Actuators B: Chemical. 2022;371: 132448. https://doi.org/10.1016/j.snb.2022.132448
Liu S., Yu B., Zhang H., Fei T., Zhang T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensors and Actuators B: Chemical. 2014;202: 272. https://doi.org/10.1016/j.snb.2014.05.086
Kim H. W., Na H. G., Kwon Y. J., … Kim S. S. Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interfaces. 2017;9(37): 31667. https://doi.org/10.1021/acsami.7b02533
Yan H., Song P., Zhang S., Yang Z., Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. Journal of Alloys and Compounds. 2016;662: 118.
https://doi.org/10.1016/j.jallcom.2015.12.066
Zhao P. X., Tang Y., Mao J., … Zhang X. M. Onedimensional MoS2-decorated TiO2 nanotube gas sensors for efficient alcohol sensing. Journal of Alloys and Compounds. 2016;674: 252. https://doi.org/10.1016/j.jallcom.2016.03.029
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.