Advanced methods for preparing especially pure glasses based on germanium and gallium chalcogenides. Part 2. Synthesis using chemical transport reactions. Review

  • Alexander P. Velmuzhov G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation https://orcid.org/0000-0002-8739-3868
  • Maxim V. Sukhanov G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation https://orcid.org/0000-0003-0525-6286
  • Elizaveta A. Tyurina G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation https://orcid.org/0000-0002-6107-9862
  • Vladimir S. Shiryaev G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation https://orcid.org/0000-0002-1726-7313
Keywords: Сhalcogenide glasses, Especially pure substances, Optical materials, Synthesis, Chemical transport reactions, Laser generation

Abstract

Purpose: The second part of the review presents the results of preparing especially pure glasses based on germanium and gallium chalcogenides with chemical transport reactions.

Experimental part: Deep purification and vacuum loading of metallic gallium, gallium(III) telluride and rare-earth elements (REE) using gallium(III) iodide as a transport agent made it possible to reduce the content of hydrogen, oxygen impurities and heterogeneous inclusions in glasses by 1–2 orders of magnitude compared to tradition direct glass synthesis. We have theoretically justified and experimentally confirmed the high efficiency of REEs as getters for binding and subsequent removal of oxygen impurities from the chalcogenide melt.

Conclusions: The key result achieved by reducing the impurity content is mid-infrared (IR) laser generation in bulk samples of REE-doped chalcogenide glasses and in optical fibers based on them, which was previously not possible in these materials

Downloads

Download data is not yet available.

Author Biographies

Alexander P. Velmuzhov, G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation

Cand. Sci. (Chem.), Senior Research Fellow at the Laboratory of High-Purity
Chalcogenide Glasses for Mid-IR Photonics, G. G. Devyatykh
Institute of Chemistry of High-Purity Substances of the
Russian Academy of Science (Nizhny Novgorod, Russian Federation)

Maxim V. Sukhanov, G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation

Cand. Sci. (Chem.), Senior Research Fellow at the Laboratory of High-Purity Chalcogenide
Glasses for Mid-IR Photonics, G. G. Devyatykh Institute of Chemistry of High-Purity Substances of the Russian
Academy of Science (Nizhny Novgorod, Russian Federation)

Elizaveta A. Tyurina, G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation

Cand. Sci. (Chem.), Junior Research
Fellow at the Laboratory of High-Purity Chalcogenide
Glasses for Mid-IR Photonics, G. G. Devyatykh Institute of
Chemistry of High-Purity Substances of the Russian
Academy of Science (Nizhny Novgorod, Russian Federation)

Vladimir S. Shiryaev, G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 Tropinina st., Nizhny Novgorod 603137 Russian Federation

Dr. Sci. (Chem.), Deputy Director
for Research, G. G. Devyatykh Institute of Chemistry of High-
Purity Substances of the Russian Academy of Science (Nizhny
Novgorod, Russian Federation)

References

Heo J., Chung W. J., Rare-earth-doped chalcogenide glass for lasers and amplifiers. In: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead publishing series in electronic and optical materials; 2014; 44: 347–380. https://doi.org/10.1533/9780857093561.2.347

Jackson S. D., Jain R. K. Fiber-based sources of coherent MIR radiation: key advances and future prospects. Optics Express. 2020;28(21): 30964–31017. https://doi.org/10.1364/OE.400003

Sojka L., Tang Z., Zhu H., … Sujecki S. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+. Optical Materials Express. 2012;2(11): 1632–1640. https://doi.org/10.1364/OME.2.001632

Sujecki S., Sojka L., Beres-Pawlik E., … Seddon A. B, Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources. Optical and Quantum Electronics. 2018;50: 416. https://doi.org/10.1007/s11082-017-1255-5

Churbanov M. F., Denker B. I., Galagan B. I., … Velmuzhov A. P. First demonstration of ~ 5 µm laser action in terbium-doped selenide glass. Applied Physics B: Lasers and Optics. 2020;126(7): 117. https://doi.org/10.1007/s00340-020-07473-w

Denker B. I., Galagan B. I., Koltashev V. V., … Velmuzhov A. P. Continuous Tb-doped fiber laser emitting at ~5.25 µm, Optics and Laser Technology. 2022;154: 108355. https://doi.org/10.1016/j.optlastec.2022.108355

Koltashev V. V., Denker B. I., Galagan B. I., … Plotnichenko V. G. 150 mW Tb3+ doped chalcogenide glass fiber laser emitting at λ > 5 μm. Optics & Laser Technology. 2023;161: 109233. https://doi.org/10.1016/j.optlastec.2023.109233

Shiryaev V. S., Sukhanov M. V., Velmuzhov A. P., … Plotnichenko V. G. Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm. Journal of Non-Crystalline Solids. 2021;567: 120939. https://doi.org/10.1016/j.jnoncrysol.2021.120939

Le Coq D., Cui. S., Boussard-Pledel C., Masselin P., Bychkov E., Bureau B. Telluride glasses with far-infrared transmission up to 35 μm. Optical Materials. 2017;72: 809–812. https://doi.org/10.1016/j.optmat.2017.07.038

Cui S., Boussard-Plédel C., Lucas J., Bureau B. Tebased glass fiber for far-infrared biochemical sensing up to 16 μm. Optics Express. 2014;22(18): 21253. https://doi.org/10.1364/OE.22.021253

Chatwin C. R. Carbon dioxide laser. In: Encyclopedia of modern optics. 2005: 289–400. https://doi.org/10.1016/B0-12-369395-0/00845-9

Wilhelm A. A., Boussard-Plédel C., Coulombier Q., Lucas J., Bureau B., Lucas P. Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Advanced Materials. 007;19: 3796–3800. https://doi.org/10.1002/adma.200700823

Bureau B., Maurugeon S., Charpentier F., Adam J.-L., Boussard-Plédel C., Zhang X.-H. Chalcogenide glass fibers for infrared sensing and space optics. Fiber and Integrated Optics. 2009; 28: 65–80. https://doi.org/10.1080/01468030802272542

Zhang S., Zhang X., Barillot M., … Parent G. Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application. Optical Materials. 2010;32: 1055–1059. https://doi.org/10.1016/j.optmat.2010.02.030

Speiser R., Johnston H. L. Vapor pressures of inorganic substances. IX. Gallium. 1953;75(6): 1469–1470. https://doi.org/10.1021/ja01102a057

Habermann C. E., Daane A. H. Vapor pressures of the rare-earth metals. The Journal of Chemical physics.1964;41: 2818–2827. https://doi.org/10.1063/1.1726358

Churbanov M. F., Shiryaev V. S. Preparation of high-purity chalcogenide glasses. In: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). J.-L. Adam, X. Zhang (eds.). Oxford Cambridge

hiladelphia New Delhi: Woodhead publishing series in electronic and optical materials; 2014;44: 3–35. https://doi.org/10.1533/9780857093561.1.3

Velmuzhov A. P., Sukhanov M. V., Tyurina E. A., Shiryaev V. S. Advanced methods for preparing especially pure glasses based on germanium and gallium chalcogenides. Part 1. Synthesis via volatile and low-melting compounds. Review. Condensed Matter and Interphases. 2025;27(1): 16–28. https://doi.org/10.17308/kcmf.2025.27/12482

Schäfer H. Chemical transport reactions. New York, London: Academic Press; 1964. 174 p.

Devyatykh G. G., Elliev Yu. E. Introduction to the theory of deep purification of substances*. Moscow: Nauka Publ.; 1981. 320 p. (In Russ.)

He Y., Wang X., Nie Q., … Dai S. Optical properties of Ge–Te–Ga doping Al and AlCl3 far infrared transmitting chalcogenide glasses. Infrared Physics & Technology.2013;58: 1–4. https://doi.org/10.1016/j.infrared.2012.12.038

Taş A. C., Majewski P. J., Aldinger F. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior. Journal of the American Ceramic Society. 2002;85(6): 1421–1429. https://doi.org/10.1111/j.1151-2916.2002.tb00291.x

IVTANTHERMO: Thermodynamic database and software for PC, version 3.0* [Electronic resource]. Moscow: THERMOCENTER RAS; 1992–2005. (In Russ.)

Shiryaev V. S., Velmuzhov A. P., Tang Z.Q., Churbanov M.F., Seddon A.B. Preparation of high purity glasses in the Ga–Ge–As–Se system. Optical Materials. 2014;37: 18–23. https://doi.org/10.1016/j.optmat.2014.04.021

Velmuzhov A. P., Sukhanov M. V., Anoshina D. E., ... Shiryaev V. S. Preparation of high purity glasses based on germanium and gallium tellurides using chemical transport. Journal of Non-Crystalline Solids. 2022;585: 121529. https://doi.org/10.1016/j.jnoncrysol.2022.121529

Sukhanov M. V., Velmuzhov A. P., Tyurina E. A., Blagin R. D. Method for producing extra-pure chalcogenide glasses containing gallium. RF Patent: No. 2770494. Publ. 18.04.2022, Bull. No. 11. Available at: https://patenton.ru/patent/RU2770494C1.pdf

Velmuzhov A. P., Tyurina E. A., Sukhanov M. V., … Shiryaev V.S. Distillation with separate condensation of components as a new way to prepare especially pure GexTe100−x glasses with precisely desired composition. Separation and Purification Technology. 2023;324: 124532. https://doi.org/10.1016/j.seppur.2023.124532

Velmuzhov A. P., Sukhanov M. V., Shiryaev V. S., Plekhovich A. D. Preparation of high-purity germanium telluride based glasses with low oxygen impurity content. Journal of Non-Crystalline Solids. 2021;553: 120480. https://doi.org/10.1016/j.jnoncrysol.2020.120480

Sukhanov M. V., Velmuzhov A. P., Otopkova P. A., … Shiryaev V. S. Rare earth elements as a source of impurities in doped chalcogenide glasses. Journal of Non-Crystalline Solids. 2022;593: 121793. https://doi.org/10.1016/j.jnoncrysol.2022.121793

Mikheeva V. I., Kost M. E. The hydrides of the rareearth metals. Russian Chemical Reviews. 1960;29(1): 55–73. https://doi.org/10.1070/RC1960v029n01ABEH001216

Seddon A. B., Tang Z., Furniss D., Sujecki S., Benson T. M. Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express. 2010;18(25): 26704. https://doi.org/10.1364/OE.18.026704

Velmuzhov A. P., Sukhanov M. V., Plotnichenko V. G., Plekhovich A. D., Shiryaev V. S., Churbanov M. F. Preparation of REE-doped Ge-based chalcogenide glasses with low hydrogen impurity content. Journal of Non-Crystalline Solids. 2019; 525: 119669. https://doi.org/10.1016/j.jnoncrysol.2019.119669

Sukhanov M. V., Velmuzhov A. P., Kotereva T. V., Skripachev I. V., Churbanov M. F. New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium. Optical Materials. 2019;9(8): 3204–3214. https://doi.org/10.1364/OME.9.003204

Sukhanov M. V., Velmuzhov A. P., Ketkova L. A., … Sverchkov S. E. Method for preparing high-purity REE-doped chalcogenide glasses for bulk and fiber lasers operating at ~ 5μm region. Journal of Non-Crystalline Solids. 2023;608: 122256. https://doi.org/10.1016/j.jnoncrysol.2023.122256

Boghosian S., Papatheodorous G. N. Halide vapors and vapor complex. Handbook on the physics and chemistry of rare earths. 1996;23: 435–496. https://doi.org/10.1016/S0168-1273(96)23008-9

Tang Z., Sojka L., Furniss D., … Seddon A. B. Comparative study of praseodymium additives in active selenide chalcogenide optical fibers. Optical Materials Express. 2018;8: 3910–3926. https://doi.org/10.1364/OME.8.003910

Van Erk W. Transport processes in metal halide gas discharge lamps. Pure and Applied Chemistry. 2000;72(11): 2159–2166. https://doi.org/10.1351/pac200072112159

Velmuzhov A. P., Sukhanov M. V., Tyurina E. A., Evdokimov I. I, Kurganova A. E., Shiryaev V. S. Rare-earth metals as effective getters for purification of germanium telluride glasses from oxygen impurities. Journal of Non-Crystalline Solids. 2023;603: 122112. https://doi.org/10.1016/j.jnoncrysol.2022.122112

Baun W., McDevitt N. T. Infrared absorption spectra of rare-earth oxides in the Region 800 to 240 cm-1. Journal of the American Ceramic. Society. 1963;46(6): 294. https://doi.org/10.1111/j.1151-2916.1963.tb11729.x

Liu G. Electronic energy level structure. In: Spectroscopic Properties of Rare Earths in Optical Materials. R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu, B. Jacquier (eds.). Berlin, Germany: Springer Verlag; 2005;83: 1–94. https://doi.org/10.1007/3-540-28209-2_7

Karaksina E. V., Blagin R. D., Sukhanov M. V., … Shiryaev V. S. Preparation and properties of especially pure Ge-Sb-As-S glasses for IR optics. Journal of Non-Crystalline Solids. 2024;642: 123158. https://doi.org/10.1016/j.jnoncrysol.2024.123158

Shiryaev V. S, Velmuzhov A. P., Churbanov M. F., … Plotnichenko V. G. Preparation and investigation of high purity Ge–Te–AgI glasses for optical application. Journal of Non-Crystalline Solids.2013; 377: 1–7. https://doi.org/10.1016/j.jnoncrysol.2013.03.039

Sukhanov M. V., Velmuzhov A. P., Snopatin G. E., … Sverchkov S. E. Chalcogenide glasses doped with rare-earth

lements – established laser materials in the 5–6 μm range. High-purity substances. Preparation, analysis, application: Abstracts of the XVII All-Russian Conference, June 7–9, 2022, Nizhny Novgorod*. Nizhny Novgorod: IAP RAS, 2022. p. 147. (In Russ.)

Published
2025-03-25
How to Cite
Velmuzhov, A. P., Sukhanov, M. V., Tyurina, E. A., & Shiryaev, V. S. (2025). Advanced methods for preparing especially pure glasses based on germanium and gallium chalcogenides. Part 2. Synthesis using chemical transport reactions. Review. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(2), 190-202. https://doi.org/10.17308/kcmf.2025.27/12770
Section
Review