Advanced methods for preparing especially pure glasses based on germanium and gallium chalcogenides. Part 2. Synthesis using chemical transport reactions. Review
Abstract
Purpose: The second part of the review presents the results of preparing especially pure glasses based on germanium and gallium chalcogenides with chemical transport reactions.
Experimental part: Deep purification and vacuum loading of metallic gallium, gallium(III) telluride and rare-earth elements (REE) using gallium(III) iodide as a transport agent made it possible to reduce the content of hydrogen, oxygen impurities and heterogeneous inclusions in glasses by 1–2 orders of magnitude compared to tradition direct glass synthesis. We have theoretically justified and experimentally confirmed the high efficiency of REEs as getters for binding and subsequent removal of oxygen impurities from the chalcogenide melt.
Conclusions: The key result achieved by reducing the impurity content is mid-infrared (IR) laser generation in bulk samples of REE-doped chalcogenide glasses and in optical fibers based on them, which was previously not possible in these materials
Downloads
References
Heo J., Chung W. J., Rare-earth-doped chalcogenide glass for lasers and amplifiers. In: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead publishing series in electronic and optical materials; 2014; 44: 347–380. https://doi.org/10.1533/9780857093561.2.347
Jackson S. D., Jain R. K. Fiber-based sources of coherent MIR radiation: key advances and future prospects. Optics Express. 2020;28(21): 30964–31017. https://doi.org/10.1364/OE.400003
Sojka L., Tang Z., Zhu H., … Sujecki S. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+. Optical Materials Express. 2012;2(11): 1632–1640. https://doi.org/10.1364/OME.2.001632
Sujecki S., Sojka L., Beres-Pawlik E., … Seddon A. B, Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources. Optical and Quantum Electronics. 2018;50: 416. https://doi.org/10.1007/s11082-017-1255-5
Churbanov M. F., Denker B. I., Galagan B. I., … Velmuzhov A. P. First demonstration of ~ 5 µm laser action in terbium-doped selenide glass. Applied Physics B: Lasers and Optics. 2020;126(7): 117. https://doi.org/10.1007/s00340-020-07473-w
Denker B. I., Galagan B. I., Koltashev V. V., … Velmuzhov A. P. Continuous Tb-doped fiber laser emitting at ~5.25 µm, Optics and Laser Technology. 2022;154: 108355. https://doi.org/10.1016/j.optlastec.2022.108355
Koltashev V. V., Denker B. I., Galagan B. I., … Plotnichenko V. G. 150 mW Tb3+ doped chalcogenide glass fiber laser emitting at λ > 5 μm. Optics & Laser Technology. 2023;161: 109233. https://doi.org/10.1016/j.optlastec.2023.109233
Shiryaev V. S., Sukhanov M. V., Velmuzhov A. P., … Plotnichenko V. G. Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm. Journal of Non-Crystalline Solids. 2021;567: 120939. https://doi.org/10.1016/j.jnoncrysol.2021.120939
Le Coq D., Cui. S., Boussard-Pledel C., Masselin P., Bychkov E., Bureau B. Telluride glasses with far-infrared transmission up to 35 μm. Optical Materials. 2017;72: 809–812. https://doi.org/10.1016/j.optmat.2017.07.038
Cui S., Boussard-Plédel C., Lucas J., Bureau B. Tebased glass fiber for far-infrared biochemical sensing up to 16 μm. Optics Express. 2014;22(18): 21253. https://doi.org/10.1364/OE.22.021253
Chatwin C. R. Carbon dioxide laser. In: Encyclopedia of modern optics. 2005: 289–400. https://doi.org/10.1016/B0-12-369395-0/00845-9
Wilhelm A. A., Boussard-Plédel C., Coulombier Q., Lucas J., Bureau B., Lucas P. Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Advanced Materials. 007;19: 3796–3800. https://doi.org/10.1002/adma.200700823
Bureau B., Maurugeon S., Charpentier F., Adam J.-L., Boussard-Plédel C., Zhang X.-H. Chalcogenide glass fibers for infrared sensing and space optics. Fiber and Integrated Optics. 2009; 28: 65–80. https://doi.org/10.1080/01468030802272542
Zhang S., Zhang X., Barillot M., … Parent G. Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application. Optical Materials. 2010;32: 1055–1059. https://doi.org/10.1016/j.optmat.2010.02.030
Speiser R., Johnston H. L. Vapor pressures of inorganic substances. IX. Gallium. 1953;75(6): 1469–1470. https://doi.org/10.1021/ja01102a057
Habermann C. E., Daane A. H. Vapor pressures of the rare-earth metals. The Journal of Chemical physics.1964;41: 2818–2827. https://doi.org/10.1063/1.1726358
Churbanov M. F., Shiryaev V. S. Preparation of high-purity chalcogenide glasses. In: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). J.-L. Adam, X. Zhang (eds.). Oxford Cambridge
hiladelphia New Delhi: Woodhead publishing series in electronic and optical materials; 2014;44: 3–35. https://doi.org/10.1533/9780857093561.1.3
Velmuzhov A. P., Sukhanov M. V., Tyurina E. A., Shiryaev V. S. Advanced methods for preparing especially pure glasses based on germanium and gallium chalcogenides. Part 1. Synthesis via volatile and low-melting compounds. Review. Condensed Matter and Interphases. 2025;27(1): 16–28. https://doi.org/10.17308/kcmf.2025.27/12482
Schäfer H. Chemical transport reactions. New York, London: Academic Press; 1964. 174 p.
Devyatykh G. G., Elliev Yu. E. Introduction to the theory of deep purification of substances*. Moscow: Nauka Publ.; 1981. 320 p. (In Russ.)
He Y., Wang X., Nie Q., … Dai S. Optical properties of Ge–Te–Ga doping Al and AlCl3 far infrared transmitting chalcogenide glasses. Infrared Physics & Technology.2013;58: 1–4. https://doi.org/10.1016/j.infrared.2012.12.038
Taş A. C., Majewski P. J., Aldinger F. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior. Journal of the American Ceramic Society. 2002;85(6): 1421–1429. https://doi.org/10.1111/j.1151-2916.2002.tb00291.x
IVTANTHERMO: Thermodynamic database and software for PC, version 3.0* [Electronic resource]. Moscow: THERMOCENTER RAS; 1992–2005. (In Russ.)
Shiryaev V. S., Velmuzhov A. P., Tang Z.Q., Churbanov M.F., Seddon A.B. Preparation of high purity glasses in the Ga–Ge–As–Se system. Optical Materials. 2014;37: 18–23. https://doi.org/10.1016/j.optmat.2014.04.021
Velmuzhov A. P., Sukhanov M. V., Anoshina D. E., ... Shiryaev V. S. Preparation of high purity glasses based on germanium and gallium tellurides using chemical transport. Journal of Non-Crystalline Solids. 2022;585: 121529. https://doi.org/10.1016/j.jnoncrysol.2022.121529
Sukhanov M. V., Velmuzhov A. P., Tyurina E. A., Blagin R. D. Method for producing extra-pure chalcogenide glasses containing gallium. RF Patent: No. 2770494. Publ. 18.04.2022, Bull. No. 11. Available at: https://patenton.ru/patent/RU2770494C1.pdf
Velmuzhov A. P., Tyurina E. A., Sukhanov M. V., … Shiryaev V.S. Distillation with separate condensation of components as a new way to prepare especially pure GexTe100−x glasses with precisely desired composition. Separation and Purification Technology. 2023;324: 124532. https://doi.org/10.1016/j.seppur.2023.124532
Velmuzhov A. P., Sukhanov M. V., Shiryaev V. S., Plekhovich A. D. Preparation of high-purity germanium telluride based glasses with low oxygen impurity content. Journal of Non-Crystalline Solids. 2021;553: 120480. https://doi.org/10.1016/j.jnoncrysol.2020.120480
Sukhanov M. V., Velmuzhov A. P., Otopkova P. A., … Shiryaev V. S. Rare earth elements as a source of impurities in doped chalcogenide glasses. Journal of Non-Crystalline Solids. 2022;593: 121793. https://doi.org/10.1016/j.jnoncrysol.2022.121793
Mikheeva V. I., Kost M. E. The hydrides of the rareearth metals. Russian Chemical Reviews. 1960;29(1): 55–73. https://doi.org/10.1070/RC1960v029n01ABEH001216
Seddon A. B., Tang Z., Furniss D., Sujecki S., Benson T. M. Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express. 2010;18(25): 26704. https://doi.org/10.1364/OE.18.026704
Velmuzhov A. P., Sukhanov M. V., Plotnichenko V. G., Plekhovich A. D., Shiryaev V. S., Churbanov M. F. Preparation of REE-doped Ge-based chalcogenide glasses with low hydrogen impurity content. Journal of Non-Crystalline Solids. 2019; 525: 119669. https://doi.org/10.1016/j.jnoncrysol.2019.119669
Sukhanov M. V., Velmuzhov A. P., Kotereva T. V., Skripachev I. V., Churbanov M. F. New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium. Optical Materials. 2019;9(8): 3204–3214. https://doi.org/10.1364/OME.9.003204
Sukhanov M. V., Velmuzhov A. P., Ketkova L. A., … Sverchkov S. E. Method for preparing high-purity REE-doped chalcogenide glasses for bulk and fiber lasers operating at ~ 5μm region. Journal of Non-Crystalline Solids. 2023;608: 122256. https://doi.org/10.1016/j.jnoncrysol.2023.122256
Boghosian S., Papatheodorous G. N. Halide vapors and vapor complex. Handbook on the physics and chemistry of rare earths. 1996;23: 435–496. https://doi.org/10.1016/S0168-1273(96)23008-9
Tang Z., Sojka L., Furniss D., … Seddon A. B. Comparative study of praseodymium additives in active selenide chalcogenide optical fibers. Optical Materials Express. 2018;8: 3910–3926. https://doi.org/10.1364/OME.8.003910
Van Erk W. Transport processes in metal halide gas discharge lamps. Pure and Applied Chemistry. 2000;72(11): 2159–2166. https://doi.org/10.1351/pac200072112159
Velmuzhov A. P., Sukhanov M. V., Tyurina E. A., Evdokimov I. I, Kurganova A. E., Shiryaev V. S. Rare-earth metals as effective getters for purification of germanium telluride glasses from oxygen impurities. Journal of Non-Crystalline Solids. 2023;603: 122112. https://doi.org/10.1016/j.jnoncrysol.2022.122112
Baun W., McDevitt N. T. Infrared absorption spectra of rare-earth oxides in the Region 800 to 240 cm-1. Journal of the American Ceramic. Society. 1963;46(6): 294. https://doi.org/10.1111/j.1151-2916.1963.tb11729.x
Liu G. Electronic energy level structure. In: Spectroscopic Properties of Rare Earths in Optical Materials. R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu, B. Jacquier (eds.). Berlin, Germany: Springer Verlag; 2005;83: 1–94. https://doi.org/10.1007/3-540-28209-2_7
Karaksina E. V., Blagin R. D., Sukhanov M. V., … Shiryaev V. S. Preparation and properties of especially pure Ge-Sb-As-S glasses for IR optics. Journal of Non-Crystalline Solids. 2024;642: 123158. https://doi.org/10.1016/j.jnoncrysol.2024.123158
Shiryaev V. S, Velmuzhov A. P., Churbanov M. F., … Plotnichenko V. G. Preparation and investigation of high purity Ge–Te–AgI glasses for optical application. Journal of Non-Crystalline Solids.2013; 377: 1–7. https://doi.org/10.1016/j.jnoncrysol.2013.03.039
Sukhanov M. V., Velmuzhov A. P., Snopatin G. E., … Sverchkov S. E. Chalcogenide glasses doped with rare-earth
lements – established laser materials in the 5–6 μm range. High-purity substances. Preparation, analysis, application: Abstracts of the XVII All-Russian Conference, June 7–9, 2022, Nizhny Novgorod*. Nizhny Novgorod: IAP RAS, 2022. p. 147. (In Russ.)
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.